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1. Introduction

A correspondence that started in 1729 between Leonhard Euler and Christian Goldbach was
the dawn of the gamma function that is given by

Γ(x) =
∫∞

0
e−ttx−1dt (1.1)

(see, e.g., [1, 2]). One of the gamma function’s relatives is the beta function, which is defined
by

B(a, b) =
∫1

0
ta−1(1 − t)b−1dt . (1.2)

The connection between these two Eulerian integrals is

B(a, b) =
Γ(a)Γ(b)
Γ(a + b)

. (1.3)



2 Journal of Inequalities and Applications

Since Euler’s days the research of these special functions and their generalizations have had
great impact on, for example, analysis, mathematical physics, and statistics. In this paper we
prove the following inequality for the beta function.

Inequality A. For all n ∈ N and all p ≥ 0 (p /= 0, p /= 1) there exists a number k > 0 such that

k(n+p+np)/(n+p) B
(
p + 1, kn

)
> B

(
p + 1, n

)
. (1.4)

If p = 0, then we have equality in (1.4), and if p = 1, then we have the opposite inequality for
all n ∈ N, k > 0.

In Section 3 we will give an application of Inequality A within the pluripotential
theory.

2. Proof of Inequality A

A crucial tool in Lemma 2.2 is the following theorem.

Theorem 2.1. Let ψ(x) = Γ′(x)/Γ(x) be the digamma function. Then for x > 0 it holds that

ψ ′(x) >
1
x
+

1
2x2

, ψ ′′(x) > − 1
x2

− 1
x3

− 1
2x4

. (2.1)

Proof. This follows from [3, Theorem 8] (see also [4, 5]).

Lemma 2.2. Let α : N × (0,+∞) → R be a function defined by

α
(
n, p

)
=

1
n
+

p

n + p
+ ψ(n) − ψ

(
n + p + 1

)
, (2.2)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. Then α(n, p)/= 0 for all n ∈ N and all p > 0
(p /= 1). Furthermore, α(n, 1) = 0 for all n ∈ N.

Proof. Since ψ(x + 1) = ψ(x) + 1/x,we have that α(n, 1) = 0, and

α
(
n, p

)
=

1
n
+
p − 1
n + p

+ ψ(n) − ψ
(
n + p

)
. (2.3)

From the construction of α we also have that α(n, 0) = 0. By using (2.3) we get that

∂α

∂p
=

n + 1(
n + p

)2 − ψ ′(n + p
)
. (2.4)

From Theorem 2.1 it follows that

∂α

∂p
<

n + 1(
n + p

)2 − 1
n + p

− 1

2
(
n + p

)2 =
1 − 2p

2
(
n + p

)2 . (2.5)
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Thus,

∂α

∂p
< 0 for p ∈

(
1
2
,+∞

)
. (2.6)

Furthermore,

∂2α

∂p2
=

−2(n + 1)(
n + p

)3 − ψ ′′(n + p
)
, (2.7)

and since ψ ′′(x) > −1/x2 − 1/x3 − 1/2x4 (Theorem 2.1), we get that

∂2α

∂p2
<

−2(n + 1)(
n + p

)3 +
1(

n + p
)2 +

1(
n + p

)3 +
1

2
(
n + p

)4
=

−2n2 − 2n − 2p + 2p2 + 1

2
(
n + p

)4 ,

(2.8)

which means that

∂2α

∂p2
< 0 for p ∈ (0, 1). (2.9)

From (2.6), (2.9), and the fact that α(n, 1) = α(n, 0) = 0, we conclude that α(n, p)/= 0 for all
n ∈ N and all p > 0 (p /= 1).

Proof of Inequality A.

Case 1 (p = 0). The definition

B(a, b) =
∫1

0
ta−1(1 − t)b−1dt (2.10)

yields that B(a, 1) = B(1, a) = 1/a. Thus,

kB(1, kn) =
1
n
= B(1, n), (2.11)

which is precisely the desired equality.

