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1. Introduction

In this paper, we consider the existence and asymptotic behavior of solutions for the following
weighted p(t)-Laplacian system:

−Δp(t)u + δf
(
t, u, (w(t))1/(p(t)−1)u′

)
= 0, t ∈ (0,+∞), (1.1)

u(0) = lim
t→+∞

u(t), lim
t→ 0+

w(t)
∣∣u′∣∣p(t)−2u′(t) = lim

t→+∞
w(t)

∣∣u′∣∣p(t)−2u′(t), (1.2)

where p ∈ C([0,+∞),R), p(t) > 1, limt→+∞p(t) exists and limt→+∞p(t) > 1, −Δp(t)u =
−(w(t)|u′|p(t)−2u′)′ is called the weighted p(t)-Laplacian; w ∈ C([0,+∞),R) satisfies
0 < w(t), for all t ∈ (0,+∞), and (w(t))−1/(p(t)−1) ∈ L1(0,+∞); the equivalent
limr→ 0+w(r)|u′|p(r)−2u′(r) = limr→+∞w(r)|u′|p(r)−2u′(r) means that limr→ 0+w(r)|u′|p(r)−2u′(r)
and limr→+∞w(r)|u′|p(r)−2u′(r) both exist and equal; δ is a positive parameter.
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The study of differential equations and variational problems with variable exponent
growth conditions is a new and interesting topic. Many results have been obtained on these
kinds of problems, for example, [1–15]. We refer to [2, 16, 17], the applied background
on these problems. If w(t) ≡ 1 and p(t) ≡ p (a constant), −Δp(t) is the well-known p-
Laplacian. If p(t) is a general function, −Δp(t) represents a nonhomogeneity and possesses
more nonlinearity, and thus −Δp(t) is more complicated than −Δp. For example, We have the
following.

(1) If Ω ⊂ R
n is a bounded domain, the Rayleigh quotient

λp(x) = inf
u∈W1,p(x)

0 (Ω)\{0}

∫
Ω

(
1/p(x)

)|∇u|p(x)dx
∫
Ω

(
1/p(x)

)|u|p(x)dx
(1.3)

is zero in general, and only under some special conditions λp(x) > 0 (see [6]), but
the fact that λp > 0 is very important in the study of p-Laplacian problems;

(2) If w(t) ≡ 1 and p(t) ≡ p (a constant) and −Δpu > 0, then u is concave; this property
is used extensively in the study of one dimensional p-Laplacian problems, but it is
invalid for −Δp(t). It is another difference on −Δp and −Δp(t).

(3) On the existence of solutions of the following typical −Δp(t) problem;

−
(∣∣u′∣∣p(x)−2u′

)′
= |u|q(x)−2u + C, x ∈ Ω ⊂ R

N,

u = 0 on ∂Ω,

(1.4)

because of the nonhomogeneity of −Δp(x), and if 1 ≤ maxx∈Ωq(x) < minx∈Ωp(x),
then the corresponding functional is coercive, if maxx∈Ωp(x) < minx∈Ωq(x), then
the corresponding functional can satisfy Palais-Smale condition, (see [4, 7]). If
minx∈Ωp(x) ≤ q(x) ≤ maxx∈Ωp(x), there are more difficulties to testify that the
corresponding functional is coercive or satisfying Palais-Smale conditions, and the
results on this case are rare.

There are many results on the existence of solutions for p-Laplacian equation with
multi-point boundary value conditions (see [18–21]). On the existence of solutions for
p(x)-Laplacian systems boundary value problems, we refer to [5, 7, 10–15]. But results on
the existence and asymptotic behavior of solutions for weighted p(t)-Laplacian systems
with multi-point boundary value conditions are rare. In this paper, when p(t) is a general
function, we investigate the existence and asymptotic behavior of solutions for weighted
p(t)-Laplacian systems with multi-point boundary value conditions. Moreover, the case of
mint∈[0,1]p(t) ≤ q(t) ≤ maxt∈[0,1]p(t) has been discussed.

Let N ≥ 1 and I = [0,+∞); the function f = (f1, . . . , fN) : I × R
N × R

N → R
N is

assumed to be Caratheodory, by this we mean that

(i) for almost every t ∈ I, the function f(t, ·, ·) is continuous;
(ii) for each (x, y) ∈ R

N × R
N , the function f(·, x, y) is measurable on I;
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(iii) for each R > 0, there is a βR ∈ L1(I,R) such that, for almost every t ∈ I and every
(x, y) ∈ R

N × R
N with |x| ≤ R, |y| ≤ R, one has

∣∣f(t, x, y)∣∣ ≤ βR(t). (1.5)

Throughout the paper, we denote

w(0)
∣∣u′∣∣p(0)−2u′(0) = lim

t→ 0+
w(t)

∣∣u′∣∣p(t)−2u′(t),

w(+∞)
∣∣u′∣∣p(+∞)−2

u′(+∞) = lim
t→+∞

w(t)
∣∣u′∣∣p(t)−2u′(t).

(1.6)

The inner product in R
N will be denoted by 〈·, ·〉, | · | will denote the absolute value

and the Euclidean norm on R
N . Let AC(0,+∞) denote the space of absolutely continuous

functions on the interval (0,+∞). For N ≥ 1, we set C = C(I,RN), C1 = {u ∈ C | u′ ∈
C((0,+∞), RN), limt→ 0+w(t)1/(p(t)−1)u′(t) exists}. For any u(t) = (u1(t), . . . , uN(t)), we denote
|ui|0 = supt∈(0,+∞)|ui(t)|, ‖u‖0 = (

∑N
i=1 |ui|20)1/2 and ‖u‖1 = ‖u‖0 + ‖(w(t))1/(p(t)−1)u′‖0. Spaces

C and C1 will be equipped with the norm ‖ · ‖0 and ‖ · ‖1 , respectively. Then (C, ‖ · ‖0) and
(C1, ‖ · ‖1) are Banach spaces. Denote L1 = L1(I,RN), the norm ‖u‖L1 = [

∑N
i=1(

∫∞
0 |ui|dt)2]1/2.

