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1. Introduction

In [1–7] and the references therein, the authors have studied the existence and the
stability of (vector-valued, set-valued, semi-infinite vector) optimization and multiobjective
optimization problems, while the author in [2] shows that most of the weakly efficient
solution sets of multiobjective optimization problems (in the sense of Baire category) are
stable. By the fact that there are still quite a fewweakly efficient solution sets of multiobjective
optimization problems which are not stable, in this paper, we discusses the stability of
solution set for multiobjective optimization problems from the perspective of essential
components.

2. Definitions and Lemmas

Let X be a nonempty compact subset of a Banach space E, R = (−∞,+∞)

f : X → Rn, where f =
(
f1, f2, . . . , fn

)
, fi : X → R ∀i ∈ {1, 2, . . . , n}. (2.1)
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Consider the following multiobjective optimization problem:

min f(x), s.t. x ∈ X. (VMP)

Definition 2.1. (1) A point x∗ ∈ X is called a weakly efficient solution to (VMP), if there is no
x ∈ X such that

fi(x) < fi(x∗), ∀i = 1, 2, . . . , n. (2.2)

(2) A point x∗ ∈ X is called an efficient solution to (VMP), if there is no x ∈ X (x /=x∗)
such that

fi(x) ≤ fi(x∗), ∀i = 1, 2, . . . , n. (2.3)

WE(f,X) or WE(f) is used to denote the weakly efficient solution set of (VMP), and
E(f,X) or E(f) is used to denote the efficient solution set of (VMP).

Clearly, E(f,X) ⊂ WE(f,X), but the reverse containment may not hold.

Example 2.2 (see [8]). Let X = [0, 2], define

fi(x) = x, i ∈ {1, 2, . . . , n − 1},

fn(x) =

⎧
⎨

⎩

1, 0 ≤ x < 1,

2 − x, 1 ≤ x ≤ 2.

(2.4)

Then E(f,X) = {0} ∪ (1, 2], WE(f,X) = [0, 2].
It is easy to see that n = 1, and (VMP) is just a scalar optimization problem, in this

case, we still denote by WE(f,X) or WE(f) the set of optimal solution.

Remark 2.3. Let f = (f1, f2, . . . , fn) : X → Rn, for all i ∈ {1, 2, . . . , n}, one has WE(fi, X) ⊂
WE(f,X).

Denote

Y =
{
f | f : X → Rn continuous, X be a nonempty compact subset of a Banach space

}
.

(2.5)

For any f = (f1, f2, . . . , fn), g = (g1, g2, . . . , gn) ∈ Y , define

ρ
(
f, g

)
=

n∑

i=1

sup
x∈X

∣∣fi(x) − gi(x)
∣∣. (2.6)

Clearly, (Y, ρ) is a complete metric space.
For any f = (f1, f2, . . . , fn) ∈ Y , by [2], it has been shown that WE(f,X) ⊂ X is a

nonempty compact subset, and the following Lemma 2.4 is due to [2].
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Lemma 2.4. The mapping WE : Y → 2X is upper semicontinuous with nonempty compact values.
For any f ∈ Y , the component of a point x ∈ WE(f,X) is the union of all connected subsets of

WE(f,X) which contain the point x. From [9, page 356], one knows that components are connected
closed subsets of WE(f,X) and thus they are also compact as WE(f,X) is compact. It is easy to
see that the components of two distinct points of WE(f,X) either coincide or are disjoint, so that all
components constitute a decomposition of WE(f,X) into connected pairwise disjoint compact subsets,
that is,

WE
(
f,X

)
=

⋃

α∈Λ
Cα

(
f
)
, (2.7)

where Λ is an index set, for any α ∈ Λ, Cα(f) is a nonempty connected compact and for any α,
β ∈ Λ(α/= β), Cα(f) ∩ Cβ(f) = ∅.

Definition 2.5. For f ∈ Y , Cα(f) is called an essential component of WE(f,X) if, for any open
set O containing Cα(f), there exists δ > 0 such that for all g ∈ Y with ρ(f, g) < δ, WE(g,X) ∩
O/= ∅.

The following Definition 2.6 is from [2].

Definition 2.6. For f ∈ Y , x ∈ WE(f,X) is said to be an essential weakly efficient solution
to (VMP) if, for any open neighborhood N(x) of x in X, there exists an open neighborhood
O(f) at f in Y such that WE(g,X) ∩N(x)/= ∅ for all g ∈ O(f).

Remark 2.7. For f ∈ Y , if x ∈ WE(f,X) is an essential weakly efficient solution to (VMP), then
the component which contains the point x is an essential component.

