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1. Introduction and Preliminaries

The variational principle has been one of the major branches of mathematical sciences for
more than two centuries. It is a tool of great power that can be applied to a wide variety
of problems in pure and applied sciences. It can be used to interpret the basic principles
of mathematical and physical sciences in the form of simplicity and elegance. During this
period, the variational principles have played an important and significant part as a unifying
influence in pure and applied sciences and as a guide in the mathematical interpretation of
many physical phenomena. The variational principles have played a fundamental role in the
development of the general theory of relativity, gauge field theory in modern particle physics
and soliton theory. In recent years, these principles have been enriched by the discovery
of the variational inequality theory, which is mainly due to Hartman and Stampacchia [1].
Variational inequality theory constituted a significant extension of the variational principles
and describes a broad spectrum of very interesting developments involving a link among
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various fields of mathematics, physics, economics, regional, and engineering sciences. The
ideas and techniques are being applied in a variety of diverse areas of sciences and prove to
be productive and innovative. In fact, many researchers have shown that this theory provides
the most natural, direct, simple, unified, and efficient framework for a general treatment of a
wide class of unrelated linear and nonlinear problems.

Variational inclusion is an important generalization of variational inequality, which
has been studied extensively by many authors (see, e.g., [2–14] and the references therein).
In 2001, Huang and Fang [15] introduced the concept of a generalized m-accretive mapping,
which is a generalization of anm-accretive mapping, and gave the definition of the resolvent
operator for the generalized m-accretive mapping in Banach spaces. Recently, Huang et al.
[6, 7], Huang [8], Jin and Liu [9] and Lan et al. [11] introduced and studied some new
classes of nonlinear variational inclusions involving generalized m-accretive mappings in
Banach spaces. By using the resolvent operator technique in [6], they constructed some new
iterative algorithms for solving the nonlinear variational inclusions involving generalized
m-accretive mappings. Further, they also proved the existence of solutions for nonlinear
variational inclusions involving generalized m-accretive mappings and convergence of
sequences generated by the algorithms.

On the other hand, It is well known that the study of the random equations
involving the random operators in view of their need in dealing with probabilistic models
in applied sciences is very important. Motivated and inspired by the recent research works
in these fascinating areas, the random variational inequality problems, random quasi-
variational inequality problems, random variational inclusion problems and random quasi-
complementarity problems have been introduced and studied by Ahmad and Bazán [16],
Chang [17], Chang and Huang [18], Cho et al. [19], Ganguly and Wadhwa [20], Huang [21],
Huang and Cho [22], Huang et al. [23], and Noor and Elsanousi [24].

Inspired and motivated by recent works in these fields (see [3, 11, 12, 16, 25–
28]), in this paper, we introduce and study a new class of general nonlinear random
multivalued operator equations involving generalized m-accretive mappings in Banach
spaces. By using the Chang’s lemma and the resolvent operator technique for generalized
m-accretive mapping due to Huang and Fang [15], we also prove the existence theorems
of the solution and convergence theorems of the generalized random iterative procedures
with errors for this nonlinear randommultivalued operator equations in q-uniformly smooth
Banach spaces. The results presented in this paper improve and generalize some known
corresponding results in literature.

Throughout this paper, we suppose that (Ω, A, μ) is a complete σ-finite measure space
and E is a separable real Banach space endowed with dual space E∗, the norm ‖ · ‖ and the
dual pair 〈·, ·〉 between E and E∗. We denote by B(E) the class of Borel σ-fields in E. Let 2E

and CB(E) denote the family of all the nonempty subsets of E, the family of all the nonempty
bounded closed sets of E, respectively. The generalized duality mapping Jq : E → 2E

∗
is

defined by

Jq(x) =
{
f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖q, ∥∥f∗∥∥ = ‖x‖q−1

}
(1.1)

for all x ∈ E, where q > 1 is a constant. In particular, J2 is the usual normalized duality
mapping. It is well known that, in general, Jq(x) = ‖x‖q−2J2(x) for all x /= 0 and Jq is single-
valued if E∗ is strictly convex (see, e.g., [28]). If E = H is a Hilbert space, then J2 becomes the
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identity mapping ofH. In what follows we will denote the single-valued generalized duality
mapping by jq.

Suppose that A : Ω × E × E → 2E is a random multivalued operator such that for
each fixed t ∈ Ω and s ∈ E, A(t, ·, s) : E → 2E is a generalized m-accretive mapping and
Range(p)

⋂
domA(t, ·, s)/= ∅. Let S, p : Ω×E → E, η : Ω×E×E → E andN : Ω×E×E×E →

E be single-valued operators, and let M,T,G : Ω × E → 2E be three multivalued operators.
Now, we consider the following problem.
Find x, v,w : Ω → E such that v(t) ∈ T(t, x(t)), w(t) ∈ G(t, x(t)), and

0 ∈ N(t, S(t, x(t)), u(t), v(t)) +A
(
t, p(t, x(t)), w(t)

)
(1.2)

for all t ∈ Ω and u ∈ M(t, x(t)). The problem (1.2) is called the general nonlinear random
equation with multivalued operator involving generalized m-accretive mapping in Banach
spaces.

