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1. Introduction

Let X be a real Banach space and X* its dual space. The normalized duality mapping | : X —
2X" is defined as

J(x) = {x* € X" (x%,x) = ||x|? = ||x*||2}, VxeX, (1.1)

where (-, -) denotes the generalized duality pairing. Recall that if X is a smooth Banach space
then | is singlevalued. Throughout this paper, we will still denote by J the single-valued
normalized duality mapping. Let C be a nonempty closed convex subset of X, f a bifunction
from CxCtoR,and A : C — X" anonlinear mapping. The generalized equilibrium problem
is to find X € C such that

f(x,y)+(Ax,y-x)>0, VyeC. (1.2)
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The set of solutions of (1.2) is denoted by EP. Problem (1.2) and similar problems have been
extensively studied; see, for example, [1-11]. Whenever A = 0, problem (1.2) reduces to the
equilibrium problem of finding x € C such that

f(x,y)>0, VyeC (1.3)

The set of solutions of (1.3) is denoted by EP(f). Whenever f = 0, problem (1.2) reduces to
the variational inequality problem of finding x € C such that

(Ax,y-x)>0, VyeC. (1.4)

Whenever X = H a Hilbert space, problem (1.2) was very recently introduced and
considered by Kamimura and Takahashi [12]. Problem (1.2) is very general in the sense that it
includes, as spacial cases, optimization problems, variational inequalities, minimax problems,
the Nash equilibrium problem in noncooperative games, and others; see, for example, [13,
14]. A mapping S : C — X is called nonexpansive if ||Sx — Sy|| < |lx — y|| for all x,y € C.
Denote by F(S) the set of fixed points of S, thatis, F(S) = {x € C : Sx = x}. Iterative schemes
for finding common elements of EP and fixed points set of nonexpansive mappings have
been studied recently; see, for example, [12, 15-17] and the references therein.

On the other hand, a classical method of solving 0 € Tx in a Hilbert space H is the
proximal point algorithm which generates, for any starting point xo € H, a sequence {x,} in
H by the iterative scheme

Xn+l = ]rnxnr n= 0/ 1/2/° ey (15)

where {r,} is a sequence in (0,0), J, = (I + rT)™! for each r > 0 is the resolvent operator for
T, and I is the identity operator on H. This algorithm was first introduced by Martinet [14]
and generally studied by Rockafellar [18] in the framework of a Hilbert space H. Later many
authors studied (1.5) and its variants in a Hilbert space H or in a Banach space X; see, for
example, [13, 19-23] and the references therein.

Let X be a uniformly smooth and uniformly convex Banach space and let C be a
nonempty closed convex subset of X. Let f be a bifunction from C x C to R satisfying the
following conditions (A1)—(A4) which were imposed in [24]:

(Al) f(x,x) =0forall x € C;

(A2) f is monotone, thatis, f(x,y) + f(y,x) <0, forallx,y € C;

(A3) forall x,y,z € C limsup, f(tz+ (1 - H)x,y) < f(x,y);

(A4) forall x € C, f(x,-) is convex and lower semicontinuous.
Let T : X — 2X" be a maximal monotone operator such that

(A5) T10 N EP(f) #0.

The purpose of this paper is to introduce and study two new iterative algorithms
for finding a common element of the set EP of solutions for the generalized equilibrium
problem (1.2) and the set T-'0 N T~'0 for maximal monotone operators T, T in a uniformly
smooth and uniformly convex Banach space X. First, motivated by Kamimura and Takahashi
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[12, Theorem 3.1 ], Ceng et al. [16, Theorem 3.1 ], and Zhang [17, Theorem 3.1 ], we
introduce a sequence {x,} that, under some appropriate conditions, is strongly convergent
to I1 iy f-10nppX0 in Section 3. Second, inspired by Kamimura and Takahashi [12, Theorem
3.1 ], Ceng et al. [16, Theorem 4.1 ], and Zhang [17, Theorem 3.1 ], we define a sequence
weakly convergent to an element z € T-'10NnT-10N EP, where z = limy, oo Il 71 gnppXn N
Section 4. Our results represent a generalization of known results in the literature, including
Takahashi and Zembayashi [15], Kamimura and Takahashi [12], Li and Song [22], Ceng and
Yao [25], and Ceng et al. [16]. In particular, compared with Theorems 3.1 and 4.1 in [16], our
results (i.e., Theorems 3.2 and 4.2 in this paper) extend the problem of finding an element of
T-10N EP(f) to the one of finding an element of T~10 N T-10 N EP. Meantime, the algorithms
in this paper are very different from those in [16] (because of considering the complexity
involving the problem of finding an element of T~10 N T-0n EDP).

2. Preliminaries

In the sequel, we denote the strong convergence, weak convergence and weak* convergence
of a sequence {x,} to a point x € X by x,, — x, x, — x and x,, — x, respectively.

A Banach space X is said to be strictly convex, if |[x + y||/2 < 1forallx,y e U = {z €
X :||z]| = 1} with x#y. X is said to be uniformly convex if for each ¢ € (0,2] there exists
6 > 0 such that ||x + y||/2 < 1-6 forall x,y € U with |x — y|| > e. Recall that each uniformly
convex Banach space has the Kadec-Klee property, that is,

X, — X
= x, —X (2.1)
[l ]l — x|

The proof of the main results of Sections 3 and 4 will be based on the following
assumption.

Assumption A. Let X be a uniformly smooth and uniformly convex Banach space and let C
be a nonempty closed convex subset of X. Let f be a bifunction from C x C to R satisfying
the same conditions (A1)—(A4) as in Section 1. Let T, T : X — 2% be two maximal monotone
operators such that

(A5) T-'0NT~'0 N EP #0.

Recall that if C is a nonempty closed convex subset of a Hilbert space H, then the
metric projection Pc : H — C of H onto C is nonexpansive. This fact actually characterizes
Hilbert spaces and hence, it is not available in more general Banach spaces. In this connection,
Alber [26] recently introduced a generalized projection operator Ilc in a Banach space X
which is an analogue of the metric projection in Hilbert spaces. Consider the functional
defined as in [26] by

d(x, ) = |xI? -2(x, Jy) + ||ly|I>, VxyeX (2.2)

It is clear that in a Hilbert space H, (2.2) reduces to ¢(x,y) = ||x - y||2, Vx,y € H.
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The generalized projectionI'lc : X — C is a mapping that assigns to an arbitrary point
x € X the minimum point of the functional ¢(y, x); that is, IIcx = X, where X is the solution
to the minimization problem

¢, x) = min(y, x). (2.3)

The existence and uniqueness of the operator Ilc follows from the properties of the
functional ¢(x, y) and strict monotonicity of the mapping J (see, e.g., [27]). In a Hilbert space,
I1c = Pc. From [26], in a smooth strictly convex and reflexive Banach space X, we have

(lyll = 112 < by x) < (lyll + lIxl1)?, - Vx,y € X (24)

Moreover, by the property of subdifferential of convex functions, we easily get the
following inequality:

P(x,y) < ¢(x,]_1(]y +]2)) -2(y-x,Jz), VYx,y,zeX. (2.5)

Let S be a mapping from C into itself. A point p in C is called an asymptotically fixed
point of S if C contains a sequence {x,} which converges weakly to p such that Sx,, —x, — 0
[28]. The set of asymptotically fixed points of S will be denoted by F(S). A mapping C from
S into itself is called relatively nonexpansive if F(S) = F(S) and ¢(p, Sx) < ¢(p,x), for all
x € Candp € F(S) [15].

Observe that, if X is a reflexive strictly convex and smooth Banach space, then for any
x,y € X, ¢(x,y) =0if and only if x = y. To this end, it is sufficient to show that if ¢(x, ) =0
then x = y. Actually, from (2.4), we have ||x|| = |ly|| which implies that (x, Jy) = llx||? = ||y||2.
From the definition of J, we have Jx = Jy and therefore, x = y; see [29] for more details.

We need the following lemmas for the proof of our main results.

Lemma 2.1 (Kamimura and Takahashi [12]). Let X be a smooth and uniformly convex Banach
space and let {x,} and {y,} be two sequences of X. If ¢(xn,yn) — 0 and either {x,} or {y,} is
bounded, then x,, — y, — 0.