Remark 2.8. For f ∈ Y , maybe, there is no essential component in WE(f,X), and no essential
weakly efficient solution in WE(f,X).

Example 2.9. Let X = [0, 6], define

f1(x) = f2(x) = · · · = fn(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − x, x ∈ [0, 1],

0, x ∈ (1, 2],

x − 2, x ∈ (2, 3],

4 − x, x ∈ (3, 4],

0, x ∈ (4, 5],

x − 5, x ∈ (5, 6].

(2.8)

Then, WE(f,X) = [1, 2] ∪ [4, 5], and for all i ∈ {1, 2, . . . , n}, WE(f,X) = WE(fi, X). By
[3, Theorem 2.3], WE(f,X) = WE(fi, X) has no essential component.
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Example 2.10. Let X = [0, 2], define

f1(x) = f2(x) = · · · = fn(x) =

⎧
⎨

⎩

x, x ∈ [0, 1],

2 − x, x ∈ (1, 2].
(2.9)

Then, WE(f,X) = {0} ∪ {2}, and for all i ∈ {1, 2, . . . , n}, WE(f,X) = WE(fi, X). By [3,
Theorem 3.2], WE(f,X) = WE(fi, X) contains no essential weakly efficient solution.

Definition 2.11. Let X be a nonempty convex subset of a Banach space, and fi : X → R, the
function fi is said to be strongly quasiconvex on X, if

fi(tx1 + (1 − t)x2) < max
{
fi(x1), fi(x2)

}
(2.10)

for all x1, x2 ∈ X, x1 /=x2, t ∈ (0, 1).

3. Essential Component and Essential Weakly Efficient Solution

Theorem 3.1. For f ∈ Y , x∗ ∈ WE(f,X), if there is i ∈ {1, 2, . . . , n} such that WE(fi, X) = {x∗},
then x∗ is an essential weakly efficient solution of (VMP). Hence, the component that contains the
point x∗ is an essential component.

Proof. Suppose that f ∈ Y , x∗ ∈ WE(f), and there exists i ∈ {1, 2, . . . , n} such that WE(fi, X) =
{x∗}. For any open neighborhood N(x∗) of x∗ in X, there is an open neighborhood M(x∗) of
x∗ in X such that M(x∗) ⊂ N(x∗), where M(x∗) denotes the closure of M(x∗).

Since fi(x∗) = minx∈Xfi(x), and WE(fi, X) = {x∗}, then

inf
x∈X\M(x∗)

fi(x) − fi(x∗) > 0. (3.1)

Take δ > 0 such that

inf
x∈X\M(x∗)

fi(x) − δ > fi(x∗) + δ. (3.2)

Then for any g = (g1, g2, . . . , gn) ∈ Y with ρ(f, g) < δ, one has

∣∣fi(x) − gi(x)
∣∣ < δ, ∀x ∈ X. (3.3)

Then

fi(x) − δ < gi(x) < fi(x) + δ, ∀x ∈ X, (3.4)
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by (3.2) and (3.4), one has

min
x∈M(x∗)

gi(x) ≤ min
x∈M(x∗)

fi(x) + δ = fi(x∗) + δ,

fi(x∗) + δ < inf
x∈X\M(x∗)

fi(x) − δ ≤ inf
x∈X\M(x∗)

gi(x),
(3.5)

therefore

min
x∈M(x∗)

gi(x) < inf
x∈X\M(x∗)

gi(x). (3.6)

Then, WE(gi, X) ∩ M(x∗)/= ∅, and hence WE(gi, X) ∩ N(x∗)/= ∅, which implies WE(g,X) ∩
N(x∗)/= ∅. By Definition 2.6, x∗ is an essential weakly efficient solution to (VMP). Hence, the
component that contains the point x∗ is an essential component.

Corollary 3.2 (see [2]). When n = 1, for f ∈ Y , if WE(f) = {x} is a singleton, then x is an essential
optimum solution.

Lemma 3.3. LetX be a nonempty compact convex subset of a Banach space, the function fi : X → R
continuous and strongly quasiconvex, then WE(fi, X) is a singleton.

Proof. Suppose x1, x2 ∈ WE(fi, X), and x1 /=x2. By Definition 2.11,

fi(tx1 + (1 − t)x2) < max
{
fi(x1), fi(x2)

}
= min

x∈X
fi(x), t ∈ (0, 1), (3.7)

which is a contradiction, then WE(fi, X) is a singleton.

By Theorem 3.1 and Lemma 3.3, we have the following Theorem 3.4.