Some special cases of the problem (1.2) are as follows.
(1) If G is a single-valued operator, p ≡ I, the identity mapping and N(t, x, y, z) =

f(t, z) + g(t, x, y) for all t ∈ Ω and x, y, z ∈ E, then problem (1.2) is equivalent to finding
x, v : Ω → E such that v(t) ∈ T(t, x(t)) and

0 ∈ f(t, v(t)) + g(t, S(t, x(t)), u(t)) +A(t, x(t), G(t, x(t))) (1.3)

for all t ∈ Ω and u ∈ M(t, x(t)). The determinate form of the problem (1.3) was considered
and studied by Agarwal et al. [2]when G ≡ I.

(2) If A(t, x, s) = A(t, x) for all t ∈ Ω, x, s ∈ E and, for all t ∈ Ω, A(t, ·) : E → 2E

is a generalized m-accretive mapping, then the problem (1.2) reduces to the following
generalized nonlinear random multivalued operator equation involving generalized m-
accretive mapping in Banach spaces.

Find x, v : Ω → E such that v(t) ∈ T(t, x(t)) and

0 ∈ N(t, S(t, x(t)), u(t), v(t)) +A
(
t, p(t, x(t))

)
(1.4)

for all t ∈ Ω and u ∈ M(t, x(t)).
(3) If E = E∗ = H is a Hilbert space and A(t, ·) = ∂φ(t, ·) for all t ∈ Ω, where ∂φ(t, ·)

denotes the subdifferential of a lower semicontinuous and η-subdifferetiable function φ :
Ω ×H → R ∪ {+∞}, then the problem (1.4) becomes the following problem.

Find x, v : Ω → H such that v(t) ∈ T(t, x(t)) and

〈N(t, S(t, x(t)), u(t), v(t)), η
(
t, z, p(t, x(t))

)〉 ≥ φ
(
t, p(t, x(t))

) − φ(t, z) (1.5)

for all t ∈ Ω, u ∈ M(t, x(t)), and z ∈ H, which is called the generalized nonlinear random
variational inclusions for random multivalued operators in Hilbert spaces. The determinate
form of the problem (1.5) was studied by Agarwal et al. [3] when N(S(x), u, v) = p(x) −
B(u, v) for all x, u, v ∈ H, where B : H ×H → H is a single-valued operator.

(4) If η(t, u(t), v(t)) = u(t) − v(t) for all t ∈ Ω, u(t), v(t) ∈ H, then the problem (1.5)
reduces to the following nonlinear random variational inequalities.
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Find x, v,w : Ω → H such that v(t) ∈ T(t, x(t)), u ∈ M(t, x(t)), and

〈N(t, S(t, x(t)), u(t), v(t)), z − p(t, x(t))〉 ≥ φ
(
t, p(t, x(t))

) − φ(t, z) (1.6)

for all t ∈ Ω and z ∈ H, whose determinate form is a generalization of the problem considered
in [4, 5, 29].

(5) If, in the problem (1.6), φ is the indictor function of a nonempty closed convex setK
in H defined in the form

φ
(
y
)
=

⎧
⎨
⎩
0 if y ∈ K,

∞ otherwise,
(1.7)

then (1.6) becomes the following problem.
Find x, u, v : Ω → H such that v(t) ∈ T(t, x(t)), u ∈ M(t, x(t)), and

〈N(t, S(t, x(t)), u(t), v(t)), z − p(t, x(t))〉 ≥ 0 (1.8)

for all t ∈ Ω and z ∈ K. The problem (1.8) has been studied by Cho et al. [19] when
N(t, x, u(t), v(t)) = u(t) − v(t) for all t ∈ Ω, x(t), u(t), v(t) ∈ H.

Remark 1.1. For appropriate and suitable choices of S, p, N, η, M, G, T , A and for the space
E, a number of known classes of random variational inequality, random quasi-variational
inequality, random complementarity, and random quasi-complementarity problems were
studied previously by many authors (see, e.g., [17–20, 22–24] and the references therein).

In this paper, we will use the following definitions and lemmas.

Definition 1.2. An operator x : Ω → E is said to be measurable if, for any B ∈ B(E), {t ∈ Ω :
x(t) ∈ B} ∈ A.

Definition 1.3. An operator F : Ω×E → E is called a random operator if for any x ∈ E, F(t, x) =
y(t) is measurable. A random operator F is said to be continuous (resp., linear, bounded) if, for
any t ∈ Ω, the operator F(t, ·) : E → E is continuous (resp., linear, bounded).

Similarly, we can define a random operator a : Ω × E × E → E. We will write Ft(x) =
F(t, x(t)) and at(x, y) = a(t, x(t), y(t)) for all t ∈ Ω and x(t), y(t) ∈ E.

It is well known that a measurable operator is necessarily a random operator.

Definition 1.4. A multivalued operator G : Ω → 2E is said to be measurable if, for any B ∈
B(E), G−1(B) = {t ∈ Ω : G(t) ∩ B /= ∅} ∈ A.

Definition 1.5. An operator u : Ω → E is called a measurable selection of a multivalued
measurable operator Γ : Ω → 2E if u is measurable and for any t ∈ Ω, u(t) ∈ Γ(t).