Lemma 2.2 (Alber [26], Kamimura and Takahashi [12]). Let C be a nonempty closed convex
subset of a smooth strictly convex and reflexive Banach space X. Let x € X and let z € C. Then

z=Ilex = (y-zJx-Jz)<0, VyeC. (2.6)

Lemma 2.3 (Alber [26], Kamimura and Takahashi [12]). Let C be a nonempty closed convex
subset of a smooth strictly convex and reflexive Banach space X. Then

¢(x, Hcy) + p(Icy,y) <p(x,y), VxeC yeX (2.7)
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Lemma 2.4 (Rockafellar [18]). Let X be a reflexive strictly convex and smooth Banach space and let
T : X — 2% be a multivalued operator. Then there hold the following hold:

(i) T70 is closed and convex if T is maximal monotone such that T~10 # ;

(ii) T is maximal monotone if and only if T is monotone with R(J +rT) = X* for all r > 0.

Lemma 2.5 (Xu [30]). Let X be a uniformly convex Banach space and let r > 0. Then there exists a
strictly increasing, continuous, and convex function g : [0,2r] — R such that g(0) = 0 and

lex + (@ =0y ||* < =l + A= Dly|l* - 10 =g (llx - y]), (28)

forall x,y € B, and t € [0,1], where B, = {z € X : ||z|| < r}.

Lemma 2.6 (Kamimura and Takahashi [12]). Let X be a smooth and uniformly convex Banach
space and let v > 0. Then there exists a strictly increasing, continuous, and convex function g :
[0,2r] — Rsuch that g(0) = 0 and

g(lx=yll) <d(xy), Vx,yeB,. (2.9)

The following result is due to Blum and Oettli [24].

Lemma 2.7 (Blum and Oettli [24]). Let C be a nonempty closed convex subset of a smooth strictly
convex and reflexive Banach space X, let f be a bifunction from C x C to R satisfying (A1)—(A4), and
let r > 0 and x € X. Then, there exists z € C such that

f(z,y)+%<y—z,]z—]x>20, Vy e C. (2.10)

Motivated by Combettes and Hirstoaga [31] in a Hilbert space, Takahashi and
Zembayashi [15] established the following lemma.

Lemma 2.8 (Takahashi and Zembayashi [15]). Let C be a nonempty closed convex subset of a
smooth strictly convex and reflexive Banach space X, and let f be a bifunction from C x C to R
satisfying (A1)—(A4). For r > 0 and x € X, define a mapping T, : X — C as follows:

T, (x) = {ze C:f(zy) +%<y—z,]z—]x> >0, Vy € C} (2.11)

forall x € X. Then, the following hold:

(i) T, is singlevalued;

(ii) T, is a firmly nonexpansive-type mapping, that is, for all x,y € X,

<Trx - Tr]/, ]Trx - ]Try> < <Trx - Tryl ]x - ]y>/ (212)
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(iii) F(T,) = F(T,) = EP(f);
(iv) EP(f) is closed and convex.

Using Lemma 2.8, one has the following result.

Lemma 2.9 (Takahashi and Zembayashi [15]). Let C be a nonempty closed convex subset of a
smooth strictly convex and reflexive Banach space X, let f be a bifunction from C x C to R satisfying
(A1)—(A4), and let r > 0. Then, for x € X and q € F(T}),

¢(q,Trx) + $(Trx, x) < $(q,x). (2.13)

Utilizing Lemmas 2.7, 2.8 and 2.9 as previously mentioned, Zhang [17] derived the
following result.

Proposition 2.10 (Zhang [21, Lemma ]). Let X be a smooth strictly convex and reflexive Banach
space and let C be a nonempty closed convex subset of X. Let A : C — X* be an a -inverse-strongly
monotone mapping, let f be a bifunction from C x C to R satisfying (A1)—(A4), and let r > 0. Then
the following hold:

for x € X, there exists u € C such that

f(u,y)+(Au,y—u)+%(y—u,]u—]x)20, Yy eC, (2.14)
if X is additionally uniformly smooth and K, : X — C is defined as

K, (x) = {ueC:f(u,y) +(Au,y—u) + %(y—u,]u—]x) >0, VyeC}, Vx e X, (2.15)

then the mapping K, has the following properties:
(i) K, is singlevalued,

(ii) K, is a firmly nonexpansive-type mapping, that is,

(Kyx - Ky, JK,x - JKyy) < (Kyx - Kyy, Jx = Jy), Vx,yeX, (2.16)

(iii) F(K,) = F(K,) = EP,
(iv) EP is a closed convex subset of C,

(V) ¢(p, Kix) + p(Kyx,x) < p(p, x), forall p € F(K).

Let T,T : X — 2% be two maximal monotone operators in a smooth Banach space X. We
denote the resolvent operators of T and T by I, = (J + rT) ] and ]~, =(J+ rT) ] for each r > 0,
respectively. Then J, : X — D(T) and J, : X — D(T) are two single-valued mappings. Also,
T7'0 = F(J,) and T0=F (fr) for each v > 0, where F(J,) and F (f,) are the sets of fixed points
of J, and J,, respectively. For each r > 0, the Yosida approximations of T and T are defined by A, =
(J=TJJ;)/rand A, = (J- ]]Nr)/r, respectively. It is known that

AxeT(J,x), Axe T(]}x), Vr>0, x € X. (2.17)
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Lemma 2.11 (Kohsaka and Takahashi [13]). Let X be a reflexive strictly convex and smooth
Banach space and let T : X — 2% be a maximal monotone operator with T~10# 0. Then

Pz, J;x) + p(J,x,x) < p(z,x), V¥r>0,zeT'0, xeX. (2.18)

Lemma 2.12 (Tan and Xu [32]). Let {a,} and {b,} be two sequences of nonnegative real numbers
satisfying the inequality: a,.1 < a, + by, for alln > 0. If 3,77 by, < oo, then lim,, _, ,a,, exists.

3. Strong Convergence Theorem

In this section, we prove a strong convergence theorem for finding a common element of the
set of solutions for a generalized equilibrium problem and the set T~0NT~10 for two maximal
monotone operators T and T.

Lemma 3.1. Let X be a reflexive strictly convex and smooth Banach space and let T : X — 2X" bea
maximal monotone operator. Then for each r € (0, o), the following holds:

<]u_ Jo, Jyu— ]-,U) > <]]ru_ I, Jru— ]rv>r Yu,veX, (31)

where J, = (J +rT)""J and J is the duality mapping on X. In particular, whenever X = H a real
Hilbert space, ], is a nonexpansive mapping on H.

Proof. Since for each u,v € X
Ju=(J+rT) " Ju,  Joo=J+rT) o, (32)
we have that

L Gu- S €T, - (o= JJv) €T, (33)

Thus, from the monotonicity of T it follows that

1 1
(7 Gu=11) =7 o= J10), Jru= 0} 2, (34
and hence
(]u_]v/]ru_]rv> > <]]ru_]]rv/]ru_]rv>- (35)
O

Theorem 3.2. Suppose that Assumption A is fulfilled and let xy € X be chosen arbitrarily. Consider
the sequence

Xn+l = HHnﬁanOI n= 01 11 21 ey (36)
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where

H, = {z €C: (2 Ky yn) < [an + B — A — nfn + an&nﬁn]¢(z, )
[ =@ @ = &) (1-Fa) + (1 - an)] p(z,x0) },
Wp={ze€C:(x,—z Jxo - Jx,) >0}, 3.7)
%o = 7 (@S %0 + (1= an) (BuJ % + (1= Bu) T T, %)),
Yo = I (@ %0+ (L= TT, ] (BT x0 + (1= ) T%a)).

K, is defined by (2.15), {a,}, {Pn}, (%0}, {ﬁn} C [0,1] satisfy

lima,=0, limpB, =0, liminff,(1-p,) >0, liminf@,(1-&,) >0, (3.8)

n—oo n—oo

and {r,} C (0,00) satisfies liminf, 1y > 0. Then, the sequence {x,} converges strongly to
I gnf1gnepXo provided || ], vn — Jr,Xull — O for any sequence {v,} C X with ||v, — X,|| — 0,
where Ty g10npp 1S the generalized projection of X onto T"'0NT'0 N EP.

