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1. Introduction

This paper is concerned with study of nonoscillation of solutions of third-order nonlinear
differential equations of the form

(
r(t)y′′(t)

)′ + q(t)k
(
y′(t)

)
+ p(t)yα(g(t)

)
= f(t), t ≥ t0, (1.1)

(
r(t)y′′(t)

)′ + q(t)k
(
y′(t)

)
+ p(t)h

(
y
(
g(t)

))
= f(t), t ≥ t0, (1.2)

where t0 ≥ 0 is a fixed real number, f , p, q, r, and g ∈ C([0,∞),R) such that r(t) > 0 and
f(t) ≥ 0 for all t ∈ [0,∞). k, h ∈ C(R,R) are nondecreasing such that h(y)y > 0, k(y′)y′ > 0
for all y /= 0, y′ /= 0. Throughout the paper, it is assumed, for all g(t) and α appeared in (1.1)
and (1.2), that g(t) ≤ t for all t ≥ t0; limt→∞g(t) = ∞; α > 0 is a quotient of odd integers.

It is well known from relevant literature that there have been deep and thorough
studies on the nonoscillatory behaviour of solutions of second- and third-order nonlinear
differential equations in recent years. See, for instance, [1–37] as some related papers or
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books on the subject. In the most of these studies the following differential equation and
some special cases of

(
r(t)y′′(t)

)′ + q(t)
(
y′)β + p(t)yα = f(t), t ≥ t0, (1.3)

have been investigated. However, much less work has been done for nonoscillation of
all solutions of nonlinear functional differential equations. In this connection, Parhi [10]
established some sufficient conditions for oscillation of all solutions of the second-order
forced differential equation of the form

(
r(t)y′(t)

)′ + p(t)yα(g(t)
)
= f(t) (1.4)

and nonoscillation of all bounded solutions of the equations

(
r(t)y′(t)

)′ + q(t)
(
y′(t)

)β + p(t)yα(g(t)
)
= f(t),

(
r(t)y′(t)

)′ + q(t)
(
y′(g1(t)

))β + p(t)yα(g(t)
)
= f(t),

(1.5)

where the real-valued functions f , p, q, r, g, and g1 are continuous on [0,∞) with r(t) > 0
and f(t) ≥ 0; g(t) ≤ t, g1(t) ≤ t for t ≥ t0; limt→∞g(t) = ∞, limt→∞g1(t) = ∞, and both α > 0
and β > 0 are quotients of odd integers.

Later, Nayak and Choudhury [5] considered the differential equation

(
r(t)y′′(t)

)′ − q(t)
(
y′(t)

)β − p(t)yα(g(t)
)
= f(t), (1.6)

and they gave certain sufficient conditions on the functions involved for all bounded
solutions of the above equation to be nonoscillatory.

Recently, in 2007, Tunç [23] investigated nonoscillation of solutions of the third-order
differential equations:

(
r(t)y′′(t)

)′ + q(t)y′(t) + p(t)yα(g(t)
)
= f(t), t ≥ t0,

(
r(t)y′′(t)

)′ + q(t)
(
y′(g1(t)

))β + p(t)yα(g(t)
)
= f(t), t ≥ t0.

(1.7)

The motivation for the present work has come from the paper of Parhi [10], Tunç [23]
and the papers mentioned above. We restrict our considerations to the real solutions of (1.1)
and (1.2)which exist on the half-line [T,∞), where T (≥ 0) depends on the particular solution,
and are nontrivial in any neighborhood of infinity. It is well known that a solution y(t) of (1.1)
or (1.2) is said to be nonoscillatory on [T,∞) if there exists a t1 ≥ T such that y(t)/= 0 for t ≥ t1;
it is said to be oscillatory if for any t1 ≥ T there exist t2 and t3 satisfying t1 < t2 < t3 such that
y(t2) > 0 and y(t3) < 0; y(t) is said to be a Z-type solution if it has arbitrarily large zeros but
is ultimately nonnegative or nonpositive.
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2. Nonoscillation Behaviors of Solutions of (1.1)

In this section, we obtain sufficient conditions for the nonoscillation of solutions of (1.1).