Definition 1.6. Amultivalued operator F : Ω ×E → 2E is called a random multivalued operator
if, for any x ∈ E, F(·, x) is measurable. A random multivalued operator F : Ω × E → CB(E)
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is said to be H-continuous if, for any t ∈ Ω, F(t, ·) is continuous in H(·, ·), where H(·, ·) is the
Hausdorff metric on CB(E) defined as follows: for any given A,B ∈ CB(E),

H(A,B) = max

{
sup
x∈A

inf
y∈B

d
(
x, y

)
, sup
y∈B

inf
x∈A

d
(
x, y

)}
. (1.9)

Definition 1.7. A random operator g : Ω × E → E is said to be

(a) α-strongly accretive if there exists j2(x(t) − y(t)) ∈ J2(x(t) − y(t)) such that

〈gt(x) − gt
(
y
)
, j2

(
x(t) − y(t)

)〉 ≥ α(t)
∥∥x(t) − y(t)

∥∥2 (1.10)

for all x(t), y(t) ∈ E and t ∈ Ω, where α(t) > 0 is a real-valued random variable;

(b) β-Lipschitz continuous if there exists a real-valued random variable β(t) > 0 such that

∥∥gt(x) − gt
(
y
)∥∥ ≤ β(t)

∥∥x(t) − y(t)
∥∥ (1.11)

for all x(t), y(t) ∈ E and t ∈ Ω.

Definition 1.8. Let S : Ω × E → E be a random operator. An operatorN : Ω × E × E × E → E
is said to be

(a) �-strongly accretive with respect to S in the first argument if there exists j2(x(t) −
y(t)) ∈ J2(x(t) − y(t)) such that

〈Nt(St(x), ·, ·) −Nt

(
St

(
y
)
, ·, ·), j2

(
x(t) − y(t)

)〉 ≥ �(t)
∥∥x(t) − y(t)

∥∥2 (1.12)

for all x(t), y(t) ∈ E, and t ∈ Ω, where �(t) > 0 is a real-valued random variable;

(b) ε-Lipschitz continuous in the first argument if there exists a real-valued random
variable ε(t) > 0 such that

∥∥Nt(x, ·, ·) −Nt

(
y, ·, ·)∥∥ ≤ ε(t)

∥∥x(t) − y(t)
∥∥ (1.13)

for all x(t), y(t) ∈ E and t ∈ Ω.

Similarly, we can define the Lipschitz continuity in the second argument and third
argument of N(·, ·, ·).

Definition 1.9. Let η : Ω × E × E → E∗ be a random operator and M : Ω × E → 2E be a
random multivalued operator. ThenM is said to be

(a) η-accretive if

〈
u(t) − v(t), ηt

(
x, y

)〉 ≥ 0 (1.14)

for all x(t), y(t) ∈ E, u(t) ∈ Mt(x), v(t) ∈ Mt(y), and t ∈ Ω, where Mt(z) =
M(t, z(t));
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(b) strictlyη-accretive if

〈u(t) − v(t), ηt
(
x, y

)〉 ≥ 0 (1.15)

for all x(t), y(t) ∈ E, u(t) ∈ Mt(x), v(t) ∈ Mt(y), and t ∈ Ω and the equality holds
if and only if u(t) = v(t) for all t ∈ Ω;

(c) stronglyη-accretive if there exists a real-valued random variable r(t) > 0 such that

〈u(t) − v(t), ηt
(
x, y

)〉 ≥ r(t)
∥∥x(t) − y(t)

∥∥2 (1.16)

for all x(t), y(t) ∈ E, u(t) ∈ Mt(x), v(t) ∈ Mt(y), and t ∈ Ω;

(d) generalizedm-accretive if M is η-accretive and (I + λ(t)M(t, ·))(E) = E for all t ∈ Ω
and (equivalently, for some) λ(t) > 0.

Remark 1.10. If E = E∗ = H is a Hilbert space, then (a)–(d) of Definition 1.9 reduce to the
definition of η-monotonicity, strict η-monotonicity, strong η-monotonicity, and maximal η-
monotonicity, respectively; if E is uniformly smooth and η(x, y) = j2(x − y) ∈ J2(x − y),
then (a)–(d) of Definition 1.9reduces to the definitions of accretive, strictly accretive, strongly
accretive, and m-accretive operators in uniformly smooth Banach spaces, respectively.

Definition 1.11. The operator η : Ω × E × E → E∗ is said to be

(a) monotone if

〈
x(t) − y(t), ηt

(
x, y

)〉 ≥ 0 (1.17)

for all x(t), y(t) ∈ E and t ∈ Ω;

(b) strictly monotone if

〈x(t) − y(t), ηt
(
x, y

)〉 ≥ 0 (1.18)

for all x(t), y(t) ∈ E, and t ∈ Ω and the equality holds if and only if x(t) = y(t) for
all t ∈ Ω;

(c) δ-strongly monotone if there exists a measurable function δ : Ω → (0,∞) such that

〈x(t) − y(t), ηt
(
x, y

)〉 ≥ δ(t)
∥∥x(t) − y(t)

∥∥2 (1.19)

for all x(t), y(t) ∈ E and t ∈ Ω;

(d) τ-Lipschitz continuous if there exists a real-valued random variable τ(t) > 0 such that

∥∥ηt
(
x, y

)∥∥ ≤ τ(t)
∥∥x(t) − y(t)

∥∥ (1.20)

for all x(t), y(t) ∈ E, and t ∈ Ω.
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Definition 1.12. A multivalued measurable operator T : Ω × E → CB(E) is said to be
γ-H-Lipschitz continuous if there exists a measurable function γ : Ω → (0,+∞) such that,
for any t ∈ Ω,

H
(
Tt(x), Tt

(
y
)) ≤ γ(t)

∥∥x(t) − y(t)
∥∥ (1.21)

for all x(t), y(t) ∈ E.