Remark 3.3. In Theorem 3.2, if X = H a real Hilbert space, then {frn} is a sequence of
nonexpansive mappings on H. This implies thatasn — oo,

frnvn - ']Vr,,in S ”Un - 5571” — 0. (39)

In this case, we can remove the requirement that ||]~rn Uy — ]~,n Xn|| — 0 for any sequence {v,} C
X with |lv, = X,]| — 0.

Proof of Theorem 3.2. For the sake of simplicity, we define

Uy == Ky, yp, Zp = ]_1 (,ﬁn]xn + (1 - ﬁn)]]rnxn)/ Zy = frn]_l <Bn]x0 + (1 - ﬁn)]-i:n)/
(3.10)

so that
Xp = ]71 (anJxo+ (1 —ay)]zy), Yn = ]71 (@nJXn + (1 - &n) ] Zy). (3.11)

We divide the proof into several steps.

Step 1. We claim that H, N W, is closed and convex for each n > 0.
Indeed, it is obvious that H,, is closed and W,, is closed and convex for each n > 0. Let
us show that H,, is convex. For z1,z, € H, and t € (0,1), put z = tz; + (1 —t)zy. It is sufficient
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to show that z € H,,. We first write y,, = a,, + ﬁn - zxnﬁn - &nﬁn + an&nﬁn for each n > 0. Next,
we prove that

P(z,un) < 1ud(2,%0) + (1= yn)P(2, xn) (3.12)
is equivalent to
2u(z, Jx0) +2(1 = ¥u) (2, Jxn) = 2(2, Jutn) < yullxol® + (1= yu) ull” = lluen]|*. (3.13)
Indeed, from (2.4) we deduce that the following equations hold:

P(z,x0) = ||zII* = 2(z, Jx0) + ||x0l>,
Pz, xn) = l|2II* = 2(2, Jxu) + llxall, (3.14)

(2, un) = |21 = 2(z, Juu) + llunl?,
which combined with (3.12) yield that (3.12) is equivalent to (3.13). Thus we have

2y(z, Jxo) + 2(1 = yu)(z, Jxn) = 2(z, Jun)
= 2y (tz1 + (1= )22, JX0)
+2(1 = yu)(tz1 + (1 - 1) 22, JX)
= 2(tz1 + (1 = t)z2, Jun) (3.15)
= 2tyn(z1, Jx0) + 2(1 = O)yn(z2, Jx0) + 2(1 = yu) (21, JXu)
+2(1 = yu) (1= £)(22, Joxn) = 26(z1, Jun) = 2(1 = £)(z2, Jun)

< Yn“xOH2 + (1 - Yn)“xnllz - “unHz'

This implies that z € H,,. Therefore, H,, is closed and convex.

Step 2. We claim that T~'0N f‘lgﬁ EP c H,NnW, for each n > 0 and that {x,} is well defined.
Indeed, take w € T~'0 N T~'0 N EP arbitrarily. Note that u,, = K, y, is equivalent to

u, € C such that f(uy,y) + (Aun,y —ty) + %(y —Up, Juy— Jyn) >0, VYyeC. (3.16)
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Then from Lemma 2.11 we obtain
$(w0,24) = $ (w0, I B 0 + (1= Bu) T T %) )
= [|wl* = 2w, BuTxu + (1= Bu) T T, %) + |BuT X + (1= Bu) T T, 2 ||*
<Nl = 2Bu(w, Jxa) = 2(1 = Bu) (w0, T T2} + Bullxall® + (1= Bu) [ r,xal? - 317
= Bu(w, x0) + (1= ) (w0, J1, %)
< Bup(w, xn) + (1= Pu)p(w, x,) = p(w, x),
P, %) = (w0, ) (@] x0 + (1= ) 1) )
= [wl = 2(w, anJxo + (1 = ay) Jzn) + @] x0 + (1 = an) J 2 l®
< [l = 2an(w0, Jx0) = 2(1 = ) (w, Jza) + allxo[I” + (1 = tn) | za (3.18)
= aup(w, x0) + (1= ) (10, 2)
< aup(w, x0) + (1= ctn) (10, x).
Moreover, we have
P, %) = §(w, T ) (BuJx0+ (1-Ba) %0) )
< p(oo s (o (1-70)s)

2

= wll? = 2(w, uJxo + (1= Ba) % ) +

ﬁn]xo + <1 - ﬁn)]fn

< 0ll® = 2Ba(w0, Jx0) =2(1 = Bu) (w0, JZa) + Pullxol* + (1= B ) 1%l
= Pudp (@, x0) + (1= ) (a0, %)
< Bup(w, x0) + (1= ) [anp (20, %0) + (1 = ) p (20, %,)]

= [Bu+ (1= Bn) ] f(e0, x0) + (1= ) (1 = @) (a0, x2),
P(w,yn) = ¢ (w0, ] @)%+ (1= 8n)JZ2) )

< Nwl* = 2@ (w, JZn) — 2(1 = &n) (w0, JZ0) + Enl|Full* + (1 = &) |20l
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= &nP(w, Xn) + (1 - an)Pp(w, Zn)

< [ (0, x0) + (1= @) (w0, %))

+ (L= @) { [Bu+ (1= Po) ] (a0, x0) + (1= ) (1 = ) (a0, x,) |
= [n + B = B = B + tnn | (20, %0)

+A-a)@-&) (1-F) + &1 - @) flew, )

= Yud(w, x0) + (1 = ya) p(w, x), (3.19)

where v, = a, + ﬁn - zxnﬁn - &nﬁn + an&nﬁn. So w € H,, for all n > 0. Now, let us show that

T'0NT'0ONEPCW, VYn>D0. (3.20)

We prove this by induction. For n = 0, we have T"'0 n T-10 N EP ¢ C = W,. Assume that
T-'0NT'0NEP c W,,. Since x4 is the projection of xo onto H, "W, by Lemma 2.2 we have

(Xp41— 2, Jx0— Jxpi1) 20, Vze H,NW,,. (3.21)

AsT0NTONEP C H, N W, by the induction assumption, the last inequality holds, in
particular, for all z € T-'0NnT-'0N EP. This, together with the definition of W,,,; implies that
T-10NnT-10N EP C W,,.1. Hence (3.20) holds for all n > 0. So, T"'0NnT-'0 N EP c H, N W, for
all n > 0. This implies that the sequence {x,} is well defined.

Step 3. We claim that {x,} is bounded and that ¢(x,+1,x,) — Oasn — oo.

Indeed, it follows from the definition of W, that x,, = Ily, xo. Since x, = Iy, xo
and x,41 = g,aw,x0 € Wy, so ¢(xn, x0) < ¢(xn11,%0) for all m > 0; that is, {¢(xn, x0)} is
nondecreasing. It follows from x,, = Iy, xp and Lemma 2.3 that

¢ (xn, x0) = ¢(ITw, x0, X0) < P(p, x0) = (P, xn) < §(p, x0) (3.22)

foreachp e T7'0N T-10NEP C W, for each n > 0. Therefore, {¢(x,, x0)} is bounded which
implies that the limit of {¢(x,, x0)} exists. Since

(Ixall = [1%0]1)* < P(xn, x0) < (lull + Ix0])?,  ¥1 20, (3.23)
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so {x,} is bounded. From Lemma 2.3, we have

P (xXns1, %) = P(xn11, I, x0) < P(xns1, X0) = (I, X0, X0)

(3.24)
= ¢(xn+1,X0) — P(xn, X0),
for each n > 0. This implies that
1m $(xe1, x0) = 0. (3.25)

Step 4. We claim that lim,, _, o, ||, — ]| = 0, limy,— oo || — Jr, X || = 0, and limy, _, oo || % — Jy, Xl =
0.
Indeed, from x,.1 = I1y,nw,x0 € H,, we have

P (nir tn) < |an + B = @ufBy = Eb + @ulinfn| (i, x0)
N (3.26)
| =) =) (1= Bu) + @1 - @n)| P, %)

for all n > 0. Therefore, from a, — 0, ﬁn — 0 and ¢(xy41,x,) — 0, it follows that

limy, — oo P (xp41, uy) = 0. Since limy, — o P (X i1, X)) = limy, P (Xp11, u,) = 0 and X is uniformly
convex and smooth, we have from Lemma 2.1 that

Hm [ =] = 1M [locpen — ]l =0, (3.27)

and therefore, lim,_ . ||x, — u,|| = 0. Since | is uniformly norm-to-norm continuous on
bounded subsets of X and x,, — u,, — 0, then lim,, ., o||Jx, — Ju,|| = 0.