Theorem 2.1. Let q(t) ≤ 0. If limt→∞(f(t)/|p(t)|) = ∞, then all bounded solutions of (1.1) are
nonoscillatory.

Proof. Let y(t) be a bounded solution of (1.1) on [Ty,∞), Ty ≥ 0, such that |y(t)| ≤ M for
t ≥ Ty. Since limt→∞g(t) = ∞, there exists a t1 > t0 such that g(t) ≥ Ty for t ≥ t1. In view of
the assumption limt→∞(f(t)/|p(t)|) = ∞, it follows that there exists a t2 ≥ t1 such that f(t) >
Mα|p(t)| for t ≥ t2. If possible, let y(t) be of nonnegative Z-type solution with consecutive
double zeros at a and b (t2 < a < b) such that y(t) > 0 for t ∈ (a, b). So, there exists c ∈ (a, b)
such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Multiplying (1.1) through by y′(t), we get

(
r(t)y′(t)y′′(t)

)′ = r(t)
(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)yα(g(t)

)
y′(t) + f(t)y′(t). (2.1)

Integrating (2.1) from a to c, we obtain

0 =
∫ c

a

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) + f(t)y′(t) − p(t)yα(g(t)

)
y′(t)

]
dt

≥
∫ c

a

[
f(t) − p(t)yα(g(t)

)]
y′(t)dt

≥
∫ c

a

[
f(t) −Mα

∣∣p(t)
∣∣]y′(t)dt > 0,

(2.2)

which is a contradiction.
Let y(t) be of nonpositive Z-type solution with consecutive double zeros at a and b

(t2 < a < b). Then, there exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (c, b).
Integrating (2.1) from c to b yields

0 =
∫b

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) + f(t)y′(t) − p(t)yα(g(t)

)
y′(t)

]
dt

≥
∫b

c

[
f(t) − ∣∣p(t)

∣∣∣∣yα(g(t)
)∣∣]y′(t)dt

≥
∫b

c

[
f(t) −Mα

∣∣p(t)
∣∣]y′(t)dt > 0,

(2.3)

which is a contradiction.
If possible, let y(t) be oscillatory with consecutive zeros at a, b and a′ (t2 < a < b < a′)

such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b) and y(t) > 0 for t ∈ (b, a′). So
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there exists points c ∈ (a, b) and c′ ∈ (b, a′) such that y′(c) = 0, y′(c′) = 0, y′(t) > 0 for t ∈ (c, b)
and y′(t) > 0 for t ∈ (b, c′). Now integrating (2.1) from c to c′, we get

0 =
∫ c′

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) + f(t)y′(t) − p(t)yα(g(t)

)
y′(t)

]
dt

≥
∫b

c

[
f(t) − p(t)yα(g(t)

)]
y′(t)dt +

∫ c′

b

[
f(t) − p(t)yα(g(t)

)]
y′(t)dt

≥
∫b

c

[
f(t) − ∣∣p(t)

∣∣∣∣yα(g(t)
)∣∣]y′(t)dt +

∫ c′

b

[
f(t) − ∣∣p(t)

∣∣∣∣yα(g(t)
)∣∣]y′(t)dt

≥
∫b

c

[
f(t) −Mα

∣
∣p(t)

∣
∣]y′(t)dt +

∫ c′

b

[
f(t) −Mα

∣
∣p(t)

∣
∣]y′(t)dt > 0,

(2.4)

which is a contradiction. This completes the proof of Theorem 2.1.

Remark 2.2. For the special case k(y′(t)) = (y′(g1(t)))
β, h(y(g(t)) = yα(g(t)), Theorem 2.1 has

been proved by Tunç [23]. Our results include the results established in Tunç [23].

Theorem 2.3. Let 0 ≤ p(t) < f(t) and q(t) ≤ 0, then all solutions y(t) of (1.1) which satisfy the
inequality

1 − zα
(
g(t)

) ≥ 0 (2.5)

on any interval where y′(t) > 0 are nonoscillatory.