The modules of smoothness of E is the function ρE : [0,∞) → [0,∞) defined by

ρE(t) = sup
{
1
2
∥∥x + y

∥∥ +
∥∥x − y

∥∥ − 1 : ‖x‖ ≤ 1,
∥∥y∥∥ ≤ t

}
. (1.22)

A Banach space E is called uniformly smooth if lim
t→ 0

(ρE(t)/t) = 0 and E is called q-uniformly

smooth if there exists a constant c > 0 such that ρE(t) ≤ ctq, where q > 1 is a real number.
It is well known that Hilbert spaces, Lp(or lp) spaces, 1 < p < ∞ and the Sobolev spaces

Wm,p, 1 < p < ∞, are all q-uniformly smooth.
In the study of characteristic inequalities in q-uniformly smooth Banach spaces, Xu

[30] proved the following result.

Lemma 1.13. Let q > 1 be a given real number and let E be a real uniformly smooth Banach space.
Then E is q-uniformly smooth if and only if there exists a constant cq > 0 such that, for all x, y ∈ E
and jq(x) ∈ Jq(x), the following inequality holds:

∥∥x + y
∥∥q ≤ ‖x‖q + q〈y, jq(x)〉 + cq

∥∥y∥∥q
. (1.23)

Definition 1.14. LetA : Ω×E → 2E be a generalizedm-accretive mapping. Then the resolvent
operatorJρ(t)A for A is defined as follows:

J
ρ(t)
A (z) =

(
I + ρ(t)A

)−1(z) (1.24)

for all t ∈ Ω and z ∈ E, where ρ : Ω → (0,∞) is a measurable function and η : Ω × E × E →
E∗ is a strictly monotone mapping.

From Huang et al. [6, 15], we can obtain the following lemma.

Lemma 1.15. Let η : Ω × E × E → E∗ be δ-strongly monotone and τ-Lipschitz continuous. Let
A : Ω × E → 2E be a generalized m-accretive mapping. Then the resolvent operator Jρ(t)A for A is
Lipschitz continuous with constant τ(t)/δ(t), that is,

∥∥∥Jρ(t)A (x) − J
ρ(t)
A

(
y
)∥∥∥ ≤ τ(t)

δ(t)

∥∥x − y
∥∥ (1.25)

for all t ∈ Ω and x, y ∈ E.
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2. Random Iterative Algorithms

In this section, we suggest and analyze a new class of iterative methods and construct
some new random iterative algorithms with errors for solving the problems (1.2)–(1.4),
respectively.

Lemma 2.1 ([31]). Let M : Ω × E → CB(E) be an H-continuous random multivalued operator.
Then, for any measurable operator x : Ω → E, the multivalued operator M(·, x(·)) : Ω → CB(E)
is measurable.

Lemma 2.2 ([31]). LetM,V : Ω×E → CB(E) be two measurable multivalued operators, let ε > 0
be a constant, and let x : Ω → E be a measurable selection of M. Then there exists a measurable
selection y : Ω → E of V such that, for any t ∈ Ω,

∥∥x(t) − y(t)
∥∥ ≤ (1 + ε)H(M(t), V (t)). (2.1)

Lemma 2.3. Measurable operators x, u, v,w : Ω → E are a solution of the problem (1.2) if and
only if

pt(x) = J
ρ(t)
At(·,w)

(
pt(x) − ρ(t)Nt(St(x), u, v)

)
, (2.2)

where Jρ(t)
At(·,w) = (I + ρ(t)At(·, w))−1 and ρ(t) > 0 is a real-valued random variable.

Proof. The proof directly follows from the definition of Jρ(t)
At(·,w) and so it is omitted.

Based on Lemma 2.3, we can develop a new iterative algorithm for solving the general
nonlinear random equation (1.2) as follows.

Algorithm 2.4. Let A : Ω × E × E → 2E be a random multivalued operator such that for
each fixed t ∈ Ω and s ∈ E, A(t, ·, s) : E → 2E is a generalized m-accretive mapping, and
Range(p)

⋂
domA(t, ·, s)/= ∅. Let S, p : Ω×E → E, η : Ω×E×E → E andN : Ω×E×E×E → E

be single-valued operators, and letM,T,G : Ω×E → 2E be three multivalued operators, and
let λ : Ω → (0, 1] be a measurable step size function. Then, by Lemma 2.1 and Himmelberg
[32], it is known that, for given x0(·) ∈ E, the multivalued operators M(·, x0(·)), T(·, x0(·)),
andG(·, x0(·)) are measurable and there exist measurable selections u0(·) ∈ M(·, x0(·)), v0(·) ∈
T(·, x0(·)), and w0(·) ∈ G(·, x0(·)). Set

x1(t) = x0(t) − λ(t)
{
pt(x0) − J

ρ(t)
At(·,w0)

[
pt(x0) − ρ(t)Nt(St(x0), u0, v0)

]}
+ λ(t)e0(t), (2.3)

where ρ and A are the same as in Lemma 2.3 and e0 : Ω → E is a measurable function.
Then it is easy to know that x1 : Ω → E is measurable. Since u0(t) ∈ Mt(x0) ∈ CB(E), v0(t) ∈
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Tt(x0) ∈ CB(E), andw0(t) ∈ Gt(x0) ∈ CB(E), by Lemma 2.2, there exist measurable selections
u1(t) ∈ Mt(x1), v1(t) ∈ Tt(x1), and w1(t) ∈ Gt(x1) such that, for all t ∈ Ω,

‖u0(t) − u1(t)‖ ≤
(
1 +

1
1

)
H(Mt(x0),Mt(x1)),

‖v0(t) − v1(t)‖ ≤
(
1 +

1
1

)
H(Tt(x0), Tt(x1)),

‖w0(t) −w1(t)‖ ≤
(
1 +

1
1

)
H(Gt(x0), Gt(x1)).