Let us set Q := T-10NT-10NEP. Then, according to Lemma 2.4 and Proposition 2.10, we
know that Q is a nonempty closed convex subset of X such that Q ¢ C. Fix u € Q arbitrarily.
As in the proof of Step 2 we can show that ¢(u, z,) < d(u, x,), ¢(u,X,) < andp(u, x0) + (1 -
an)p(u, xn), P(u,2y) < Pup(u, x0) + (1 = Pr)P(u, Xn), (U, yu) < @np(u, x,) + (1 - a,)P(u, z,),
and ¢(u, u,) < a,p(u, x,) + (1 — a,)P(u, z,). Hence it follows from the boundedness of {x, }
that {z,}, {Xu}, {Zn}, {yn}, and {u,} are also bounded. Let r = sup{||xull, IXull, [lJr, Xnll, | Zn]l -
n > 0}. Since X is a uniformly smooth Banach space, we know that X* is a uniformly convex
Banach space. Therefore, by Lemma 2.5 there exists a continuous, strictly increasing, and
convex function g with g(0) = 0 such that

llaox” + (1 @)y ||* < allx |+ (1= ) [ly*||* - 2@ = g ([l ~ y*

), (3.28)
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for x*,y* € By and a € [0,1]. So, we have that

¢(urzn) = ¢<u/]_1 (ﬂn]xn + (1 _ﬂn)]]rnxn)>

= Nl =21, BT xn + (1= Bu) T Ty %) + |BuS X+ (1= B) T, )
< ull* = 2B, Jxn) = 2(1 = Bu) (14, ] J 1, Xn)

+ Ballxall? + (1= BT X2 = B (1 = B) g1 % = T T Xl (3.29)
= ﬂn(;b(”r Xn) + (1 - ﬁn)‘i)(u/]rnxn) _ﬂn(l _ﬂn)g(”]xn - ]]rnxn”)
< Budp(u, x,) + (1 - ﬁn)‘i)(u/xn) _ﬁn(l _ﬁn)g(”]xn —J T, xall)
= ‘i)(urxn) - ﬁn(l - ﬁn)g(”]xn - ]]r,,an)/
¢(ulzn) = ¢<u/frn]_1 (ﬁn]xo + <1 _ﬁn>]5én>>
< ¢(u )7 (Butxo+ (1= ) J%) )
< Nl = 2(u, BuTx0 + (1= Pu) T ) + PullxolP + (1= B )1l
(3.30)
= B, x0) + (1= B ) plut %)
< ,Bn (u/xO) + ( n> (u/ xn) _ﬁn(l _ﬁn)g(”]xn - ]]rnxn”)]
= Bup(aa,x0) + (1= B ) p(at, ) = (1= ) B (1 = B) g1 0 = T i ),
and hence
P, %) = ¢ (10, )7 @) x0 + (1= ) J20) )
= ”uHZ = 2w, anJxo + (1 —an)Jzn) + [lan]x0 + (1 - an)]ZnHz
< Jull® = 2an(u, Jxo) = 2(1 = an) (1, Jzn) + anllx0]® + (1 = @) |2l
(3.31)

= anp(u, x0) + (1 — an)P(u, z,)

< an(u,x0) + (1= ) [p(1t, 2) = P (L= ) § (12t = T I, Xull)]

= an(u, x0) + (1= @) P14, ) = (1= ) u (1= Bu) g1 ]2 = T T, %),
Pu,un) = d(u, Ky yn) < (1, y,) (using Proposition 2.10)

= (w7 @ F + (1= &) JZ0) )
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= Nl = 200, @ J % + (1= &n)JZ0) + 1@ J 2 + (1= ) T2
< ol = 280 (10, J%n) = 200 = @) (e, J 2} + ElFl* + (1 = Fn) |2
- &, (1= &) g(IT%: - JZ)
= (1, %) + (1 = En)p(1t, ) = (1 = ) g (1] = JZal)
< & [aap (1 %0) + (1= ) b1, %) = (1= @) (1= Bu) (1T 0 = T T, al)]
+ (1= ) [Budu, x0) + (1= o) (1, 1)
(1= Ba)Ba(1 = B) %0 = TTr, 20D = (1 = @) (1% — JZu)
< (t+ B ) pat,x0) + (1 = ) + (1= &) (1= B ) | (24, 22)
~ @@= ) + (=@ (1= B.)] Ba (1 = Bu) g0 = Tl
- & (1= ) g(IT%: - JZ)
= (an+ B) p, x0) + [1 = iy = P (1 = @) | (a1, x20)
= 1= anE = Pu1 = @) | Bu(1 = ) g1 %0 = T T, )
- & (1= &) g(IJ %, - JZl)
< (an + Bu) §lu, x0) + Pl x2)
= 1= s = (1 = )| B (1 = Bu) g (1T xn = T T, %)

—an(1—an)g([[JXn = JZull), (3.32)

for all n > 0. Consequently we have

(1= s = B = &) | Bu (1 = Bu) (U n = T T all) + En (1 = En) g (1T — T )

<

d)(u, xO) + (i)(u, xn) - ¢(ur un)

P (1, x0) + [|3al|* = lltnll® = 21, T2 = Jutn)
(3.33)

2 2
(1, x0) + |l ll> =

+2|<ur]xn _]un>|

¢ (1, x0) + [1xnll = Neanll[(lloenll + l[2enll) + 2l2el[[[ T = Jtan|

IN
N I/~ N /N
&
+
ARt
~— — ~— ~— ~—

¢, x0) + |20 = unl[(1xull + 2l + 2[l2lll| Jxn = J1an]l.
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Since x, — u, — 0 and J is uniformly norm-to-norm continuous on bounded subsets of X,
we obtain Jx, — Ju, — 0. From liminf,_,3,(1 - B,) > 0, liminf,_, ,a,(1 - &,) > 0, and
limy, , o, = limy, oo, = 0 we have

1im g (|70 = T, %all) = lim (7% = JZul) = 0. (334)
Therefore, from the properties of g we get
nh_r)r(}o”]xn = JJrxnll = nll_r)l;”xn = Jrxull =0,

(3.35)

lim ||JX, — JZu|| = lim || X, — Z,|| =0,
n—oo n— oo

recalling that /™! is uniformly norm-to-norm continuous on bounded sunsets of X*. Next let
us show that

lim ” J5n = I T %l = lim ||%, - T, %a|| = 0. (3.36)
n—oo n— oo
Observe first that
¢(unrxn) - (,b(xn+1/ un)
= ||xn||2 - ”xn+1||2 - 2<un1 ]xn> + 2<xn+1/ ]un>
(3.37)
= (llxcnll = llxnea ) lxnll + l2cna1ll) +2{xne1 = tn, JXn) + 2(xns1, Jthn = Jx0)

< aen = Xt [[Cl2cnll + 21 l) + 2|41 = wnllll2nll + 2| xnr1 || Tt = JXnl|-

Since ¢(xpe1,Un) — 0, [[Xps1 — Xul| — O, ||xXpe1 —un|l — O, |Ju, — Jxu|| — 0, and {x,} is
bounded, so it follows that ¢(u,, x,) — 0. Also, observe that

G, Jr,xn) = P(Un, xn) = ||]rnxn||2 - “xn”2 +2(un, Jxn = J ], Xn)
= (”]rnxn” - “xn“)(”]rnxn” + ”xn”) + 2<un1 Jxn — ]]r,,xn> (3.38)

S W ruxn = Xnll (e, 2nll + 12nll) + 2[|unll1 X0 = JTr, Xull-
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Since ¢(un, x,) — 0, |Jr,xn — xull — 0, IJxn = JJr,xxll — O and the sequences
{xn}, {un}, {Jr,xn} are bounded, so it follows that ¢ (u,, J,,x,) — 0. Meantime, observe that

(;b(unl Zy) = (i)(unr ]71 (ﬂn]xn + (1 - ﬁn)]]r,,xn)>

= Nt l? = 2(ttn, BT X0 + (1= Bu) T T, ) + || BT % + (1= Bu) ] T ||

< fotnll® = 2B (1t Txn) = 2(1 = Bu) (i, J T, %) + Bullull® + (1 = Bu) 1, 2l
= P (1t xu) + (1= ) p(ttn, Jr, Xn)

< @(un, xn) + P(tn, Jr,Xn),

(3.39)
and hence
P (1t %) = ¢ (10, ] (@ %0 + (1= ) J21) )
= J[unll® = 2(ut, @ Jx0 + (1 = @) 20} + [l 0] X0 + (1 = @n) ] za®
< lutnlI* = 200 C1tn, J0) = 2(1 = ) (i 20} + anllxol” + (L= alzall” 5 40

= ‘Xn(i)(unr .X'o) + (1 - an)d)(unr Zn)
< and)(unr xO) + d)(unr Zn)
< anp(un, x0) + P(Un, Xn) + P(Un, Jr, Xn).