We say a function u : I → R
N is a solution of (1.1) if u ∈ C1 with w(t)|u′|p(t)−2u′(t)

absolutely continuous on (0,+∞), which satisfies (1.1) almost every on I.
In this paper, we always use Ci to denote positive constants, if it cannot lead to

confusion. Denote

z− = min
t∈I

z(t), z+ = max
t∈I

z(t), for any z ∈ C(I,R). (1.7)

We say f satisfies sub-(p− − 1) growth condition, if f satisfies

lim
|u|+|v|→+∞

(
f(t, u, v)

(|u| + |v|)q(t)−1
)

= 0, for t ∈ I uniformly, (1.8)

where q(t) ∈ C(I,R), and 1 < q− ≤ q+ < p−. We say f satisfies general growth condition, if we
don’t know whether f satisfies sub-(p− − 1) growth condition or not.

We will discuss the existence of solutions of (1.1)-(1.2) in the following two cases

(i) f satisfies sub-(p− − 1) growth condition;

(ii) f satisfies general growth condition.

This paper is divided into four sections. In the second section, we will do some
preparation. In the third section, we will discuss the existence and asymptotic behavior of
solutions of (1.1)-(1.2), when f satisfies sub-(p− − 1) growth condition. Finally, in the fourth
section, we will discuss the existence and asymptotic behavior of solutions of (1.1)-(1.2),
when f satisfies general growth condition.
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2. Preliminary

For any (t, x) ∈ I × R
N , denote ϕ(t, x) = |x|p(t)−2x. Obviously, ϕ has the following properties.

Lemma 2.1 (see [4]). ϕ is a continuous function and satisfies

(i) For any t ∈ [0,+∞), ϕ(t, ·) is strictly monotone, that is,

〈
ϕ(t, x1) − ϕ(t, x2), x1 − x2

〉
> 0, for any x1, x2 ∈ R

N, x1 /=x2. (2.1)

(ii) There exists a function β : [0,+∞) → [0,+∞), β(s) → +∞ as s → +∞, such that

〈
ϕ(t, x), x

〉 ≥ β(|x|)|x|, ∀x ∈ R
N. (2.2)

It is well known that ϕ(t, ·) is a homeomorphism from R
N to R

N for any fixed t ∈
[0,+∞). For any t ∈ I, denote by ϕ−1(t, ·) the inverse operator of ϕ(t, ·), then

ϕ−1(t, x) = |x|(2−p(t))/(p(t)−1)x, for x ∈ R
N \ {0}, ϕ−1(t, 0) = 0. (2.3)

It is clear that ϕ−1(t, ·) is continuous and sends bounded sets into bounded sets. Let us now
consider the following problem with boundary value condition (1.2):

(
w(t)ϕ

(
t, u′(t)

))′ = g(t), t ∈ (0,+∞), (2.4)

where g ∈ L1, and satisfies
∫+∞
0 g(t)dt = 0. If u is a solution of (2.4) with (1.2), by integrating

(2.4) from 0 to t, we find that

w(t)ϕ
(
t, u′(t)

)
= w(0)ϕ

(
0, u′(0)

)
+
∫ t

0
g(s)ds. (2.5)

Denote a = w(0)ϕ(0, u′(0)). It is easy to see that a is dependent on g(t). Define operator
F : L1 → C as

F
(
g
)
(t) =

∫ t

0
g(s)ds, t ∈ I, g ∈ L1. (2.6)

By solving for u′ in (2.5) and integrating, we find that

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a + F

(
g
))]}

(t), t ∈ I. (2.7)

The boundary condition (1.2) implies that

∫+∞

0
ϕ−1

{
t, (w(t))−1

[
a + F

(
g
)
(t)

]}
dt = 0. (2.8)
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For fixed h ∈ C, we denote

Λh(a) =
∫+∞

0
ϕ−1

{
t, (w(t))−1[a + h(t)]

}
dt. (2.9)

Throughout the paper, we denote E =
∫+∞
0 (w(t))−1/(p(t)−1)dt.

Lemma 2.2. The function Λh(·) has the following properties.

(i) For any fixed h ∈ C, the equation

Λh(a) = 0 (2.10)

has a unique solution ã(h) ∈ R
N .

(ii) The function ã : C → R
N , defined in (i), is continuous and sends bounded sets to bounded

sets. Moreover

|ã(h)| ≤ 3N‖h‖0. (2.11)

Proof. (i) From Lemma 2.1, it is immediate that

〈Λh(a1) −Λh(a2), a1 − a2〉 > 0, for a1 /=a2, (2.12)

and hence, if (2.10) has a solution, then it is unique.
Let t0 = 3N‖h‖0. If |a| > t0, since (w(t))−1/(p(t)−1) ∈ L1(0,+∞) and h ∈ C, it is easy to

see that there exists an i ∈ {1, . . . ,N} such that the ith component ai of a satisfies |ai| > 3‖h‖0.
Thus (ai + hi(t)) keeps sign on I and

∣∣∣ai + hi(t)
∣∣∣ ≥

∣∣∣ai
∣∣∣ − ‖h‖0 > 2‖h‖0 for any t ∈ I, (2.13)

then

∣∣∣ai + hi(t)
∣∣∣
1/(p(t)−1)

> [2‖h‖0]1/(p(ξ)−1), where ξ ∈ I, for any t ∈ I. (2.14)

Thus the ith component Λi
h
(a) of Λh(a) is nonzero and keeps sign, and then we have

∫+∞

0
ϕ−1

{
t, (w(t))−1[a + h(t)]

}
dt /= 0. (2.15)

Let us consider the equation

λΛh(a) + (1 − λ)a = 0, λ ∈ [0, 1]. (2.16)
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It is easy to see that all the solutions of (2.16) belong to b(t0+1) = {x ∈ R
N | |x| < t0+1}.

So, we have

dB[Λh(a), b(t0 + 1), 0] = dB[I, b(t0 + 1), 0]/= 0, (2.17)

and it means the existence of solutions of Λh(a) = 0.
In this way, we define a function ã(h) : C[0,+∞) → R

N , which satisfies

Λh(ã(h)) = 0. (2.18)

(ii) By the proof of (i), we also obtain ã sends bounded sets to bounded sets, and

|ã(h)| ≤ 3N‖h‖0. (2.19)

It only remains to prove the continuity of ã. Let {un} be a convergent sequence in C
and un → u as n → +∞. Since {ã(un)} is a bounded sequence, then it contains a convergent
subsequence {ã(unj )}. Let ã(unj ) → a0 as j → +∞. Since Λunj

(ã(unj )) = 0, letting j → +∞,
we have Λu(a0) = 0. From (i), we get a0 = ã(u), and it means that ã is continuous. This
completes the proof.