Proof. Let y(t) be a solution of (1.1) on [Ty,∞), Ty > 0. Due to limt→∞g(t) = ∞, there exists
a t1 > t0 such that g(t) ≥ Ty for t ≥ t1. If possible, let y(t) be of nonnegative Z-type solution
with consecutive double zeros at a and b (Ty ≤ a < b) such that y(t) > 0 for t ∈ (a, b). So,
there exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Integrating (2.1) from a
to c, we get

0 =
∫ c

a

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) + f(t)y′(t) − p(t)yα(g(t)

)
y′(t)

]
dt

≥
∫ c

a

[
f(t) − p(t)yα(g(t)

)]
y′(t)dt

≥
∫ c

a

p(t)
[
1 − yα(g(t)

)]
y′(t)dt > 0,

(2.6)

which is a contradiction.
Next, let y(t) be of nonpositiveZ-type solution with consecutive double zeros at a and

b (Ty ≤ a < b). Then, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (c, b).
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Integrating (2.1) from c to b, we have

0 =
∫b

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) + f(t)y′(t) − p(t)yα(g(t)

)
y′(t)

]
dt > 0, (2.7)

which is a contradiction.
Now, if possible let y(t) be oscillatory with consecutive zeros at a, b and a′ (Ty < a <

b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b) and y(t) > 0 for
t ∈ (b, a′). Hence, there exist c ∈ (a, b) and c′ ∈ (b, a′) such that y′(c) = y′(c′) = 0 and y′(t) > 0
for t ∈ (c, b) and t ∈ (b, c′). Integrating (2.1) from c to c′, we obtain

0 =
∫ c′

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) + f(t)y′(t) − p(t)yα(g(t)

)
y′(t)

]
dt

≥
∫b

c

[
f(t) − p(t)yα(g(t)

)]
y′(t)dt +

∫ c′

b

[
f(t) − p(t)yα(g(t)

)]
y′(t)dt

≥
∫ c′

b

[
f(t) − p(t)yα(g(t)

)]
y′(t)dt

≥
∫b

c

p(t)
[
1 − yα(g(t)

)]
y′(t)dt > 0,

(2.8)

which is a contradiction. This completes the proof of Theorem 2.3.

Remark 2.4. For the special case k(y′) = (y′)β, yα(g(t)) = yα, Theorem 2.3 has been proved by
Tunç [25]. Our results include the results established in Tunç [25].

3. Nonoscillation Behaviors of Solutions (1.2)

In this section, we give sufficient conditions so that all solutions of (1.2) are nonoscillatory.

Theorem 3.1. Suppose that q(t) ≤ 0 and 0 ≤ p(t) < f(t). If y(t) is a solution (1.2) such that it
satisfies the inequality

1 − h(z(t)) > 0 (3.1)

on any interval where y′(t) > 0, then y(t) is nonoscillatory.

Proof. Let y(t) be a solution of (1.2) on [Ty,∞), Ty > 0. Due to limt→∞g(t) = ∞, there exists
a t1 > t0 such that g(t) ≥ Ty for t ≥ t1. If possible, let y(t) be of nonnegative Z-type solution
with consecutive double zeros at a and b (Ty ≤ a < b) such that y(t) > 0 for t ∈ (a, b). So, there
exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Multiplying (1.2) through by
y′(t), we get

(
r(t)y′(t)y′′(t)

)′ = r(t)
(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t). (3.2)
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Integrating (3.2) from a to c, we get

0 =
∫ c

a

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

≥
∫ c

a

[
f(t) − p(t)h

(
y
(
g(t)

))]
y′(t)dt

≥
∫ c

a

f(t)
[
1 − h

(
y(t)

)]
y′(t)dt > 0,

(3.3)

which is a contradiction.
Next, let y(t) be of nonpositiveZ-type solution with consecutive double zeros at a and

b (Ty ≤ a < b). Then, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (c, b).
Integrating (3.2) from c to b, we have

0 =
∫b

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt > 0, (3.4)

which is a contradiction.
Now, if possible let y(t) be oscillatory with consecutive zeros at a, b and a′ (Ty < a <

b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b) and y(t) > 0 for
t ∈ (b, a′). Hence, there exist c ∈ (a, b) and c′ ∈ (b, a′) such that y′(c) = y′(c′) = 0 and y′(t) > 0
for t ∈ (c, b) and t ∈ (b, c′). Integrating (3.2) from c to c′, we obtain