Case 2 (p = 1). We will now prove that for all k > 0 it holds that

k(2n+1)/(n+1)B(2, kn) ≤ B(2, n). (2.12)
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Inequality (2.12) is equivalent to

k(2n+1)/(n+1) 1
kn + 1

1
kn

≤ 1
n(n + 1)

. (2.13)

Hence, to complete this case we need to prove that for all k > 0 we have that

kn/(n+1) 1
kn + 1

≤ 1
n + 1

. (2.14)

Let h : [0,+∞) → R be defined by

h(k) = kn + 1 − kn/(n+1)n − kn/(n+1). (2.15)

To obtain (2.14) it is sufficient to prove that h ≥ 0. The definition of h yields that

h(0) = 1, lim
k→∞

h(k) = +∞ , h′(k) = n
(
1 − k−1/(n+1)

)
. (2.16)

Thus,

(a) h has a minimum point in k = 1;

(b) h is decreasing on (0, 1);

(c) h is increasing on (1,+∞);

(d) h(1) = 0.

Thus, h(k) ≥ 0 for k ≥ 0.

Case 3 (p > 0, p /= 1). Fix n ∈ N. Let F : (0,+∞) → R be the function defined by

F(k) = k(n+p+np)/(n+p)B
(
p + 1, kn

) − B
(
p + 1, n

)
. (2.17)

This construction implies that F is continuously differentiable, and F(1) = 0. To prove this
case it is enough to show that F ′(1)/= 0. By rewriting B(p+ 1, kn)with (1.3) the function F can
be written as

F(k) = k(n+p+np)/(n+p) Γ
(
p + 1

)
Γ(kn)

Γ
(
kn + p + 1

) − B
(
p + 1, n

)
, (2.18)
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and therefore we get that

F ′(k) = Γ
(
p + 1

)(n + p + np

n + p
knp/(n+p) Γ(kn)

Γ
(
kn + p + 1

)

+ nk(n+p+np)/(n+p) Γ
′(kn)Γ

(
kn + p + 1

) − Γ(kn)Γ′
(
kn + p + 1

)
Γ2
(
kn + p + 1

)
)

= nknp/(n+p)B
(
kn, p + 1

)( 1
n
+

p

n + p
+ k

(
ψ(kn) − ψ

(
kn + p + 1

)))
.

(2.19)

Thus

F ′(1) = nB
(
n, p + 1

)( 1
n
+

p

n + p
+ ψ(n) − ψ

(
n + p + 1

))
, (2.20)

where ψ(x) = Γ′(x)/Γ(x) is the digamma function. This proof is then completed by using
Lemma 2.2.

3. The Application

We start this section by recalling some definitions and needed facts. A domain is an open and
connected set, and a bounded domainΩ ⊆ C

n is hyperconvex if there exists a plurisubharmonic
function ϕ : Ω → (−∞, 0) such that the closure of the set {z ∈ Ω : ϕ(z) < c} is compact in
Ω, for every c ∈ (−∞, 0); that is, for every c < 0 the level set {z ∈ Ω : ϕ(z) < c} is relatively
compact in Ω. The geometric condition that our underlying domain should be hyperconvex
is to ensure that we have a satisfying quantity of plurisubharmonic functions. By E0(Ω) we
denote the family of all bounded plurisubharmonic functions ϕ defined on Ω such that

lim
z→ ξ

ϕ(z) = 0 for every ξ ∈ ∂Ω,

∫
Ω

(
ddcϕ

)n
< +∞, (3.1)

where (ddc·)n is the complex Monge-Ampère operator. Next let Ep(Ω), p > 0, denote the
family of plurisubharmonic functions u defined on Ω such that there exists a decreasing
sequence {uj}, uj ∈ E0, that converges pointwise to u on Ω, as j tends to +∞, and

sup
j≥1

∫
Ω

(−uj

)p(
ddcuj

)n = sup
j≥1

ep
(
uj

)
< +∞. (3.2)

If u ∈ Ep(Ω), then ep(u) < +∞ ([6, 7]). It should be noted that it follows from [6] that
the complex Monge-Ampère operator is well defined on Ep. For further information about
pluripotential theory and the complex Monge-Ampère operator we refer to [8, 9].