Now, we define the operator a : L1 → R
N as

a(u) = ã(F(u)). (2.20)

It is clear that a(·) is continuous and sends bounded sets of L1 to bounded sets of RN ,
and hence it is a compact continuous mapping.

If u is a solution of (2.4) with (1.2), then

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a
(
g
)
+ F

(
g
)
(t)

)]}
(t), ∀t ∈ [0,+∞). (2.21)

Let us define

P : C1 −→ C1, u �−→ u(0);

Q : L1 −→ R
N, h �−→

∫+∞

0
h(r)dr;

Q∗ : L1 −→ L1, h �−→ τ(t)
∫+∞

0
h(r)dr;

(2.22)



Journal of Inequalities and Applications 7

where τ ∈ ([0,∞), R) and satisfies 0 < τ(t) < 1, t ∈ I,
∫+∞
0 τ(t)dt = 1, and we denoteK1 : L1 →

C1 as

K1(h)(t) := (K1 ◦ h)(t)

= F
{
ϕ−1

[
t, (w(t))−1(a((I −Q∗)h) + F((I −Q∗)h))

]}
(t), ∀t ∈ [0,+∞).

(2.23)

Lemma 2.3. The operatorK1 is continuous and sends equi-integrable sets in L1 to relatively compact
sets in C1.

Proof. It is easy to check that K1(h)(·) ∈ C1, for all h ∈ L1. Since (w(t))−1/(p(t)−1) ∈ L1 and

K1(h)
′(t) = ϕ−1

[
t, (w(t))−1(a((I −Q∗)h) + F((I −Q∗)h))

]
, ∀t ∈ [0,+∞), (2.24)

it is easy to check that K1 is a continuous operator from L1 to C1.
Let now U be an equi-integrable set in L1, then there exists ρ ∈ L1, such that

|u(t)| ≤ ρ(t) a.e. in I, for any u ∈ L1. (2.25)

We want to show that K1(U) ⊂ C1 is a compact set.
Let {un} be a sequence in K1(U), then there exists a sequence {hn} ∈ U such that

un = K1(hn). For any t1, t2 ∈ I, we have that

|F((I −Q∗)hn)(t1) − F((I −Q∗)hn)(t2)| ≤
∣∣∣∣∣
∫ t2

t1

ρ(t)dt

∣∣∣∣∣ +
∣∣∣∣∣
∫ t2

t1

τ(t)dt

∣∣∣∣∣Qρ. (2.26)

Hence the sequence {F((I −Q∗)hn)} is equicontinuous.
From the definition of Q∗, we have F((I −Q∗)hn)(+∞) = 0, n = 1, 2, . . . . Thus

|F((I −Q∗)hn)(t)| = |F((I −Q∗)hn)(t) − F((I −Q∗)hn)(+∞)|

=
∣∣∣∣
∫+∞

t

((I −Q∗)hn)(t)dt
∣∣∣∣

≤
∣∣∣∣
∫+∞

t

hn(t)dt
∣∣∣∣ +

∫+∞

t

τ(t)dt · |Qhn|

≤
∫+∞

t

ρ(t)dt +
∫+∞

t

τ(t)dt ·Q(
ρ
) −→ 0, as t −→ +∞.

(2.27)

Thus {F((I −Q∗)hn)} is uniformly bounded.
By Ascoli-Arzela theorem, there exists a subsequence of {F((I − Q∗)hn)} (which we

rename the same) being convergent in C. According to the bounded continuous of the
operator a, we can choose a subsequence of {a((I − Q∗)hn) + F((I − Q∗)hn)} (which we
still denote {a((I − Q∗)hn) + F((I − Q∗)hn)} is convergent in C, then w(t)ϕ(t,K1(hn)

′(t)) =
a((I −Q∗)hn) + F((I −Q∗)hn) is convergent in C.
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Since

K1(hn)(t) = F
{
ϕ−1

[
r, (w(r))−1(a((I −Q∗)hn) + F((I −Q∗)hn))

]}
(t), ∀t ∈ [0,+∞), (2.28)

from the continuity of ϕ−1 and the integrability of w(t)−1/(p(t)−1) in L1, we can see that K1(hn)
is convergent in C. Thus that {un} is convergent in C1.

This completes the proof.

We denote by Nf(u) : [0,+∞) × C1 → L1 the Nemytski operator associated to f
defined by

Nf(u)(t) = f
(
t, u(t), (w(t))1/(p(t)−1)u′(t)

)
, a.e. on I. (2.29)

Lemma 2.4. u is a solution of (1.1)-(1.2) if and only if u is a solution of the following abstract
equation:

u = Pu +QδNf(u) +K1
(
δNf(u)

)
. (2.30)

Proof. If u is a solution of (1.1)-(1.2), by integrating (1.1) from 0 to t, we find that

w(t)ϕ
(
t, u′(t)

)
= a

(
δNf(u)

)
+ F

(
δNf(u)

)
(t), ∀t ∈ (0,+∞). (2.31)

From (2.31), we have

u(t) = u(0) + F
{
ϕ−1

[
t, (w(t))−1

(
a
(
δNf

)
+ F

(
δNf(u)

))]}
(t), ∀t ∈ [0,+∞). (2.32)

From w(0)|u′|p(0)−2u′(0) = w(+∞)|u′|p(+∞)−2u′(+∞), we have

QδNf(u) = 0,

Q∗δNf(u) = 0.
(2.33)

So we have

u = Pu +QδNf(u) +K1
(
δNf(u)

)
. (2.34)

Conversely, if u is a solution of (2.30), then

u(0) = Pu +QδNf(u) +K1
(
δNf(u)

)
(0) = u(0) +QδNf(u). (2.35)

Thus QδNf(u) = 0 and Q∗δNf(u) = 0. By the definition of the mapping a, we have

K1
(
δNf(u)

)
(+∞) = 0, (2.36)
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thus

u(+∞) = Pu +QδNf(u) = u(0). (2.37)

From (2.30), we have

w(t)ϕ
(
t, u′) = a

(
(I −Q∗)δNf

)
+ F

(
(I −Q∗)δNf(u)

)
(t), ∀t ∈ (0,+∞),

(
w(t)ϕ(t, u′)

)′ = (I −Q∗)δNf(u)(t), ∀t ∈ (0,+∞).
(2.38)

Obviously F((I −Q∗)Nf(u))(+∞) = 0, from (2.38), we have

w(0)ϕ
(
0, u′(0)

)
= w(+∞)ϕ

(
+∞, u′(+∞)

)
. (2.39)

Since QδNf(u) = 0, we have Q∗δNf(u) = 0 and

(
w(t)ϕ(t, u′)

)′ = δNf(u)(t). (2.40)

Hence u is a solutions of (1.1)-(1.2). This completes the proof.