Since a, — 0, ¢p(uy, x,) — 0 and ¢(uy, Jr,xn) — 0, it follows from the boundedness of
{u,} that ¢(u,, x,) — 0. Thus, in terms of Lemma 2.1, we have that ||u, — X,|| — 0 and so

[lx, —Xu|| — 0. Furthermore, since ||ﬁn]x0 +(1 —ﬁn)]in —JX,|| = ﬁn||]x0 - JX,|| — 0, from the
uniform norm-to-norm continuity of J~! on bounded subsets of X*, we obtain

= (Buyxo + (1= Bu) J%0) - %,

—0. (3.41)

Observe that

En - ]r,,&‘n

Xn = Jr, Xn || < 11Xn = Znll +

(3.42)

= [1%n = Zall +

71‘,,]71 (ﬁn}xo + (1 _En>]§n> - 71‘,,%71

Thus, from (3.35) it follows that ||X, — frninﬂ — 0. Since J is uniformly norm-to-norm
continuous on bounded subsets of X, it follows that || /X, — J ], X.|| — O.

Step 5. We claim that wy, ({x,}) € T"'0 N T-'0 N EP, where

wy({xn}) := {X € C: x,,, — X for some subsequence {n} C {n} with nj T c0}.  (3.43)
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Indeed, since {x,} is bounded and X is reflexive, we know that w,,({x,}) # 0. Take
X € wy({x,}) arbitrarily. Then there exists a subsequence {x,,} of {x,} such that x,, — X.
Hence it follows from x,, - X, — 0, x, — J;,x, — 0,and X, — frn?cn — 0 that {X,, }, {]T”k Xn ),
and {frnk Xp, } converge weakly to the same point x. On the other hand, from (3.35), (3.36),
and liminf, _, 7, > 0 we obtain that

. 1

lim [| Ay, xu | = lim —||Jx, = J ], %all = 0, (3.44)
n—oo n—owfty

. e A (S =

lim |[A,, X,|| = im —|[JX, — J ], Xu|| = 0. (3.45)
n— oo n*)OOTn

If z* € Tz and Z* € TZ, then it follows from (2.17) and the monotonicity of the operators T, T
that forall k > 1

(2= T Xy 2" = Aryn ) 20, (2= T, B 2 = Ay, Ty ) 20. (3.46)

Letting k — oo, we have that (z — x,z*) > 0 and (Z - X, Z*) > 0. Then the maximality of the
operators T, T implies that X € T~'0 and x € T~!0. Next, let us show that x € EP. Since we
have by (3.32)

Pt yn) < (t+ Po) Pl x0) + Pl x2), (3.47)

from u, = K, v, and Proposition 2.10 it follows that

¢ (tn, Yn) = P(Kr,Yn, Yn)
<P, yn) - P (u, Ky, yn) (3.48)

< (@ + B ) pat, x0) + (11, X2) = (11, ).
Also, since

|t %) = Cat,100)| = [1all® = laenl* + 2, J1tn = J )
< 2all = talllCll2call + Netall) + 2022 — T (3.49)

< xn = wnll Nl + Nlenll) + 2|2l J 14 = Jxall,
so we get

Jim (9(,x2) = plu, ) = 0. (350)
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Thus from (3.47), a,, — 0, ﬁn — 0,and ¢(u, x,,) — p(u, u,) — 0, we have lim,, _, . P(uy, y») =
0. Since X is uniformly convex and smooth, we conclude from Lemma 2.1 that

lim |2, — ya|| = 0. (3.51)

n—oo

From x,, — X, x, —u, — 0, and (3.51), we have y,, — x and u,, — X. Since ] is uniformly
norm-to-norm continuous on bounded subsets of X, from (3.51) we derive

Tim ||y = Jya| = 0. (3.52)
From liminf,_, 7, > 0, it follows that

lim W= Tyl _ 0. (3.53)

n—oo Tn

By the definition of u, := K, y,, we have
F(un,y) +rl<y—un,]un—]yn> >0, VYyeC, (3.54)

where
F(un,y) = f(uny) + (Attn, y — uy). (3.55)

Replacing n by ni, we have from (A2) that

1
_<y — Uny, ]unk - ]ynk> 2 _F(uﬂk/y) 2 F(y’u"k)’ Vy eC. (356)

Vg

Since y — f(x,y) + (Ax,y — x) is convex and lower semicontinuous, it is also weakly lower
semicontinuous. Letting . — oo in the last inequality, from (3.53) and (A4) we have

F(y,%) <0, VyeC (3.57)

FortwithO<t<landy e C, lety; =ty + (1 -t)x.Sincey € Cand x € C, y; € C and hence
F(y:, x) £0. So, from (Al) we have

0=F(y,y) <tF(y,y) + (1= F(y:, X) <tF(y,y). (3.58)
Dividing by t, we have

F(y;,y) >0, VyeC. (3.59)
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Letting t | 0, from (A3) it follows that

F(x,y) >0, VyeC. (3.60)

Thus X € EP. Therefore, we obtain that w,, ({x,}) c T~'10n T-'0NEP by the arbitrariness of x.

Step 6. We claim that {x,} converges strongly to w = I'l;_1f-19nppX0-
Indeed, from x,,,1 = [y, w,xo and w € T'0NT'0N EP C H, N W,, It follows that

P (xns1,%0) < P(w, xp). (3.61)

Since the norm is weakly lower semicontinuous, we have

§(%,%0) = %] ~ 2(%, Jx0) + llxoll* < liminf ([l | = 24, Jx0) + 120l
(3.62)
= lilfninfci)(xnk,xo) < limsup ¢(xy,, x0) < P(w, x0).

k— oo
From the definition of I, 1f-1~gp, We have X = w. Hence limy . (x5, X0) = ¢(w, x0) and

0= kliirc}o((p(x"k’ xO) - ¢(wl XO))
= lim (Jxy I = ] = 20, =, Jx0) ) (3.63)
o 2 _ 2
= lim (Jlxacl ~ ],

which implies that limy _, o [|xy, || = ||w]|. Since X has the Kadec-Klee property, then x,, —
w = Iy F19nppXo- Therefore, {x,} converges strongly to I i ~715,ppXo-

Remark 3.4. In Theorem 3.2, put A =0, T= 0, and ﬁn =0, Vn > 0. Then, for all a,7 € (0, 00)
and x,y € C, we have that

(Ax— Ay, x~y) 2 al Ax - A",
1
K, (x) = {u €eC: f(uy)+(Au,y—u)+ ;(y—u,]u—]ﬂ >0, Vy e C} (3.64)

= {ueC:f(u,y)+%<y—u,]u—]x>20, VyeC} =T, (x).
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Moreover, the following hold:

Hy = {2€C: (2, Ky yn) < o0+ B — s — G + @nlinfin] (2, 30)
= @)@ = @) (1-Ba) + &1 - )| p(z,x0) },
= (z€C: (=T, ) S mud(z,x0) + (L- @) p(z %)},
Yo = )7 (& %o+ (1= T )7 (Bu) %0+ (1= ) T50)) (3.65)
= T @ JF + (1= @) (0] x0 + (1= 0) %)
= T @ T + (1= &) J )

=%y = X,
and hence
Yn=Xn =] (an)x0 + (1= aw) (BuJxn + (1= Bu) ), 2Xn))- (3.66)
In this case, the previous Theorem 3.2 reduces to [20, Theorem 3.1 ]. O

4. Weak Convergence Theorem

In this section, we present the following algorithm for finding a common element of the set
of solutions for a generalized equilibrium problem and the set T~'0 N T-10 for two maximal
monotone operators T and T.