(2.4)

By induction, one can define sequences {xn(t)}, {un(t)}, {vn(t)}, and {wn(t)} inductively
satisfying

xn+1(t) = xn(t) − λ(t)
{
pt(xn) − J

ρ(t)
At(·,wn)

[
pt(xn) − ρ(t)Nt(St(xn), un, vn)

]}
+ λ(t)en(t),

un(t) ∈ Mt(xn), ‖un(t) − un+1(t)‖ ≤
(
1 +

1
n + 1

)
H(Mt(xn),Mt(xn+1)),

vn(t) ∈ Tt(xn), ‖vn(t) − vn+1(t)‖ ≤
(
1 +

1
n + 1

)
H(Tt(xn), Tt(xn+1)),

wn(t) ∈ Gt(xn), ‖wn(t) −wn+1(t)‖ ≤
(
1 +

1
n + 1

)
H(Gt(xn), Gt(xn+1)),

(2.5)

where en(t) is an error to take into account a possible inexact computation of the resolvent
operator point, which satisfies the following conditions:

lim
n→∞

‖en(t)‖ = 0,
∞∑
n=1

‖en(t) − en−1(t)‖ < ∞ (2.6)

for all t ∈ Ω.

From Algorithm 2.4, we can get the following algorithms.

Algorithm 2.5. Suppose that E, A, η, S, M, T and λ are the same as in Algorithm 2.4. Let
G : Ω×E → E be a random single-valued operator, p ≡ I andN(t, x, y, z) = f(t, z)+g(t, x, y)
for all t ∈ Ω and x, y, z ∈ E. Then, for given measurable x0 : Ω → E, one has

xn+1(t) = (1 − λ(t))xn(t) + λ(t)Jρ(t)At(·,Gt(xn)

{
xn(t) − ρ(t)

[
ft(vn) + gt(St(xn), un)

]}
+ λ(t)en(t),

un(t) ∈ Mt(xn), ‖un(t) − un+1(t)‖ ≤
(
1 +

1
n + 1

)
H(Mt(xn),Mt(xn+1)),

vn(t) ∈ Tt(xn), ‖vn(t) − vn+1(t)‖ ≤
(
1 +

1
n + 1

)
H(Tt(xn), Tt(xn+1)),

(2.7)

where en(t) is the same as in Algorithm 2.4.
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Algorithm 2.6. LetA : Ω×E → 2E be a randommultivalued operator such that for each fixed
t ∈ Ω, A(t, ·) : E → 2E is a generalized m-accretive mapping, and Range(p)

⋂
domA(t, ·)/= ∅.

If S, p, η, N, M, T, and λ are the same as in Algorithm 2.4, then, for given measurable x0 :
Ω → E, we have

xn+1(t) = xn(t) − λ(t)
{
pt(xn) − J

ρ(t)
At(·)

[
pt(xn) − ρ(t)Nt(St(xn), un, vn)

]}
+ λ(t)en(t),

un(t) ∈ Mt(xn), ‖un(t) − un+1(t)‖ ≤
(
1 +

1
n + 1

)
H(Mt(xn),Mt(xn+1)),

vn(t) ∈ Tt(xn), ‖vn(t) − vn+1(t)‖ ≤
(
1 +

1
n + 1

)
H(Tt(xn), Tt(xn+1)),

(2.8)

where en(t) is the same as in Algorithm 2.4.

Remark 2.7. Algorithms 2.4–2.6 include several known algorithms of [2, 4–9, 12, 17–23, 25, 26,
29] as special cases.

3. Existence and Convergence Theorems

In this section, we will prove the convergence of the iterative sequences generated by the
algorithms in Banach spaces.

Theorem 3.1. Suppose that E is a q-uniformly smooth and separable real Banach space, p : Ω×E →
E is α-strongly accretive and β-Lipschitz continuous, andA : Ω×E×E → 2E is a randommultivalued
operator such that for each fixed t ∈ Ω and s ∈ E, A(t, ·, s) : E → 2E is a generalized m-accretive
mapping and Range(p)

⋂
domA(t, ·, s)/= ∅. Let η : Ω × E × E → E be δ-strongly monotone and

τ-Lipschitz continuous, and let S : Ω × E → E be a σ-Lipschitz continuous random operator, and
let N : Ω × E × E × E → E be �-strongly accretive with respect to S and ε-Lipschitz continuous
in the first argument, and μ-Lipschitz continuous in the second argument, ν-Lipschitz continuous
in the third argument, respectively. Let multivalued operators M,T,G : Ω × E → CB(E) be γ-
H-Lipschitz continuous, ξ-H-Lipschitz continuous, ζ-H-Lipschitz continuous, respectively. If there
exist real-valued random variables ρ(t) > 0 and π(t) > 0 such that, for any t ∈ Ω, x, y, z ∈ E,

∥∥∥Jρ(t)At(·,x)(z) − J
ρ(t)
At(·,y)(z)

∥∥∥ ≤ π(t)
∥∥x − y

∥∥, (3.1)

k(t) = π(t)ζ(t) +
(
1 + τ(t)δ(t)−1

)(
1 − qα(t) + cqβ(t)

q)1/q < 1,

ρ(t)
(
μ(t)γ(t) + ν(t)ξ(t)