Lemma 2.5. If u is a solution of (1.1)-(1.2), then for any j = 1, . . . ,N, there exists an sj ∈ (0,+∞)
such that (uj)′(sj) = 0.

Proof. If it is false, then uj is strictly monotone in (0,+∞).

(i) If uj is strictly decreasing in (0,+∞), then (uj)(0) > (uj)(+∞); it is a contradiction
to u(0) = u(+∞).

(ii) If uj is strictly increasing in (0,+∞), then (uj)(0) < (uj)(+∞); it is a contradiction to
u(0) = u(+∞).

This completes the proof.

3. f Satisfies Sub-(p− − 1) Growth Condition

In this section, we will apply Leray-Schauder’s degree to deal with the existence of solutions
for (1.1)-(1.2), when f satisfies sub-(p− − 1) growth condition. Moreover, the asymptotic
behavior has been discussed.

Theorem 3.1. Assume that Ω is an open bounded set in C1 such that the following conditions hold.

(10) For each λ ∈ (0, 1) the problem

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= λδf
(
r, u, (w(r))1/(p(r)−1)u′

)
(3.1)

with boundary condition (1.2) has no solution on ∂Ω.
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(20) The equation

ω(a) :=
∫+∞

0
δf(t, a, 0)dt = 0 (3.2)

has no solution on ∂Ω ∩ R
N .

(30) The Brouwer degree dB[ω,Ω ∩ R
N, 0]/= 0.

Then problems (1.1)-(1.2) have a solution on Ω.

Proof. Let us consider the following equation with boundary value condition (1.2):

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= λδf
(
r, u, (w(r))1/(p(r)−1)u′

)
+ (1 − λ)Q∗Nδf(u), ∀t ∈ (0,+∞). (3.3)

For any λ ∈ (0, 1], observe that if u is a solution to (3.1) with (1.2) or u is a solution to
(3.3) with (1.2), we have necessarily

QNδf(u) = 0, Q∗Nδf(u) = 0. (3.4)

It means that (3.1)with (1.2) and (3.3)with (1.2) have the same solutions for λ ∈ (0, 1].
We denote N(·, ·) : C1 × I → L1 defined by

N(u, λ) = λNδf(u) + (1 − λ)Q∗Nδf(u), (3.5)

where Nδf(u) is defined by (2.29). Let

Φf(u, λ) = Pu +QN(u, λ) + (K1 ◦N(u, λ))

= Pu +QNδf(u) + (K1 ◦N(u, λ)),
(3.6)

and the fixed point of Φf(u, 1) is a solution for (3.3) with (1.2). Also problem (3.3) with (1.2)
can be written in the equivalent form

u = Φf(u, λ). (3.7)

Since f is Caratheodory, it is easy to see that N(·, ·) is continuous and sends bounded
sets into equi-integrable sets. It is easy to see that P is compact continuous. According to
Lemmas 2.2 and 2.3, we can conclude that Φf(u, λ) is continuous and compact from C1 to C1

for any λ ∈ [0, 1]. We assume that for λ = 1, (3.7) does not have a solution on ∂Ω; otherwise
we complete the proof. Now from hypothesis (10) it follows that (3.7) has no solutions for
(u, λ) ∈ ∂Ω × (0, 1]. For λ = 0, (3.3) is equivalent to the problem

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= Q∗Nδf(u), (3.8)
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and if u is a solution to this problem, we must have

∫+∞

0
Q∗Nδf(u)dr =

∫+∞

0
δf

(
r, u(r), (w(r))1/(p(r)−1)u′(r)

)
dr = 0. (3.9)

Hence

w(r)
∣∣u′∣∣p(r)−2u′ ≡ c, (3.10)

where c ∈ R
N is a constant. From Lemma 2.5, there exist ti ∈ (0,+∞), such that (ui)′(ti) = 0,

i = 1, . . . ,N.Hence u′ ≡ 0, it holds u ≡ d, a constant. Thus by (3.9)

∫+∞

0
δf(t, d, 0)dr = 0, (3.11)

which together with hypothesis (20), implies that u = d /∈ ∂Ω. Thus we have proved that (3.7)
has no solution (u, λ) on ∂Ω × [0, 1], then we get that for each λ ∈ [0, 1], the Leray-Schauder
degree dLS[I − Φf(·, λ),Ω, 0] is well defined for λ ∈ [0, 1], and from the properties of that
degree, we have

dLS
[
I −Φf(·, 1),Ω, 0

]
= dLS

[
I −Φf(·, 0),Ω, 0

]
. (3.12)

Now it is clear that the problem

u = Φf(u, 1) (3.13)

is equivalent to problem (1.1)-(1.2), and (3.12) tells us that problem (3.13)will have a solution
if we can show that

dLS
[
I −Φf(·, 0),Ω, 0

]
/= 0. (3.14)

Since

Φf(u, 0) = Pu +QNδf(u) +K1
(
Q∗Nδf(u)

)
, (3.15)

then

u −Φf(u, 0) = u − Pu −QNδf(u) −K1(0). (3.16)

From Lemma 2.2, we have K1(0) = F(0) = 0. By the properties of the Leray-Schauder
degree, we have

dLS
[
I −Φf(·, 0),Ω, 0

]
= (−1)NdB

[
ω,Ω ∩ R

N, 0
]
, (3.17)
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where the function ω is defined in (3.2) and dB denotes the Brouwer degree. By hypothesis
(30), this last degree is different from zero. This completes the proof.