0 =
∫ c′

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

≥
∫b

c

[
f(t) − p(t)h

(
y
(
g(t)

))]
y′(t)dt +

∫ c′

b

[
f(t) − p(t)h

(
y
(
g(t)

))]
y′(t)dt

≥
∫b

c

[
f(t) − p(t)h

(
y(t)

)]
y′(t)dt +

∫ c′

b

[
f(t) − p(t)h

(
y(t)

)]
y′(t)dt

≥
∫ c′

b

[
f(t) − p(t)h

(
y(t)

)]
y′(t)dt

≥
∫ c′

b

f(t)
[
1 − h

(
y(t)

)]
y′(t)dt > 0,

(3.5)

which is a contradiction. This completes the proof of Theorem 3.1.

Theorem 3.2. Suppose that 0 ≤ q ≤ p ≤ f and q /= 0 on any subinterval of [Ty,∞), Ty ≥ 0. If y(t) is
a solution of (1.2) such that it satisfies the inequality

1 − k
(
z′
) − h(z) > 0 (3.6)

on any subinteval of [Ty,∞), Ty ≥ 0, where y′(t) > 0, then y(t) is nonoscillatory.
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Proof. Let y(t) be a solution of (1.2) on [Ty,∞), Ty > 0. Since limt→∞g(t) = ∞, there exists a
t1 > t0 such that g(t) ≥ Ty for t ≥ t1. If possible, let y(t) be of nonnegative Z-type solution
with consecutive double zeros at a and b (Ty ≤ a < b) such that y(t) > 0 for t ∈ (a, b). So,
there exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (a, c). Integrating (3.2) from a
to c, we get

0 =
∫ c

a

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

≥
∫ c

a

[−q(t)k(y′(t)
)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

≥
∫ c

a

[−q(t)k(y′(t)
)
y′(t) − p(t)h

(
y(t)

)
y′(t) + f(t)y′(t)

]
dt

≥
∫ c

a

f(t)
[
1 − k

(
y′(t)

) − p(t)h
(
y(t)

)]
y′(t)dt > 0,

(3.7)

which is a contradiction.
Next, let y(t) be of nonpositiveZ-type solution with consecutive double zeros at a and

b (Ty ≤ a < b). Then, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (c, b).
Integrating (3.2) from c to b, we have

0 =
∫b

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

≥
∫b

c

[−q(t)k(y′(t)
)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

≥
∫b

c

q(t)
[
1 − k

(
y′(t)

) − p(t)h
(
y(t)

)]
y′(t)dt > 0,

(3.8)

which is a contradiction.
Now, if possible let y(t) be oscillatory with consecutive zeros at a, b and a′ (Ty < a <

b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b) and y(t) > 0 for
t ∈ (b, a′). Hence, there exist c ∈ (a, b) and c′ ∈ (b, a′) such that y′(c) = y′(c′) = 0 and y′(t) > 0
for t ∈ (c, b) and t ∈ (b, c′). Integrating (3.2) from c to c′, we obtain

0 =
∫ c′

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

≥
∫b

c

[−q(t)k(y′(t)
) − p(t)h

(
y
(
g(t)

))
+ f(t)

]
y′(t)dt

+
∫ c′

b

[−q(t)k(y′(t)
) − p(t)h

(
y
(
g(t)

))
+ f(t)

]
y′(t)dt
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≥
∫b

c

[−q(t)k(y′(t)
) − p(t)h

(
y(t)

)
+ f(t)

]
y′(t)dt

+
∫ c′

b

[−q(t)k(y′(t)
) − p(t)h

(
y(t)

)
+ f(t)

]
y′(t)dt

≥
∫b

c

q(t)
[
1 − k

(
y′(t)

) − h
(
y(t)

)]
y′(t)dt +

∫ c′

b

f(t)
[
1 − k

(
y′(t)

) − h
(
y(t)

)]
y′(t)dt > 0,

(3.9)

which is a contradiction. This completes the proof of Theorem 3.2.

Remark 3.3. It is clear that Theorem 3.2 is not applicable to homogeneous equations:

(
r(t)y′′(t)

)′ + q(t)k
(
y′(t)

)
+ p(t)h

(
y
(
g(t)

))
= 0, (3.10)

where p(t) ≥ 0 and q(t) ≥ 0.