)
+

(
1 − qρ(t)�(t) + cqρ(t)qε(t)qσ(t)q

)1/q
<

δ(t)(1 − k(t))
τ(t)

,

(3.2)

where cq is the same as in Lemma 1.13, then, for any t ∈ Ω, there exist x∗(t) ∈ E, u∗(t) ∈ Mt(x∗),
v∗(t) ∈ Tt(x∗), and w∗(t) ∈ Gt(x∗) such that (x∗(t), u∗(t), v∗(t), w∗(t)) is a solution of the problem
(1.2) and

xn(t) −→ x∗(t), un(t) −→ u∗(t), vn(t) −→ v∗(t), wn(t) −→ w∗(t) (3.3)
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as n → ∞, where {xn(t)}, {un(t)}, {vn(t)} and {wn(t)} are iterative sequences generated by
Algorithm 2.4.

Proof. It follows from (2.5), Lemma 1.15 and (3.1) that

‖xn+1(t) − xn(t)‖

=
∥∥∥xn(t) − λ(t)

{
pt(xn) − J

ρ(t)
At(·,wn)

[
pt(xn) − ρ(t)Nt(St(xn), un, vn)

]}
+ λ(t)en(t)

− xn−1(t) + λ(t)
{
pt(xn−1) − J

ρ(t)
At(·,wn−1)

[
pt(xn−1) − ρ(t)Nt(St(xn−1), un−1, vn−1)

]}

−λ(t)en−1(t)
∥∥∥

≤ ∥∥xn(t) − xn−1(t) − λ(t)
(
pt(xn) − pt(xn−1)

)∥∥

+ λ(t)
∥∥∥Jρ(t)At(·,wn)

[
pt(xn) − ρ(t)Nt(St(xn), un, vn)

]

−Jρ(t)
At(·,wn−1)

[
pt(xn−1) − ρ(t)Nt(St(xn−1), un−1, vn−1)

]∥∥∥ + λ(t)‖en(t) − en−1(t)‖

≤ ∥∥xn(t) − xn−1(t) − λ(t)
(
pt(xn) − pt(xn−1)

)∥∥

+ λ(t)
∥∥∥Jρ(t)At(·,wn)

[
pt(xn) − ρ(t)Nt(St(xn), un, vn)

]

−Jρ(t)
At(·,wn)

[
pt(xn−1) − ρ(t)Nt(St(xn−1), un−1, vn−1)

]∥∥∥

+ λ(t)
∥∥∥Jρ(t)At(·,wn)

[
pt(xn−1) − ρ(t)Nt(St(xn−1), un−1, vn−1)

]

−Jρ(t)
At(·,wn−1)

[
pt(xn−1) − ρ(t)Nt(St(xn−1), un−1, vn−1)

]∥∥∥ + λ(t)‖en(t) − en−1(t)‖

≤ ∥∥xn(t) − xn−1(t) − λ(t)
(
pt(xn) − pt(xn−1)

)∥∥

+ λ(t) · τ(t)
δ(t)

∥∥pt(xn) − ρ(t)Nt(St(xn), un, vn)

−[
pt(xn−1) − ρ(t)Nt(St(xn−1), un−1, vn−1)

]∥∥

+ λ(t)π(t)‖wn −wn−1‖ + λ(t)‖en(t) − en−1(t)‖
≤ ∥∥xn(t) − xn−1(t) − λ(t)

(
pt(xn) − pt(xn−1)

)∥∥

+
λ(t)τ(t)
δ(t)

{∥∥xn(t) − xn−1(t) −
(
pt(xn) − pt(xn−1)

)∥∥

+
∥∥xn(t) − xn−1(t) − ρ(t)(Nt(St(xn), un, vn) −Nt(St(xn−1), un, vn))

∥∥

+ ρ(t)‖Nt(St(xn−1), un, vn) −Nt(St(xn−1), un−1, vn)‖
+ρ(t)‖Nt(St(xn−1), un−1, vn) −Nt(St(xn−1), un−1, vn−1)‖

}

+ λ(t)π(t)‖wn −wn−1‖ + λ(t)‖en(t) − en−1(t)‖
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≤ (1 − λ(t))‖xn(t) − xn−1(t)‖

+ λ(t)
(
1 +

τ(t)
δ(t)

)∥∥xn(t) − xn−1(t) −
(
pt(xn) − pt(xn−1)

)∥∥

+
λ(t)τ(t)
δ(t)

{∥∥xn(t) − xn−1(t) − ρ(t)(Nt(St(xn), un, vn) −Nt(St(xn−1), un, vn))
∥∥

+ ρ(t)‖Nt(St(xn−1), un, vn) −Nt(St(xn−1), un−1, vn)‖
+ρ(t)‖Nt(St(xn−1), un−1, vn) −Nt(St(xn−1), un−1, vn−1)‖

}

+ λ(t)π(t)‖wn −wn−1‖ + λ(t)‖en(t) − en−1(t)‖.