Our next theorem is a consequence of Theorem 3.1. As an application of Theorem 3.1,
let us consider the following equation with (1.2)

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= g
(
r, u, (w(r))1/(p(r)−1)u′

)
+ e

(
r, u(r), (w(r))1/(p(r)−1)u′(r)

)
, (3.18)

where e : I × R
N × R

N → R
N is Caratheodory, g = (g1, . . . , gN) : I × R

N × R
N →

R
N is continuous and Caratheodory, and for any fixed y0 ∈ R

N \ {0}, if yi
0 /= 0, then

gi(r, y0, 0)/= 0, for all r ∈ I, for all i = 1, . . . ,N.

Theorem 3.2. Assume that the following conditions hold

(10) g(r, ku, kv) = kq(r)−1g(r, u, v) for all k > 0 and all (r, u, v) ∈ I × R
N × R

N, where
q(r) ∈ C(I,R) satisfies 1 < q− ≤ q+ < p−;

(20) lim|u|+|v|→+∞(e(r, u, v)/(|u| + |v|)q(r)−1) = 0, for r ∈ I uniformly;

(30) for large enough R0 > 0, the equation

ωg(a) :=
∫+∞

0
g(t, a, 0)dt = 0 (3.19)

has no solution on ∂B(R0) ∩ R
N , where B(R0) = {u ∈ C1 | ‖u‖1 < R0};

(40) the Brouwer degree dB[ωg, b(R0), 0]/= 0 for large enough R0 > 0, where b(R0) = {x ∈
R

N | |x| < R0}.
Then problem (3.18) with (1.2) has at least one solution.

Proof. Denote

f
(
r, u, (w(r))1/(p(r)−1)u′, λ

)
= g

(
r, u, (w(r))1/(p(r)−1)u′

)
+ λe

(
r, u, (w(r))1/(p(r)−1)u′

)
. (3.20)

At first, we consider the following problem:

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= f
(
r, u, (w(r))1/(p(r)−1)u′, λ

)
. (3.21)

According to the proof of Theorem 3.1, we know that (3.21) with (1.2) has the same
solution of

u = Φf(u, λ) = Pu +QNf(u, λ) +K1
(
Nf(u, λ)

)
, (3.22)

where Nf(u, λ) = f(r, u, (w(r))1/(p(r)−1)u′, λ).
We claim that all the solutions of (3.21) are uniformly bounded for λ ∈ [0, 1]. In fact,

if it is false, we can find a sequence of solutions {(un, λn)} for (3.21) with (1.2) such that
‖un‖1 → +∞ as n → +∞, and ‖un‖1 > 1 for any n = 1, 2, . . . .
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Since (un, λn) are solutions of (3.21) with (1.2), so un(0) = un(+∞). According to
Lemma 2.5, there exist ξinn ∈ (0,+∞) such that (uin

n )
′(ξinn ) = 0, then

w(t)
∣∣u′

n

∣∣p(t)−2(uin
n

)′
(t) =

∫ t

ξinn

f in
[
r, un, (w(r))1/(p(r)−1)u′

n, λn
]
dr, ∀t ∈ (0,+∞),

w(t)
∣∣u′

n

∣∣p(t)−2(uin
n

)′
(t) =

∫ t

ξinn

‖un‖q(r)−11

{
gin

[
r,

un

‖un‖1
,
(w(r))1/(p(r)−1)u′

n

‖un‖1

]

+ o(1)

}
dr, ∀t ∈ (0,+∞),

(3.23)

where o(1) means the function which is uniformly convergent to 0 (as n → +∞). According
to the property of g and (3.23), then there exists a positive constant C1 such that

w(t)
∣∣u′

n

∣∣p(t)−2
∣∣∣∣
(
uin
n

)′
(t)

∣∣∣∣ ≤ C1‖un‖q
+−1

1 , ∀t ∈ (0,+∞), (3.24)

then we have

w(t)
∣∣u′

n(t)
∣∣p(t)−1 ≤ 2NC1‖un‖q

+−1
1 , ∀t ∈ (0,+∞). (3.25)

Denote α = (q+ − 1)/(p− − 1), then

sup
t∈(0,+∞)

∣∣∣(w(t))1/(p(t)−1)u′
n(t)

∣∣∣ ≤ C2‖un‖α1 . (3.26)

Thus

∥∥∥(w(t))1/(p(t)−1)u′
n(t)

∥∥∥
0
≤ NC2‖un‖α1 . (3.27)

Since α ∈ (0, 1), from (3.27) we have

lim
n→+∞

‖un‖0
‖un‖1

= 1. (3.28)

Denote bn = (|u1
n|0/‖un‖0, |u2

n|0/‖un‖0, . . . , |uN
n |0/‖un‖0), then bn ∈ R

N and |bn| = 1 (n =
1, 2, . . .), then {bn} possesses a convergent subsequence (which denoted by bn), and then there
exists a vector b0 = (b10, b

2
0, . . . , b

N
0 ) ∈ R

N such that

|b0| = 1, lim
n→+∞

bn = b0. (3.29)
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Without loss of generality, we assume that b10 > 0. Since un ∈ C(I,R), there exist ηi
n ∈

(0,+∞) such that

∣∣∣ui
n

(
ηi
n

)∣∣∣ ≥
(
1 − 1

2n

)∣∣∣ui
n

∣∣∣
0
, i = 1, 2, . . . ,N; n = 1, 2, . . . , (3.30)

and then from (3.27) we have

0 ≤
∣∣∣u1

n(r) − u1
n

(
η1
n

)∣∣∣ =
∣∣∣∣∣
∫ r

η1
n

(
u1
n

)′
(t)dt

∣∣∣∣∣ ≤ C2‖un‖α1
∫+∞

0
(w(t))−1/(p(t)−1)dt. (3.31)

Since ‖un‖1 → +∞ (as n → +∞), α ∈ (0, 1), and b10 > 0, we have

lim
n→+∞

1∣∣u1
n

(
η1
n

)∣∣C2‖un‖α1
∫+∞

0
(w(t))−1/(p(t)−1)dt = 0. (3.32)

From (3.28)–(3.32), we have

lim
n→+∞

u1
n(r)

u1
n

(
η1
n

) = 1, for r ∈ I uniformly. (3.33)

So we get

lim
n→+∞

un(r)
‖un‖1

= b∗, lim
n→+∞

(w(r))1/(p(r)−1)u′
n(r)

‖un‖1
= 0, for r ∈ I uniformly, (3.34)

where b∗ ∈ R
N, satisfies |b∗| = 1, |bi∗| = bi0.