Let x9 € X be chosen arbitrarily and consider the sequence {x,} generated by

Xp = ]_1 (“n]xo +(1- an)(,ﬁn]Krnxn + (1 - ﬁn)]]rnKrnxn))/

Xnt+l = ]_1 <&n]Krn§n + (1 - &n)]frn]_l <Bn]x0 + (1 _ﬁn>]Krnin>>/ n=0,12,..., (4.1)

where {a,}, {Bn}, {2}, {ﬁn} c [0,1], {rn} € (0,00), and K, r > 0, is defined by (2.15).
Before proving a weak convergence theorem, we need the following proposition.

Proposition 4.1. Suppose that Assumption A is fulfilled and let {x,} be a sequence defined by (4.1),
where {an}, {Pn}, {an}, {Pn} C [0,1] satisfy the following conditions:

Naw<o,  Dpi<oo, liminfp,(1-p,) >0,  liminf@,(1-a,)>0.  (42)
=0 =0 n— o0 n— o0
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Then, {Tp1gqfagnppXn} converges strongly to z € T~'0 N T7'0 N EP, where Ty o7 1opp i the
generalized projection of X onto T"'0NT10N EP.

Proof. We set Q := T'0NT~'0N EP and

Up = Krnxnr Yn = ]_1(ﬁ"]un+(l_ﬂ”)]]rnun)’
43)
Uy = Krnin/ gn = frn]71 (ﬁﬂ]xo + <1 - ﬁ")jﬁ”>’

so that

Xp = ]_1 (an]xO +(1- ‘xn)]yn)/
(4.4)
Xn+l = ]_1(&11]77[11 +(1- &n)]gn)l n=0,12,....

Then, in terms of Lemma 2.4 and Proposition 2.10,  is a nonempty closed convex subset of
X such that Q c C. We first prove that {x,} is bounded. Fix u € Q. Note that by the first and
third of (4.3), u,, i, € C, and

F(un,y) + %(y —Up, Juy— Jx,) >0, VyeC,
(4.5)
F(iin ) + rl<y i Jiin — JE) 20, VyeC.

Here, each K, is relatively nonexpansive. Then from Proposition 2.10 we obtain

P(uyn) = ¢ (w7 BuJun+ (1= o) Joytn))
= lull® = 2010, BuJ st + (1= Bu) T rsttn) + | BuTttn + (1= Bu) T Tt
< full* = 2Bn (1, Jutn) = 2(1 = Bu) (4, ] Jr ) + Bulltenll + (1 = ) 1 Ty, 4
= Bup (1) + (1= Bu) Pt ], )
< Putp (1) + (1= Pu) P (1t 1)

= p(u,un) = P(u, Ky, xn) < P, xp), (4.6)
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§(u, ) = ¢ (T, J ™ (BuJxo + (1= ) Jiin))
<90 o+ (1) i)

2

=l = 2w, BuJxo + (1= B ) T ) +

ﬁn]xo + <1 - ﬁn)]ﬁn

<l = 2B, Jx0) =2(1 = B ) (t, Jikn) + Bullxoll® + (1 = B ) kol

(4.7)
= Pud(u,x0) + (1= P ) (14 1)
< Pup (1, %0) + b1, Tiy)
= Bup(u, %0) + p(u, K, )
< Budp(u, x0) + P (u, %),
and hence by Proposition 2.10, we have
Pl %) = (1,7 (@nJ 0 + (1= ) Jym) )
= l[ull® = 2(u, anJxo + (1 = @) Ty} + [|otn J 0 + (1 = ) Jyu|”
< llull® = 2a (u, Jxo) = 2(1 = @) (u, Tyn) + anllxo|> + (1 = @n) [[yal® ws)
= a1, %0) + (1= ) ()
< a1, x0) + P, yn)
< (1, Xn) + anp(u1, X0),
P, x011) = (w7 @il + (1= )T )
= llull® = 21, @ Tl + (1 = &) Jin) + || @i + (1 = &) T |®
< ull? = 28, T = 2(1 = @) (14, TG ) + Enlfinl* + (1= &) [| 5| wo)

= Fn(, 1) + (1= &) (1, )
< Eup(u %) + (1= ) [up (e, x0) + (a5,
< P, %) + Pup(u, x0).
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Consequently, the last two inequalities yield that

P (1t Xpa1) < P(u, %) + (1, x0)
< (1, xn) + an (1, x0) + Pup(1t, X0) (4.10)

= (i)(u/ xn) + (“n + ﬁn)(i)(u, .X'o)

for all n > 0. So, from ¥® a0, < o, 2B, < oo, and Lemma 2.12, we deduce that
lim,, . - (u, x,,) exists. This implies that {$(u,x,)} is bounded. Thus, {x,} is bounded and

so are {uy}, {iin}, {Jr,un), and {Jy,iin).
Define z,, = Ilgx, for all n > 0. Let us show that {z,} is bounded. Indeed, observe that

1zl = 1%al)? € §(Zn, X0) = P(TTaXn, Xn) < P(p, 1) — P(p, Tl x)
= ¢ (p,xn) = (P, 2n) < P(p, xn),

(4.11)

for each p € Q. This, together with the boundedness of {x,}, implies that {z,} is bounded
and so is ¢(z,, x¢). Furthermore, from z, €  and (4.10) we have

$ (2, %01) < Pz, 50) + (@0 + P ) (20, X0). (4.12)
Since I'lg is the generalized projection, then, from Lemma 2.3 we obtain

¢(Z1’l+1/ xn+1) = ¢(H9xn+1/ xn+1) < ¢(znr xn+1) - (I)(an 1—Ian+1)

= (;b(Zn, xn+1) - ()b(Zn, Zn+1) < (i)(Zn, xn+1)-

(4.13)

Hence, from (4.12), it follows that ¢(zp+1, Xn+1) < P(2n, Xn) + (an + ﬁn)(i)(zn, Xp)-

Note that >,;2yan < 00, Xy ﬁn < oo, and {¢p(zn, x0)} is bounded, so that > ;7 (a, +
ﬁn)cp(zn,xo) < oo. Therefore, {¢(z,, x,)} is a convergent sequence. On the other hand, from
(4.10) we derive, for all m > 0,

[

m—

Pt Xam) € Pt %0) + 3 (e + Py ) (10, X0)- (414)
£
In particular, we have
m-1 -
$ G Xnem) < $(zn,%0) + 3% (s + Buey ) $(2n, %0), (415)

j=0



24 Journal of Inequalities and Applications

Consequently, from z,,, = I1oXy+, and Lemma 2.3, we have

m-1

G(Zns Znem) + P(Znems Xnim) < G(Zn, Xnem) < P(Zn, Xn) + D, (an+,~ + ﬁn+j>¢(zn,xo) (4.16)
=0
and hence
m-1 ~
¢(znr Zn+m) < ¢(Zn/ xn) - ¢(Zn+m/ xn+m) + Z <un+j + ﬂn+j>¢(znz xO)- (4.17)

j=0

Let r = sup{||z,|| : n > 0}. From Lemma 2.6, there exists a continuous, strictly increasing, and
convex function g with g(0) = 0 such that

g(llx-yl) <p(x,y), Yx,ye€B. (4.18)
So, we have

g(”zn - Zn+m||) S (;b(zn/ Zn+m)

(4.19)

m-1

< (,b(zn/ Xy) — ‘;b(zn+m/ Xpam) + Z (‘Xn+j + ﬁn+j>¢(zn/ Xo).

j=0

Since {$(zn, xn)} is a convergent sequence, {p(z,, xo)} is bounded and > (a, + .Bn) is
convergent, from the property of ¢ we have that {z,} is a Cauchy sequence. Since Q is closed,
{z,} converges strongly to z € Q. This completes the proof. O

Now, we are in a position to prove the following theorem.