(3.4)

Since p is strongly accretive and Lipschitz continuous,

∥∥xn(t) − xn−1(t) − (pt(xn) − pt(xn−1))
∥∥q

≤ ‖xn(t) − xn−1(t)‖q − q〈pt(xn) − pt(xn−1), jq(xn(t) − xn−1(t))〉

+ cq
∥∥pt(xn) − pt(xn−1)

∥∥q

≤ (
1 − qα(t) + cqβ(t)q

)‖xn(t) − xn−1(t)‖q,

(3.5)

that is,

∥∥xn(t) − xn−1(t) −
(
pt(xn) − pt(xn−1)

)∥∥

≤ (
1 − qα(t) + cqβ(t)q

)1/q‖xn(t) − xn−1(t)‖,
(3.6)

where cq is the same as in Lemma 1.13. Also from the strongly accretivity of N with respect
to S and the Lipschitz continuity of N in the first argument, we have

∥∥xn(t) − xn−1(t) − ρ(t)(Nt(St(xn), un, vn) −Nt(St(xn−1), un, vn))
∥∥

≤ (
1 − qρ(t)�(t) + cqρ(t)qε(t)qσ(t)q

)1/q‖xn(t) − xn−1(t)‖.
(3.7)

By Lipschitz continuity of N in the second and third argument, and H-Lipschitz continuity
of T, M, G, we obtain

‖Nt(St(xn−1), un, vn) −Nt(St(xn−1), un−1, vn)‖

≤ μ(t)‖un − un−1‖ ≤ μ(t)
(
1 +

1
n

)
H(Mt(xn−1) −Mt(xn))

≤
(
1 +

1
n

)
μ(t)γ(t)‖xn(t) − xn−1(t)‖,

(3.8)
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‖Nt(St(xn−1), un−1, vn) −Nt(St(xn−1), un−1, vn−1)‖

≤ ν(t)‖vn − vn−1‖ ≤ ν(t)
(
1 +

1
n

)
H(Tt(xn−1) − Tt(xn))

≤
(
1 +

1
n

)
ν(t)ξ(t)‖xn(t) − xn−1(t)‖,

(3.9)

‖wn −wn−1‖ ≤
(
1 +

1
n

)
H(Gt(xn−1) −Gt(xn))

≤
(
1 +

1
n

)
ζ(t)‖xn(t) − xn−1(t)‖.

(3.10)

Using (3.6)–(3.10) in (3.4), we have, for all t ∈ Ω,

‖xn+1(t) − xn(t)‖ ≤ θ(t, n)‖xn(t) − xn−1(t)‖ + λ(t)‖en(t) − en−1(t)‖, (3.11)

where

θ(t, n) = 1 − λ(t) + λ(t)κ(t, n),

κ(t, n) =
(
1 + τ(t)δ(t)−1

)(
1 − qα(t) + cqβ(t)q

)1/q

+ τ(t)δ(t)−1
[(
1 − qρ(t)�(t) + cqρ(t)qε(t)qσ(t)q

)1/q

+
(
1 +

1
n

)
ρ(t)

(
μ(t)γ(t) + ν(t)ξ(t)

)]
+

(
1 +

1
n

)
π(t)ς(t).

(3.12)

Let

κ(t) = π(t)ζ(t) +
(
1 + τ(t)δ(t)−1

)(
1 − qα(t) + cqβ(t)q

)1/q

+ τ(t)δ(t)−1
[
ρ(t)

(
μ(t)γ(t) + ν(t)ξ(t)

)
+

(
1 − qρ(t)�(t) + cqρ(t)qε(t)qσ(t)q

)1/q]
,

θ(t) = 1 − λ(t) + λ(t)κ(t).

(3.13)

Then κ(t, n) → κ(t), θ(t, n) → θ(t) as n → ∞. From the condition (3.2), we know that
0 < θ(t) < 1 for all t ∈ Ω and so there exists a positive measurable function θ̂(t) ∈ (θ(t), 1)
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such that θ(t, n) ≤ θ̂(t) for all n ≥ n0 and t ∈ Ω. Therefore, for all n > n0, by (3.11), we now
know that, for all t ∈ Ω,

‖xn+1(t) − xn(t)‖

≤ θ̂(t)‖xn(t) − xn−1(t)‖ + λ(t)‖en(t) − en−1(t)‖

≤ θ̂(t)
[
θ̂(t)‖xn−1(t) − xn−2(t)‖ + λ(t)‖en−1(t) − en−2(t)‖

]
+ λ(t)‖en(t) − en−1(t)‖

= θ̂(t)2‖xn−1 − xn−2‖ + λ(t)
[
θ̂(t)‖en−1(t) − en−2(t)‖ + ‖en(t) − en−1(t)‖

]

≤ · · ·

≤ θ̂(t)n−n0‖xn0+1 − xn0‖ + λ(t)
n−n0∑
i=1

θ̂(t)i−1
∥∥en−(i−1) − en−i

∥∥,

(3.14)

which implies that, for any m ≥ n > n0,

‖xm(t) − xn(t)‖ ≤
m−1∑
j=n

∥∥xj+1(t) − xj(t)
∥∥

≤
m−1∑
j=n

θ̂(t)j−n0‖xn0+1(t) − xn0(t)‖

+ λ(t)
m−1∑
j=n

j−n0∑
i=1

θ̂(t)i−1
∥∥en−(i−1)(t) − en−i(t)

∥∥.

(3.15)

Since 0 < λ(t) ≤ 1 and θ̂(t) < 1 for all t ∈ Ω, it follows from (2.6) and (3.15) that lim
n→∞

‖xm(t) −
xn(t)‖ = 0 and so {xn(t)} is a Cauchy sequence. Setting xn(t) → x∗(t) as n → ∞ for all t ∈ Ω.
From (3.8)–(3.10), we know that {un(t)}, {vn(t)}, {wn(t)} are also Cauchy sequences. Hence
there exist u∗(t), v∗(t), w∗(t) ∈ E such that un(t) → u∗(t), vn(t) → v∗(t), wn(t) → w∗(t) as
n → ∞.