Since b10 /= 0, from(1.2) and (3.34), we have

0 =
∫+∞

0
‖un‖q(t)−11

{
g1[t, b∗ + o(1), o(1)] + o(1)

}
dt. (3.35)

Since g1(t, b∗, 0)/= 0, according to the continuity of g1, we have

∫+∞

0
‖un‖q(t)−11

{
g1[t, b∗ + o(1), o(1)] + o(1)

}
dt /= 0, (3.36)

and it is a contradiction to (3.35). This implies that there exists a big enough R0 > 0 such that
all the solutions of (3.21)with (1.2) belong to B(R0), and then we have

dLS
[
I −Φf(·, 1), B(R0), 0

]
= dLS

[
I −Φf(·, 0), B(R0), 0

]
. (3.37)

If we prove that dLS[I −Φf(·, 0), B(R0), 0]/= 0, then we obtain the existence of solutions
(3.18)with (1.2).
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Now we consider the following equation with: (1.2)

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= λg
(
r, u, (w(r))1/(p(r)−1)u′

)
+ (1 − λ)Q∗Ng(u), (3.38)

where Ng(u) = g(r, u, (w(r))1/(p(r)−1)u′).
We denote Ñ(·, ·) : C1 × I → L1 defined by

Ñ(u, λ) = λNg(u) + (1 − λ)Q∗Ng(u). (3.39)

Similar to the proof of Theorem 3.1, we know that (3.38) with (1.2) has the same
solution of

u = Φg(u, λ) = Pu +QÑ(u, λ) +K1

(
Ñ(u, λ)

)
. (3.40)

Similar to the discussions of the above, for any λ ∈ (0, 1], all the solutions of (3.38)
with (1.2) are uniformly bounded.

If u is a solution of the following equation with (1.2):

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= Q∗Ng(u), (3.41)

then we have

Q∗Ng(u) = 0,

w(r)
∣∣u′∣∣p(r)−2u′ ≡ c.

(3.42)

Since u(0) = u(+∞),we have w(r)|u′|p(r)−2u′ ≡ 0, and it means that u is a solution of

ωg(a) =
∫+∞

0
g(t, a, 0)dt = 0, (3.43)

according to hypothesis (30), (3.38) has no solutions (u, λ) on ∂B(R0)× [0, 1], then we get that
for each λ ∈ [0, 1], the Leray-Schauder degree dLS[I −Φg(·, λ), B(R0), 0] is well defined, and
from the properties of that degree, we have

dLS
[
I −Φg(·, 1), B(R0), 0

]
= dLS

[
I −Φg(·, 0), B(R0), 0

]
. (3.44)

Now it is clear that Φg(u, 1) = Φf(u, 0). So dLS[I − Φg(·, 1), B(R0), 0] = dLS[I −
Φf(·, 0), B(R0), 0]. If we prove that dLS[I −Φg(·, 0), B(R0), 0]/= 0, then we obtain the existence
of solutions (3.18)with (1.2). By the properties of the Leray-Schauder degree, we have

dLS
[
I −Φg(·, 0), B(R0), 0

]
= (−1)NdB

[
ωg, b(R0), 0

]
. (3.45)
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By hypothesis (40), this last degree is different from zero. We obtain that (3.18) with
(1.2) has at least one solution. This completes the proof.

Corollary 3.3. If e : I × R
N × R

N → R
N is Caratheodory, which satisfies the conditions of

Theorem 3.2, g(r, u, v) = β(r)(|u|q(r)−2u + |v|q(r)−2v), where β(r) ∈ L1(I,R), β(r), q(r) ∈ C(I,R)
are positive functions, and satisfies 1 < q− ≤ q+ < p−; then (3.18) with (1.2) has at least one solution.

Proof. Since

g(r, u, v) = β(r)
(
|u|q(r)−2u + |v|q(r)−2v

)
,

ωg(a) =
∫+∞

0
g(t, a, 0)dt =

∫+∞

0
β(t)|a|q(t)−2adt,

(3.46)

then ωg(a) = 0 has only one solution a = 0, and

dB

[
ωg, b(R0), 0

]
= dB[I, b(R0), 0]/= 0, (3.47)

and according to Theorem 3.2, we get that (3.18) with (1.2) has at least a solution. This
completes the proof.

Now let us consider the boundary asymptotic behavior of solutions of system (1.1)-
(1.2).

Theorem 3.4. If u is a solution of (1.1)-(1.2) which is given in Theorem 3.2, then

(i) |u′(t)| ≤ C1/w(t)1/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| ≤ ∫+∞
r (C2/w(t)1/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| ≤ ∫r
0(C3/w(t)1/(p(t)−1))dt, as r → 0+.

Proof. Since limr→+∞p(r) exists and limr→+∞p(r)> 1, limt→0+w(t)|u′|p(t)−2u′(t) and limt→+∞w(t)
×|u′|p(t)−2u′(t) both exist and equal, we can conclude that limt→ 0+w(t)1/(p(t)−1)u′(t) =
limt→+∞w(t)1/(p(t)−1)u′(t). Since u ∈ C1, we have | w(t)1/(p(t)−1)u′(t) |≤ C, for all t ∈ [0,+∞).
Thus

(i) |u′(t)| ≤ C1/w(t)1/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| =| ∫+∞r u′(t)dt | ≤ ∫+∞
r (C2/w(t)1/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| =| ∫ r0u′(t)dt | ≤ ∫ r
0(C3/w(t)1/(p(t)−1))dt, as r → 0+.

This completes the proof.

Corollary 3.5. Assume that limr→+∞p(r) exists, limr→+∞p(r) > 1, and

C4 ≤ w(t)
tα

≤ C5, α > p(t) − 1 as t −→ +∞,

C6 ≤ w(t)
tα

≤ C7, α < p(t) − 1 as t −→ 0+,

(3.48)
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then

(i) |u′(t)| ≤ C8/t
α/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| ≤ ∫+∞
r (C9/t

α/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| ≤ ∫r
0(C10/t

α/(p(t)−1))dt, as r → 0+.