The convex cone Ep has applications in dynamical systems and algebraic geometry
(see, e.g., [10, 11]). A fundamental tool in working with Ep is the following energy estimate
(the proof can be found in [12], see also [6, 13, 14]).
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Theorem 3.1. Let p > 0, and n ≥ 1. Then there exists a constant D(n, p) ≥ 1, depending only on n
and p, such that for any u0, u1, . . . , un ∈ Ep it holds that

∫
Ω
(−u0)pddcu1 ∧ · · · ∧ ddcun ≤ D

(
n, p

)
ep(u0)p/(p+n)ep(u1)1/(p+n) . . . ep(un)1/(p+n). (3.3)

Moreover,

D
(
n, p

) ≤

⎧⎪⎨
⎪⎩

(
1
p

)n/(n−p)
, if 0 < p < 1,

ppa(n,p)/(p−1), if p > 1,
(3.4)

D(n, 1) = 1 and a(n, p) = (p + 2)((p + 1)/p)n−1 − (p + 1). If n = 1, then one follows [12] and
interprets (3.3) as

∫
Ω
(−u)pΔv ≤ D

(
1, p

)(∫
Ω
(−u)pΔu

)p/(p+1)(∫
Ω
(−v)pΔv

)1/(p+1)

. (3.5)

If D(n, p) = 1 for all functions in Ep, then the methods in [15] would immediately
imply that the vector space Ep −Ep, with certain norm, is a Banach space. Furthermore, proofs
in [15] (see also [6]) could be simplified, and some would even be superfluous. Therefore, it
is important to know for which n, p the constant D(n, p) is equal or strictly greater than one.
With the help of Inequality A we settle this question. In Example 3.2, we show that there are
functions such that, for all n ∈ N and all p > 0 (p /= 1), the constant D(n, p), in (3.3), is strictly
greater than 1.

Example 3.2. Let B(0, 1) ⊂ C
n be the unit ball, and for α > 0 set

uα(z) = |z|2α − 1. (3.6)

Hence,

(ddcuα)
n = n!4nαn+1|z|2n(α−1)dλn, (3.7)
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where dλn is the Lebesgue measure on C
n. For β > 0 we then have that

∫
B(0,1)

(−uα)p
(
ddcuβ

)n = n!4nβn+1
∫
B(0,1)

(1 − |z|2α)p|z|2n(β−1)dλn

= n!4nβn+1
∫
∂B(0,1)

dσn

∫1

0
(1 − t2α)

p
t2n(β−1)t2n−1dt

= n!4nβn+1σn(∂B(0, 1))
∫1

0
(1 − t2α)

p
t2nβ−1dt

= n!4nβn+12
πn

(n − 1)!
1
2α

∫1

0
(1 − s)psnβ/α−1ds

= n(4π)n
βn+1

α
B

(
p + 1,

β

α
n

)
,

(3.8)

where dσn is the Lebesgue measure on ∂B(0, 1). If α = β, then

∫
B(0,1)

(−uα)p(ddcuα)
n = n(4π)nαn B

(
p + 1, n

)
. (3.9)

If we assume that D(n, p) = 1 in Theorem 3.1, then it holds that

n(4π)n
βn+1

α
B

(
p + 1,

β

α
n

)
≤ (

n(4π)nαnB
(
p + 1, n

))p/(n+p)(
n(4π)nβnB

(
p + 1, n

))n/(n+p)
.

(3.10)

Hence,

(
β

α

)(n+p+np)/(n+p)

B

(
p + 1,

β

α
n

)
≤ B

(
p + 1, n

) ∀α, β > 0. (3.11)

In particular, if β/α = k, then we get that

k(n+p+np)/(n+p)B
(
p + 1, kn

) ≤ B
(
p + 1, n

)
. (3.12)

This contradicts Inequality A. Thus, there are functions such thatD(n, p) > 1 for all n ∈ N and
all p > 0 (p /= 1).
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[15] P. Åhag and R. Czyż, “Modulability and duality of certain cones in pluripotential theory,” Journal of

Mathematical Analysis and Applications. In press.


	1. Introduction
	2. Proof of Inequality A
	3. The Application
	Acknowledgments
	References