Theorem 4.2. Suppose that Assumption A is fulfilled and let {x,} be a sequence defined by (4.1),
where {a,}, {Bn}, {@n}, {Bn} C [0,1] satisfy the following conditions:

o0 s ~
day<ow,  Dpi<oo, liminfp,(1-p,)>0, liminfa,(1-a,) >0,  (4.20)
Tl=0 Tl=0 n— oo n— oo

and {r,} C (0,00) satisfies iminf,_, 1, > 0. If ] is weakly sequentially continuous, then {x,}
converges weakly to z € T'0NT'0 N EP, where z = limy, —, oI p-10n7-10npp Xn-
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Proof. We consider the notations (4.3). As in the proof of Proposition 4.1, we have that
{xn}, {un}, {Jr,un}, (X0}, {tin}, and {J;, 1, } are bounded sequences. Let

r= SuP{Hun”/ ”]rnunH/ Nl I, ”yn” n2 0} (4.21)

From Lemma 2.5 and as in the proof of Theorem 3.2, there exists a continuous, strictly
increasing, and convex function g with g(0) = 0 such that

lax* + (1 - a)y*||” < allx*|> + (1 - &) ||v*]|* - (1 - @)g(||* - v*||) (4.22)
for x*, y* € By and a € [0, 1]. Observe that for u € Q := T-l0nT0Nn EP,

P yn) = d (17 (BuTttn + (1= )T Jrtn) )
= 1wl = 2(ut, BTt + (1= Bu) Ty thn) + BTt + (1= ) T T ]|
< Nl = 2B, Juaw) = 2(1 = Bu) (s, ] ], 1)
+ Ballenll® + (L= Bu) I, tnll® = B (1 = Bu) g1 tn = T ], )
< Bup(ut, ) + (1= Bu)P(ut, T, ttn) = Bu (1= Bu) g (| Tttn = T ], )
< Bup(ut, ) + (1= Bu) (1t ) = B (1= ) g ([Tt = T ], )
= () = Pu(1 = Bu) g(ITtt = T T 10,
¢, Gn) = (T ) (BuJxo + (1= Bu) Jiin) ) (4.23)
< ¢ (w7 (Bl xo + (1= Bu) Jiin) )

2

=l = 2w, BuJ x0 + (1= B ) Jiin ) +

ﬁn]xo + <1 - ﬁn)]ﬁn

< Nlull® = 2B, Jx0) = 2(1 = B (u, Jiin) + Bullxoll® + (1= B )l
= Pudp(u,x0) + (1= P ) (1, 1)
= Pup(ut,x0) + (1= ) p(ut, K, %)

< Bup (1, x0) + Plu, %)
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Hence,

Bl %) = (1,7 (@] %o + (1= ) Ty) )
= ull* = 2(u, a Jxo + (1= ) Jyn) + ||t 20 + (1 = ) Ty ||
< lull? = 20t (14, Jx0) = 2(1 = t) (t, Ty ) + tull %12 + (1= t) |||
= anP(u, x0) + (1 = an)p (1, yn) (4.24)
an(u, x0) + ¢ (1, yn)
(1, %0) + (14, ) = P (1= ) g (Tt = T ] 1]
anp(u, x0) + ¢(u, Ky, xn) = (1 = Bn) g1 Jtt = J T, )
(1, %0) + P11, %) = P (1 = ) § (Tt = T Jr 1],
Pl 50:1) = ¢ (1, ] @i + (1= ) T ) )

Il ININ

IN

= [[ull® = 2(, & il + (1 = &) ) + || ST + (1= &) T
< Null? = 2ty Titn) — 201 = En) (1t T} + Gl + (1 = ) | T
= n (1= @) g (|| Jiin = JFnl|)
= G, 1) + (1= @) P (14, §r) = En(L = &) g (|| T = T )
< (14, Ky, B) + (1= &) [Bup (1, %0) + (10, %) | = Fn(1 = &) g (|| in — ]|

<, %) + Pup (1, x0) = Fn(1 = &) g (|| Tl = JFu])-
(4.25)

Consequently, the last two inequalities yield that
Plat,x0) < lat, Fo) + Pup(at, x0) = En(1 = Bu)g([|Jiin = )
< an(u, x0) + P, xn) = (1 = Pn) g1 ttn = 1, utnll)
+ﬁn¢(urx0) _an(l _&n)g(”]ﬁn_]]?n”) (4.26)
= p(ut, ) + (n + B ), %0) = (1= Bu) g1 thn = T T )

- &n(l - an)g(”]ﬁ" - ]y"”)
Thus, we have

ﬂ"(l _ﬂn)g(”]un - ]]Tnun”) + &n(l - an)g(”]ﬁn - ]gn”)

_ (4.27)
< P, Xn) — Pt Xps1) + (an + ﬂn)ci)(u, x0).
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By the proof of Proposition 4.1, it is known that {¢(u, x,)} is convergent; since lim,, _, ,a, =
0,limy,—, oo, = 0,liminf, _, ., (1 — Bn) > 0, and liminf, _, &, (1 — a,) > 0, then we have

Tim g (|l = JJr,unll) = lim g (|| Jiin = Ju|) = 0. (4.28)
Taking into account the properties of g, as in the proof of Theorem 3.2, we have

nh_rf;”]un — JJruall = nlgrgo”un = Jr,uall =0,
~ ~ o (4.29)
Tim | Jitn = J | = lim [|i = Fn| =0,

since J~! is uniformly norm-to-norm continuous on bounded subsets of X*. Note that || ﬁn Jxo+
(1= Bn) ]y — Jiinll = PullJxo — Jiinl| — 0. Hence, from the uniform norm-to-norm continuity
of J=! on bounded subsets of X* we obtain ||J 71 (8, Jxo+ (1-f,) Jiin) —iin|| — 0. Also, observe
that

]r,,ﬁn - ﬁn S

frnﬁn - frn]_l <ﬁn]x0 + <1 - ﬁn)]ﬁn>

+

fr,,]_l (En]xo + (1 - ﬁn)]ﬁn> - ﬁn
ﬁn - ]_1 (ﬁn]xo + (1 - ﬁn)]ﬁn>

(4.30)

<

|+ 117~ Tl

From ||7i, — 7,|| — O it follows that | Ty, fin — iin]| — 0. Since J is uniformly norm-to-norm
continuous on bounded subsets of X, we have

lim || Jun = JJr,tnll = lim ||uy = Jr, unl| = O,
n—oo n— oo

(4.31)
Tim [| 7ty = I Ty | = timn || = T, | = 0.
Now let us show that
Im ¢(u, x,) = lim ¢(u, %) = lim p(u, up) = lim d(u, it). (4.32)
Indeed, from (4.10) we get
P, %001) = Pudp (0, %0) < P, Tn) < (e x0) + Anp(1t,30), (4.33)

which, together with lim,, _, ., = limy, o, ﬁn =0, yields that

lim p(u, %) = lim §(u, x,). (4.34)
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From (4.9) it follows that

‘;b(u/ xn+1) < &n(,b(u/ ﬁn) + (1 - &n)‘;b(u/ gn)

~ (4.35)
= ¢(1, ) + B (Pt 1) — (10, ) < P, Bn) + Brp (11, X0).
Note that
|¢(u/ﬁn) - ¢(u1gn)| = |||ﬁn“2 - ”gn”2 + 2(”/ ]gn - ]ﬁn>
< N M5nll = NG 1 T ll + (G ll) + 20002l || TG = T | (4.36)

< [l = Fall CNitall + |G 1) + 2112l | TG = Tt

Since ||it, — Yull = 0and ||Ji, — Jull — 0, we obtain lim,, —, o, (¢ (1, 1i,) — ¢ (1, ) = 0, which,
together with lim,, _, x (1, X,,) = lim,, oo (u, x,,), yields that

Tim (1, §) = Tim p(us, x,). (4.37)
We have from (4.8) that
4’(”/ Xn) — and)(”/ x0) < ¢(ur yn) < d)(u, Xn), (4.38)

which, together with lim,, _, ., (1, X,,) = lim,, _ P (u, x,), yields that

lim ¢(u, ) = lim (u, x,). (439)
Also from (4.7) it follows that
G (1, Gn) = Bup (11, X0) < Plut, i) < P11, %), (4.40)

which, together with lim,, -, . (1, X,) = lim,, _, P (4, ¥r) = lim,, o, p(u, x,,), yields that

Tim ¢ (u, i) = lim ¢p(u, x,). (4.41)
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Similarly from (4.6) it follows that
¢ (1, yn) < P, 1) < P, x) (4.42)
which, together with lim,, . ¢ (1, y,,) = lim,, _, ¢ (1, x,,), yields that
nli_r)rolod)(u, Uy) = r}ijt;o¢(u, Xn)- (4.43)
On the other hand, let us show that

JHim [, = X = 0. (4.44)

Indeed, let s = sup{||xn||, [[ttnll, |Xnll, [|1x]] : 7 > 0}. From Lemma 2.6, there exists a
continuous, strictly increasing, and convex function g; with g;(0) = 0 such that

si([lx-yll) <¢(xy), Vx,ye€B,. (4.45)
Since u, = K,,x, and i, = K, X,, we deduce from Proposition 2.10 that for u € Q,

g1([[tn = Xull) < P(un, xn) < P(u, Xn) — P(u, ),

g1([tn = Xull) < (i, Xn) < P(u, Xn) — P(u, ).