4. f Satisfies General Growth Condition

In this section, under the condition that f = (f1, . . . , fN) satisfies

fi(r, x, y) = Θi(r)
{
σ(r)

(
|x|q1(r)−1xi + μi(r)

∣∣y∣∣q2(r)
)
+ ei(r)

}
, (4.1)

where q1, q2 ∈ L∞(I,R) are nonnegative, σ ∈ C1(I,R), μ, e ∈ L∞(I,RN),Θi ∈ L1 andΘi(r) > 0,
almost every in (0,+∞), r ∈ I, we will apply Leray-Schauder’s degree to deal with the
existence of solutions for (1.1) with boundary value problems. Moreover the asymptotic
behavior has been discussed.

Throughout the paper, assume that

(A1) q1, q2 ∈ L∞(I,R) are nonnegative and satisfying essinf (q1(r) − q2(r)) > 0 or
essinf (q2(r) − q1(r)) > 0;

(A2) μ = (μ1, . . . , μN) ∈ L∞(I,RN); e = (e1, . . . , eN) ∈ L∞(I,RN); σ keeps sign on I, and
satisfies

σ1 ≤ essinf
r∈I

|σ(r)| ≤ esssup
r∈I

|σ(r)| ≤ σ2, (4.2)

where σ1 and σ2 are positive constants.

For any h ∈ L∞(I,RN), without loss of generality, we may denote |hi|0 =
esssupr∈(0,+∞)|h(r)| (i = 1, . . . ,N), ‖h‖0 = (

∑N
i=1 |hi|20)1/2. Denote θ = ε/(2+ 1/E). According to

(A1), then there exists a positive constant ε that satisfies

b1 := essinf
r∈I

(
E

N(2E + 1)
|θ|q1(t) − ∥∥μ∥∥0|Nε|q2(t)

)
> 0. (4.3)

We also assume the following

(A3) e = (e1, . . . , eN) satisfies

∣∣∣ei
∣∣∣
0
< σ1b1, i = 1, . . . ,N. (4.4)

(A4) σ2 satisfies

σ2 < b2 :=
inft∈I |ε/2(E + 1)|p(t)−1

2N(E + 1)
∫+∞
0

∑N
i=1 Θi(t)

(
|Nε|q1(t) + ∥∥μ∥∥0|Nε|q2(t) + |θ|q1(t)

)
dt

. (4.5)
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Note 1. Let fi(r, x, y) = λΘi(r){σ(r)[(|x|q1(r)−1xi + μi(r)|y|q2(r)) + δei(r)]}, and (A1)-(A2) are
satisfied. If λ and δ are positive small enough, then it is easy to see that (A3)-(A4) are satisfied.

Denote

Ωε =
{
u ∈ C1 | max

1≤i≤N

(∣∣∣ui
∣∣∣
0
+
∣∣∣∣(w(r))1/(p(r)−1)

(
ui
)′∣∣∣∣

0

)
< ε

}
. (4.6)

It is easy to see that Ωε is an open bounded domain in C1.

Theorem 4.1. If f satisfies (4.1), and (A1)–(A4) are satisfied, then the system (1.1)-(1.2) has a
solution on Ωε.

Proof. We only need to prove that the conditions of Theorem 3.1 are satisfied.
(10)We only need to prove that for each λ ∈ (0, 1) the problem

(
w(r)

∣∣u′∣∣p(r)−2u′
)′

= λf
(
r, u, (w(r))1/(p(r)−1)u′

)
(4.7)

with boundary condition (1.2) has no solution on ∂Ωε.
If it is false, then there exists a λ ∈ (0, 1) and u ∈ ∂Ωε is a solution of (4.7)with (1.2).
Since u ∈ ∂Ωε, there exists an i such that |ui|0+ | (w(r))1/(p(r)−1)(ui)′|0 = ε.
(i) Suppose that |ui|0 > 2θ = 2ε/(2 + 1/E), then | (w(r))1/(p(r)−1)(ui)′|0 < ε − 2θ = θ/E.

Since u ∈ C, there exists r0 ∈ I such that |ui(r0)| > 2θ. For any r ∈ I, we have

∣∣∣ui(r) − ui(r0)
∣∣∣ =

∣∣∣∣∣
∫ r

r0

(
ui(t)

)′
dt

∣∣∣∣∣ ≤
∫+∞

0
(w(t))−1/(p(t)−1)

∣∣∣∣(w(t))1/(p(t)−1)
(
ui(t)

)′∣∣∣∣
0
dt

≤ E · θ
E

= θ.

(4.8)

This implies that |ui(r)| > θ for each r ∈ I. Since u ∈ C, ui(r) keeps sign. Since σ(r)
keeps sign, σ(r)ui(r) also keeps sign.

Assume that σui is positive, then

fi
(
r, u, (w(r))1/(p(r)−1)u′

)

≥ Θi(r)
{
|σ(r)|

(
|u(r)|q1(r)−1

∣∣∣ui(r)
∣∣∣ −

∣∣∣μi
∣∣∣
0

∣∣∣(w(r))1/(p(r)−1)u′(r)
∣∣∣
q2(r)

)
+ ei(r)

}

≥ Θi(r)
[
σ1b1 + ei(r)

]
> 0.

(4.9)

It is a contradiction to (1.2).



Journal of Inequalities and Applications 19

Assume that σui is negative, then

fi
(
r, u, (w(r))1/(p(r)−1)u′

)

≤ Θi(r)
[
−|σ(r)|

(
|u(r)|q1(r)−1

∣∣∣ui(r)
∣∣∣ −

∣∣∣μi
∣∣∣
0

∣∣∣(w(r))1/(p(r)−1)u′(r)
∣∣∣
q2(r)

)
+ ei(r)

]

≤ Θi(r)
[
−σ1b1 + ei(r)

]
< 0.