Now, we show that u∗(t) ∈ Mt(x∗). In fact, we have

d(u∗(t),Mt(x∗)) = inf
{∥∥u∗(t) − y

∥∥ : y ∈ Mt(x∗)
}

≤ ‖u∗(t) − un(t)‖ + d(un(t),Mt(x∗))

≤ ‖u∗(t) − un(t)‖ +H(Mt(xn),Mt(x∗))

≤ ‖u∗(t) − un(t)‖ + γ(t)‖xn(t) − x∗(t)‖ −→ 0.

(3.16)

This implies that u∗(t) ∈ Mt(x∗). Similarly, we have v∗(t) ∈ Tt(x∗) and w∗(t) ∈ Gt(x∗).
Therefore, from (2.5), (2.6) and the continuity of Jρ

At(·,w)(t), p, N, and S, we have

pt(x∗) = J
ρ(t)
At(·,w∗)

(
pt(x∗) − ρ(t)Nt(St(x∗), u∗, v∗)

)
. (3.17)
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By Lemma 2.3, now we know that (x∗(t), u∗(t), v∗(t), w∗(t)) is a solution of the problem (1.2).
This completes the proof.

Remark 3.2. If E is a 2-uniformly smooth Banach space and there exists a measurable function
ρ : Ω → (0,∞) such that

k(t) = π(t)ζ(t) +
(
1 + τ(t)δ(t)−1

)√
1 − 2α(t) + C2β(t)2 < 1,

h(t) = μ(t)γ(t) + ν(t)ξ(t) <
√
C2ε(t)σ(t),

ρ(t) <
δ(t)(1 − k(t))

τ(t)h(t)
,

∣∣∣∣∣∣∣
ρ(t) − �(t)τ(t) − h(t)δ(t)(1 − k(t))

τ(t)
(
C2ε(t)2σ(t)2 − h(t)2

)

∣∣∣∣∣∣∣

<

√[
�(t)τ(t) − h(t)δ(t)(1 − k(t))

]2 −
(
C2ε(t)2σ(t)2 − h(t)2

)[
τ(t)2 − δ(t)2(1 − k(t))2

]

τ(t)
(
C2ε(t)2σ(t)2 − h(t)2

) ,

�(t)τ(t) > h(t)δ(t)(1 − k(t)) +
√(

C2ε(t)2σ(t)2 − h(t)2
)[

τ(t)2 − δ(t)2(1 − k(t))2
]
,

(3.18)

then (3.2) holds. We note that Hilbert spaces and Lp(or lp) spaces, 2 ≤ p < ∞, are 2-uniformly
smooth.

From Theorem 3.1, we can get the following theorems.

Theorem 3.3. Let E, η, S,M, T, and λ be the same as in Theorem 3.1. Assume thatA : Ω×E×E →
2E is a random multivalued operator such that, for each fixed t ∈ Ω and s ∈ E,A(t, ·, s) : E → 2E is a
generalizedm-accretive mapping. Let f : Ω×E → E be ν-Lipschitz continuous, let S : Ω×E → E
be a σ-Lipschitz continuous random operator, let G : Ω × E → E be ζ-Lipschitz continuous, and let
g : Ω × E × E → E be �-strongly accretive with respect to S and ε-Lipschitz continuous in the first
argument and μ-Lipschitz continuous in the second argument, respectively. If there exist real-valued
random variables ρ(t) > 0 and π(t) > 0 such that (3.1) holds and

ρ(t)
(
μ(t)γ(t) + ν(t)ξ(t)

)
+

(
1 − qρ(t)�(t) + cqρ(t)qε(t)qσ(t)q

)1/q
<

δ(t)(1 − π(t)ζ(t))
τ(t)

(3.19)

for all t ∈ Ω, where cq is the same as in Lemma 1.13, then, for any t ∈ Ω, the iterative
sequences {xn(t)}, {un(t)}, and {vn(t)} defined by Algorithm 2.5 converge strongly to the solution
(x∗(t), u∗(t), v∗(t)) of the problem (1.3).

Theorem 3.4. Suppose that E, p, S, η, N, M, T, and λ are the same as in Algorithm 2.4. Let A :
Ω × E → 2E be a random multivalued operator such that, for each fixed t ∈ Ω, A(t, ·) : E → 2E
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is a generalized m-accretive mapping and Range(p)
⋂
domA(t, ·)/= ∅. If there exists a real-valued

random variable ρ(t) > 0 such that, for any t ∈ Ω,

k(t) =
(
1 + τ(t)δ(t)−1

)(
1 − qα(t) + cqβ(t)q

)1/q
< 1,

ρ(t)
(
μ(t)γ(t) + ν(t)ξ(t)

)
+

(
1 − qρ(t)�(t) + cqρ(t)qε(t)qσ(t)q

)1/q
< δ(t)τ(t)−1(1 − k(t)),

(3.20)

where cq is the same as in Lemma 1.13, then, for any t ∈ Ω, the iterative sequences {xn(t)}, {un(t)},
and {vn(t)} defined by Algorithm 2.6 converge strongly to the solution (x∗(t), u∗(t), v∗(t)) of the
problem (1.4).

Remark 3.5. For an appropriate choice of the mappings S, p, A, M, T, G, N, η and the
space E, Theorems 3.1–3.4 include many known results of generalized variational inclusions
as special cases (see [2, 4–9, 12, 17–23, 25, 26, 29] and the references therein).
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