Theorem 3.4. Let X be a nonempty compact convex subset of a Banach space, for f = (f1,
f2, . . . , fn) ∈ Y , if there exists i ∈ {1, 2, . . . , n} such that fi is strongly quasiconvex, then WE(f,X)
has an essential weakly efficient solution, consequently, WE(f,X) has an essential component.

Theorem 3.5. For f ∈ Y , if WE(f,X) has only one component C(f), then C(f) is an essential
component.

Proof. By Lemma 2.4, the mapping WE : Y → 2X is upper semicontinuous at f ∈ Y , hence,
for any open set O with O ⊃ WE(f,X) = C(f), there exists δ > 0 such that for all g ∈ Y
with ρ(f, g) < δ, one has WE(g,X) ⊂ O, and hence, WE(g,X) ∩ O/= ∅. By Definition 2.5,
WE(f,X) = C(f) is an essential component.

Remark 3.6. When n = 1, by [3], the optimum solution set WE(f,X) = WE(f1, X) (where
f = f1) has an essential component if and only if WE(f,X) = WE(f1, X) is connected. But,
when n ≥ 2, it is not true.
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Example 3.7. Let X = [0, 3], define

f1(x) = f2(x) = · · · = fn−1(x) = x, 0 ≤ x ≤ 3,

fn(x) =

⎧
⎨

⎩

1 + x, x ∈ [0, 1],

3 − x, x ∈ (1, 3].

(3.8)

WE(f,X) = {0} ∪ [2, 3] is disconnected; however, x∗ = 0 ∈ WE(f,X) is an essential
weakly efficient solution, C1(f) = {0} is an essential component, and C2(f) = [2, 3] is an
essential component.

Example 3.8. Let X = [0, 1], define

f1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x, x ∈
[
0,

1
2

]
,

1 − x, x ∈
(
1
2
, 1
]
,

f2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 − x, x ∈
[
0,

1
2

]
,

x, x ∈
(
1
2
, 1
]
.

(3.9)

Then WE(f,X) = [0, 1], WE(f1, X) = {0, 1}, WE(f2, X) = {1/2}. By Theorem 3.1, x1 = 1/2
is an essential weakly efficient solution. But, x2 = 0 and x3 = 1 are not essential weakly
efficient solutions. In fact, for x2 = 0, take N(0, 1/4) = [0, 1/4), N(0, 1/4) = [0, 1/4], for all
ε : 0 < ε < 1, take g = (g1, g2) as the following:

g1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x +
ε

2

(
1
4
− x

)
, x ∈

[
0,

1
4

]
,

f1(x), x ∈
(
1
4
, 1
]
,

g2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f2(x), x ∈
[
0,

3
4

]
,

x − ε

2

(
x − 3

4

)
, x ∈

(
3
4
, 1
]
.

(3.10)

Then WE(g,X)/= ∅, and

ρ
(
f, g

)
= sup

x∈X

∣∣f1(x) − g1(x)
∣∣ + sup

x∈X

∣∣f2(x) − g2(x)
∣∣ < ε. (3.11)
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But WE(g,X) ∩ N(0, 1/4) = ∅. In fact, for all t ∈ N(0, 1/4), if t = 0, g1(0) = ε/8, g2(0) = 1,
take x∗ = 1 ∈ X, we have

g1(x∗) = 0 < g1(0), g2(x∗) = 1 − ε

8
< g2(0). (3.12)

If t ∈ (0, 1/4), g1(t) = t + (ε/2)(1/4 − t), g2(t) = 1 − t, take x∗ = 1 − t ∈ X, we have

g1(x∗) = 1 − x∗ = t < g1(t),

g2(x∗) = x∗ − ε

2

(
x∗ − 3

4

)
= 1 − t − ε

2

(
1
4
− t

)
< g2(t).

(3.13)

Thus WE(g,X) ∩N(0, 1/4) = ∅; therefore, x2 = 0 is not an essential weakly efficient solution.
Similarly, x3 = 1 is not an essential weakly efficient solution.

4. Conclusions

When n = 1, by [3], for f ∈ Y , WE(f) has an essential component if and only if WE(f) is
connected, and WE(f) has an essential optimum solution if and only if WE(f) is a singleton.

When n ≥ 2, we obtain some sufficient conditions for the existence of an essential
component or an essential weakly efficient solution in WE(f,X). Example 3.7 shows that
WE(f,X) disconnected, but WE(f,X) has an essential component and WE(f,X) is not a
singleton, but WE(f,X) has an essential weakly efficient solution. Example 3.8 shows that,
if WE(fi, X) is not a singleton, for some i, then for any x ∈ WE(fi, X), x is not an essential
weakly efficient solution.
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