(4.10)

It is a contradiction to (1.2).
(ii) Suppose that |ui|0 ≤ 2θ, then ε/2(E + 1) < θ/E ≤ | (w(r))1/(p(r)−1)(ui)′|0 ≤ ε.
This implies that | (w(r1))

1/(p(r1)−1)(ui)′(r1) | ≥ ε/2(E + 1) for some r1 ∈ I. Since u ∈ Ωε,
it is easy to see that

∣∣∣∣(w(r1))
1/(p(r1)−1)

(
ui
)′
(r1)

∣∣∣∣ ≥
ε

2(E + 1)
=

Nε

2N(E + 1)
≥

∣∣∣(w(r1))
1/(p(r1)−1)u′(r1)

∣∣∣
2N(E + 1)

. (4.11)

According to the boundary value condition, there exists a ri0 ∈ I such that

w
(
ri0

)∣∣∣u′(ri0)
∣∣∣
p(ri0)−2(

ui
)′(

ri0

)
= 0, (4.12)

then

w(r)
∣∣u′∣∣p(r)−2(ui

)′
(r) = λ

∫ r

ri0

fi
(
t, u, (w(t))1/(p(t)−1)u′

)
dt, ∀r ∈ (0,+∞). (4.13)

Since σ2 < b2, combining (4.11), we have

|ε/2(E + 1)|p(r1)−1
2N(E + 1)

≤ 1
2N(E + 1)

w(r1)
∣∣∣∣
(
ui
)′
(r1)

∣∣∣∣
p(r1)−1

≤ 1
2N(E + 1)

w(r1)
∣∣u′(r1)

∣∣p(r1)−1

≤ w(r1)
∣∣u′(r1)

∣∣p(r1)−2
∣∣∣∣
(
ui
)′
(r1)

∣∣∣∣ ≤ λ

∣∣∣∣∣
∫ r1

ri0

∣∣∣fi
(
t, u, (w(t))1/(p(t)−1)u′

)∣∣∣dt
∣∣∣∣∣

≤
∫+∞

0
Θi(t)

[
σ2

(
|Nε|q1(t) + ∣∣μ∣∣|Nε|q2(t)

)
+
∣∣∣ei

∣∣∣
0

]
dt

≤ σ2

∫+∞

0
Θi(t)

[(
|Nε|q1(t) + ∥∥μ∥∥0|Nε|q2(t)

)
+ |θ|q1(t)

]
dt

<
1

2N(E + 1)
inf
t∈I

∣∣∣∣
ε

2(E + 1)

∣∣∣∣
p(t)−1

≤ 1
2N(E + 1)

∣∣∣∣
ε

2(E + 1)

∣∣∣∣
p(r1)−1

.

(4.14)

It is a contradiction.
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Summarizing this argument, for each λ ∈ (0, 1), the problem (4.7) with (1.2) has no
solution on ∂Ωε.

(20) For any u ∈ ∂Ωε ∩ R
N , without loss of generality, we may assume that ai = ε and

σ(t) > 0, then we have

∫+∞

0
fi(t, a, 0)dt =

∫+∞

0
Θi(t)

(
σ(t)|a|q1(t)−1ε + ei(t)

)
dt

≥
∫+∞

0
Θi(t)

(
σ1|ε|q1(t)−1ε + ei(t)

)
dt > 0.

(4.15)

It means that ω(a) = 0 has no solution on ∂Ωε ∩ R
N .

(30) Let

hi(t, a, λ) = Θi(t)
[
λ
(
σ(t)|a|q1(t)−1ai + ei(t)

)
+ (1 − λ)ai sgn σ(t)

]
,

h(t, a, λ) =
(
h1(t, a, λ), . . . , hN(t, a, λ)

)
.

(4.16)

Denote

Φ(a, λ) =
∫+∞

0
h(t, a, λ)dt. (4.17)

According to (A3), it is easy to see that, for any λ ∈ [0, 1], Φ(a, λ) = 0 does not have
solution on ∂Ωε ∩ R

N , then the Brouwer degree

dB

[
ω,Ωε ∩ R

N, 0
]
= dB

[
Φ(a, 1),Ωε ∩ R

N, 0
]
= dB

[
Φ(a, 0),Ωε ∩ R

N, 0
]
/= 0. (4.18)

This completes the proof.

Theorem 4.2. If u is a solution of (1.1)-(1.2) which is given in Theorem 4.1, then

(i) |u′(t)| ≤ C1/w(t)1/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| ≤ ∫+∞
r (C2/w(t)1/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| ≤ ∫r
0(C3/w(t)1/(p(t)−1))dt, as r → 0+.

Proof. Since limr→+∞p(r) exists and limr→+∞p(r) > 1, limt→ 0+w(t)|u′|p(t)−2u′(t) and
limt→+∞w(t)|u′|p(t)−2u′(t) both exist and equal, we have | w(t)1/(p(t)−1) |≤ C, for all t ∈
(0,+∞). Thus

(i) |u′(t)| ≤ C1/w(t)1/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| =| ∫+∞r u′(t)dt |≤ ∫+∞
r (C2/w(t)1/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| =| ∫ r0u′(t)dt |≤ ∫ r
0(C3/w(t)1/(p(t)−1))dt, as r → 0+.

We completes the proof.
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Corollary 4.3. Assume that limr→+∞p(r) exists, limr→+∞p(r) > 1, and

C4 ≤ w(t)
tα

≤ C5, α > p(t) − 1 as t −→ +∞,

C6 ≤ w(t)
tα

≤ C7, α < p(t) − 1 as t −→ 0+,

(4.19)

then

(i) |u′(t)| ≤ C8/t
α/(p(t)−1), t ∈ (0,+∞);

(ii) |u(+∞) − u(r)| ≤ ∫+∞
r (C9/t

α/(p(t)−1))dt, as r → +∞;

(iii) |u(r) − u(0)| ≤ ∫r
0(C10/t

α/(p(t)−1))dt, as r → 0+.

Similar to the proof of Theorem 4.1, we have the following.

Theorem 4.4. Assume that f(t, x, y) = Θ(t)[σ(t)|x|q1(t)−2x + μ(t)|y|q2(t)−2y], where q1, q2, σ, μ ∈
C(I,R) satisfymaxt∈Ip(t) < q1(t), q2(t), for all t ∈ I,Θ(·) ∈ L1. On the conditions of (A1)–(A4), if
δ = 1, then problem (1.1)-(1.2) possesses at least one solution.

On the typical case, we have the following.

Corollary 4.5. Assume that f(t, x, y) = Θ(t)[σ(t)|x|q1(t)−2x + μ(t)|y|q2(t)−2y], where q1, q2, σ, μ ∈
C(I,R) satisfymint∈Ip(t) ≤ q1(t), q2(t) ≤ maxt∈Ip(t), Θ(·) ∈ L1. On the conditions of Theorem 4.1,
then problem (1.1)-(1.2) possesses at least one solution.
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