Remark 3.4. For the special case k(y′) = (y′)γ , h(y(g(t))) = yβ, Theorem 3.2 has been proved
by N. parhi and S. parhi [19, Theorem 2.7].

Theorem 3.5. Let p(t) ≥ 0, q(t) ≤ 0, and h(y) ≤ y for all y > 0. If p(t) and f(t) are once
continuously differentiable functions such that p′(t) ≥ 0, f ′(t) ≤ 0, and 2f(t) − p(t) ≥ 0, then all
solutions y(t) of (1.2) for which |y(t)| ≤ 1 ultimately are nonoscillatory.

Proof. Let y(t) be a solution of (1.2) on [Ty,∞), Ty > 0, such that |y(t)| ≤ 1 for t ≥ T1 > Ty.
Since limt→∞g(t) = ∞, there exists a t1 > t0 such that g(t) ≥ Ty for t ≥ t1. If possible, let y(t)
be of nonnegative Z-type solution with consecutive double zeros at a and b (T1 ≤ a < b) such
that y(t) > 0 for t ∈ (a, b). So, there exists a c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for
t ∈ (a, c). Integrating (3.2) from a to c, we get

0 =
∫ c

a

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt. (3.11)

But

∫ c

a

f(t)y′(t)dt = f(t)y(t)
∣∣c
a −

∫ c

a

f ′(t)y(t)dt ≥ f(c)y(c),

∫ c

a

p(t)h
(
y
(
g(t)

))
y′(t)dt ≤ 1

2
p(c)y2(c).

(3.12)

Therefore

∫ c

a

[−p(t)h(y(g(t)))y′(t) + f(t)y′(t)
]
dt

≥ f(c)y(c) − 1
2
p(c)y2(c) ≥ p(c)

2
y(c) − 1

2
p(c)y2(c) =

1
2
p(c)

[
y(c) − y2(c)

]
> 0,

(3.13)
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since |y(t)| ≤ 1 for t ≥ T1. So (3.11) yields

0 =
∫ c

a

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt > 0, (3.14)

which is a contradiction.
Next, let y(t) be of nonpositiveZ-type solution with consecutive double zeros at a and

b (T1 ≤ a < b). Then, there exists c ∈ (a, b) such that y′(c) = 0 and y′(t) > 0 for t ∈ (c, b).
Integrating (3.2) from c to b, we have

0 =
∫b

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt > 0, (3.15)

which is a contradiction.
Now, if possible let y(t) be oscillatory with consecutive zeros at a, b and a′ (Ty < a <

b < a′) such that y′(a) ≤ 0, y′(b) ≥ 0, y′(a′) ≤ 0, y(t) < 0 for t ∈ (a, b) and y(t) > 0 for
t ∈ (b, a′). So there exist c ∈ (a, b) and c′ ∈ (b, a′) such that y′(c) = 0, y′(c′) = 0 and y′(t) > 0
for t ∈ (c, c′). We consider two cases, namely, y′′(b) ≤ 0 and y′′(b) > 0. Suppose that y′′(b) ≤ 0.
Integrating (3.2) from c to b, we get

0 ≥ r(b)y′(b)y′′(b)

=
∫b

c

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt

> 0,

(3.16)

which is a contradiction. Let y′′(b) > 0. Integrating (3.2) from b to c′, we get

−r(b)y′(b)y′′(b) =
∫ c′

b

[
r(t)

(
y′′(t)

)2 − q(t)k
(
y′(t)

)
y′(t) − p(t)h

(
y
(
g(t)

))
y′(t) + f(t)y′(t)

]
dt.

(3.17)

We proceed as in nonnegative Z-type to conclude that 0 ≥ −r(b)y′(b)y′′(b) > 0. This is a
contradiction. So y(t) is nonoscillatory. This completes the proof of Theorem 3.5.

Remark 3.6. If f ≡ 0 in Theorem 3.5, then p ≡ 0 and hence the theorem is not applicable to
homogeneous equation:

(
r(t)y′′(t)

)′ + q(t)k
(
y′(t)

)
+ p(t)h

(
y
(
g(t)

))
= 0. (3.18)
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