(4.46)

This implies that

lim g, (lun = xull) = lim &1 ([[itn — Xull) = 0. (4.47)

Since J is uniformly norm-to-norm continuous on bounded subsets of X, from the properties
of g1 we obtain

nh_{rolo”un — X = nlijrgo”]un = Jxu|l =0,
o B B (4.48)
nli_l}(}ollun — Xl = nlgl}o”]un = JXu| = 0.
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Note that

(i)(xn/ Up) — ¢(un/xn) = ”xn”2 —2(xp, Ju,) + ”unllz - [”xn“2 = 2(up, Jxn) + ”unllz

= —2(xpn, Jup) + 2{1ty, JX,)

(4.49)
=2(xn, Jxn = Jun) + 2ty — Xn, J Xn)
<2 xnll[lJ2xn = Jutn|l + 2[[ttn — xulll[x2ll,
P, Tr,ttn) = 12all” = 200, T Tr,ttn) + 0>
= lloeull® = 1xnll® + T, stnll? = xnll® + 2¢2n, Jotm = T T, 1t
= (1, unll = lxnll) (L, tnll + N30 ll) + 2(2n, J2n = T Jr, t4n)
< W rttn = 2ull (1 tnll + 21} + 2010l T 260 = J T, el (450)

= ([ Jr,thn = tn + tn = Xn || (|| T, tn |l + |2 ]])
+ 2||xn”||]xn - ]un + ]un - ]]r,,un”
< (rttn = tall + lltn = xu ) (15, 2l + [12nl)

+ 2/ x| (| Jxn = Juan| + |[Jren = ]]rnun”)-

Since ¢(uy, x,) — 0, it follows from (4.31) and (4.35) that ¢(x,, u,) — 0and ¢(xy, J;, un) —
0. Also, observe that

¢ (o yn) = (300, T (BuJttn + (1= Bu) T, 4n) )
= Nl = 2(xn, BaJun + (1= ) ] T ttn) + | Bt + (1= ) T
< 1l = 2B (s Jttn) = 2(1 = B) (X, T Tt} + Bullttnl® + (1 = Bu) |t (2D
= Bup(xXn, un) + (1= Brn) (xu, Jr, tin)
< P (xn, un) + P(xn, Jr, tn),

and hence

$n, %) = ¢ (00, )7 (@) x0+ (1= @) Jy))
= Ilxnll® = 2(en, @ Jx0 + (1= @) Jyn) + flanTx0 + (1= aa) Ty
< llall® = 20t (6, Jx0) =201 = ) (i, Jyn) + ctnllooll® + (A= a)lyll” (4 5y
= up(x, %0) + (1= )P (X, Yu)

(X, X0) + @ (X, Yn)

< and)(xnr X0) + ¢(xn/ Up) + (.b(xnr ]r,,un)-

IN



Journal of Inequalities and Applications 31

Thus, from a,, — 0,¢(x,,u,) — 0, and ¢(xy, Jr,un) — 0, it follows that ¢(x,, x,) — 0. In
terms of Lemma 2.1, we derive ||x, — X,|| — 0.

Next, let us show that x, — z, where z = lim,, _, o I 1 1o F-10nppXn-

Indeed, since {x,} isbounded, there exists a subsequence {x,, } of {x,} such that x,,, —
x € C. Hence it follows from (4.31), (4.35), and ||x, — Xx|| — O thatboth {un}, {#in}, {Jr,, tin,}

and frnk ii,, converge weakly to the same point X. Furthermore, from liminf,_, 7, > 0 and
(4.31) we have that

1
lim [| Ay, uy|| = lim r_”]un = JJrunll =0,
" (4.53)

-~ . =
lim |[A,, || = im —|{Ju, — J ], tn|| = 0.
n— oo n—owty,

If z* € Tz and Z* € TZ, then it follows from (2.17) and the monotonicity of the operators T, T
thatforall k > 1

(2= It 2" = Ary ) 20, (E= T, fi, 2 = Ay, i ) 2 0. (4.54)

Letting k — oo, we obtain that

(z-%2)>0, (5-%%)>0. (4.55)

Then the maximality of the operators T, T implies that * € T10 N T~'0.
Now, by the definition of u, := K, x,, we have

F(un,y) +rl<y—un,]un—]xn> >0, VyeC, (4.56)
where F(x,y) = f(x,y) + (Ax,y — x). Replacing n by n;, we have from (A2) that

1
—(y = tn,, Jttn, = Jxn. ) > =F(tty,,y) > F(y,un,), Yy e€C. (4.57)

Ty

Since y +— F(x,y) is convex and lower semicontinuous, it is also weakly lower
semicontinuous. Letting np — oo in the last inequality, from (4.35) and (A4) we have

F(y,%) <0, VyeC (4.58)

Fort,withO<t<1,andy € C, lety; =ty + (1 - t)x. Since y € C and x € C, then y; € C and
hence F(y;, x) < 0. So, from (A1) we have

0=F(y,yt) <tF(yr,y) + 1 -1)F (v, X) <tF(y,y). (4.59)
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Dividing by t, we get F(y;, y) > 0, Yy € C. Letting t | 0, from (A3) it follows that F(x,y) >
0, Yy € C.So, x € EP. Therefore, x € Q. Let z,, = [1ox,,. From Lemma 2.2 and x € Q, we get

<Z7‘lk - 3?1 ]xnk - ]an> > 0. (460)

From Proposition 4.1, we also know that z, — z € Q. Note that x,, — X. Since ] is weakly
sequentially continuous, then (z - X, JX - Jz) > 0as k — oo. In addition, taking into account
the monotonicity of J, we conclude that (z — X, JX — Jz) < 0. Hence

(z-Xx,Jx-]z)=0. (4.61)
From the strict convexity of X, it follows that z = Xx. Therefore, x, — X, where X =
limy, . oIl o1 g 719nppXn- This completes the proof. O

Remark 4.3. In Theorem 4.2, put A =0, T= 0, and ﬁn =0, Vn > 0. Then, for all a,r € (0, 0)
and x,y € C, we have that

(Ax - Ay, x - y) > a||Ax - Ay|, (4.62)

K, (x) = {ueC:f(u,y)+(Au,y—u>+%<y—u,]u—]x) >0, VyEC}

. (4.63)
= {ue C:f(uy)+ ;(y—u,]u—]x} >0, VyeC} =T, (x).
Moreover, the following hold:
Xn+1 = ]_l (an]Krnin + (1 - &n)]frn]_l (ﬁn]xo + (1 - ﬁn)]Krn§n>>
= J N @nJT,, %0 + (1 - &y) (0] x0 + (1 = 0)JT;, Xy
J 7 (@nJ Ty, Xn + ( )(0Jxo + (1 -0)J T, Xn)) (4.64)
= ]_1 (&n]Trnin + (1 - &n)]Trn&‘n)
= ]71]Trn§n = Trnin'
In this case, Algorithm (4.1) reduces to the following one:
Xns1 =T J 7 (anx0 + (1= an) (B Troxn + (1= ) J T TraXn) ) (4.65)

Corollary 4.4. Suppose that conditions (A1)—(A5) are fulfilled and let {x,} be a sequence defined
by (4.65), where T,, r > 0 is defined in Lemma 2.8, {a,},{Pn} C [0,1] satisfy the conditions
Sootn < oo and liminf, ., ,pn(1 — Bn) > 0, and {r,} C (0,00) satisfies liminf,_, 1, > 0.
If ] is weakly sequentially continuous, then {x,} converges weakly to z € T~'0 N EP(f), where
z = limy, —, oo [ Ir-10nEP(£) Xn-
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