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We prove that the Hamy symmetric function Fn(x, r) =
∑

1≤i1<i2<···<ir≤n (
∏r

j=1xij )
1/r is Schur

harmonic convex for x ∈ Rn
+. As its applications, some analytic inequalities including the well-

known Weierstrass inequalities are obtained.
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1. Introduction
Throughout this paper we use R n to denote the n-dimensional Euclidean space over the field
of real numbers, and Rn

+ = {x = (x1, x2, . . . , xn) ∈ R n : xi > 0, i = 1, 2, . . . , n} .
For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn

+ and α > 0, we denote by

x + y =
(
x1 + y1, x2 + y2, . . . , xn + yn

)
,

xy =
(
x1y1, x2y2, . . . , xnyn

)
,

αx = (αx1, αx2, . . . , αxn)
1
x
=
(

1
x1

,
1
x2

, . . . ,
1
xn

)

.

(1.1)

For x = (x1, x2, . . . , xn) ∈ Rn
+, the Hamy symmetric function [1–3]was defined as

Fn (x, r) = Fn (x1, x2, . . . , xn; r)

=
∑

1≤i1<i2<···<ir≤n

⎛

⎝
r∏

j=1

xij

⎞

⎠

1/r

, r = 1, 2, . . . , n.
(1.2)
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Corresponding to this is the rth order Hamy mean

σn (x, r) = σn (x1, x2, . . . , xn; r) =
1

(
n

r

)Fn (x, r) , (1.3)

where
(

n

r

)
= n!/(n− r)!r!. Hara et al. [1] established the following refinement of the classical

arithmetic and geometric means inequality:

Gn (x) = σn (x, n) ≤ σn (x, n − 1) ≤ · · · ≤ σn (x, 2) ≤ σn (x, 1) = An (x) . (1.4)

Here An(x) = 1/n
∑n

i=1 xi and Gn(x) = (
∏n

i=1xi)
1/n denote the classical arithmetic and

geometric means, respectively.
The paper [4] by Ku et al. contains some interesting inequalities including the fact that

(σn(x, r))
r is log-concave, the more results can also be found in the book [5] by Bullen. In [2],

the Schur convexity of Hamy’s symmetric function and its generalization were discussed. In
[3] , Jiang defined the dual form of the Hamy symmetric function as follows:

H∗
n (x, r) =

∏

1≤i1<i2<···<ir≤n

⎛

⎝
r∑

j=1

xij
1/r

⎞

⎠ , r = 1, 2, . . . , n, (1.5)

discussed the Schur concavity Schur convexity of H∗
n(x, r), and established some analytic

inequalities.
The main purpose of this paper is to investigate the Schur harmonic convexity of

the Hamy symmetric function Fn(x, r). Some analytic inequalities including Weierstrass
inequalities are established.

2. Definitions and Lemmas

Schur convexity was introduced by Schur in 1923 [6], and it has many important applications
in analytic inequalities [7–12], linear regression [13], graphs and matrices [14], combinatorial
optimization [15], information-theoretic topics [16], Gamma functions [17], stochastic
orderings [18], reliability [19], and other related fields.

For convenience of readers, we recall some definitions as follows.

Definition 2.1. A set E1 ⊆ Rn is called a convex set if (x + y)/2 ∈ E1 whenever x, y ∈ E1. A set
E2 ⊆ Rn

+ is called a harmonic convex set if 2xy/(x + y) ∈ E2 whenever x, y ∈ E2.
It is easy to see that E ⊆ Rn

+ is a harmonic convex set if and only if 1/E = {1/x : x ∈ E}
is a convex set.

Definition 2.2. Let E ⊆ Rn be a convex set a function f : E → R1 is said to be convex on E if
f((x + y)/2) ≤ (f(x) + f(y))/2 for all x, y ∈ E. Moreover, f is called a concave function if −f
is a convex function.
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Definition 2.3. Let E ⊆ Rn
+ be a harmonic convex set a function f : E → R1

+ is called a harmonic
convex (or concave, resp.) function on E if f(2xy/(x + y)) ≤ (or ≥ resp.) 2f(x)f(y)/(f(x) +
f(y)) for all x, y ∈ E.

Definitions 2.2 and 2.3 have the following consequences.

Fact A. If E1 ⊆ Rn
+ is a harmonic convex set and f : E1 → R1

+ is a harmonic convex function,
then

F (x) =
1

f (1/x)
:
1
E1

−→ R1
+ (2.1)

is a concave function. Conversely, if E2 ⊆ Rn
+ is a convex set and F : E2 → R1

+ is a convex
function, then

f (x) =
1

F (1/x)
:
1
E2

−→ R1
+ (2.2)

is a harmonic concave function.

Definition 2.4. Let E ⊆ Rn be a set a function F : E → R1 is called a Schur convex function on
E if

F (x1, x2, . . . , xn) ≤ F
(
y1, y2, . . . , yn

)
(2.3)

for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in E, such that x ≺ y, that
is,

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n − 1,

n∑

i=1

x[i] =
n∑

i=1

y[i],

(2.4)

where x[i] denotes the ith largest component in x. F is called a Schur concave function on E
if −F is a Schur convex function on E .

Definition 2.5. Let E ⊆ Rn
+ be a set a function F : E → R1

+ is called a Schur harmonic convex
(or concave, resp.) function on E if

F

(
1
x1

,
1
x2

, . . . ,
1
xn

)

≤ (
or ≥ resp.

)
F

(
1
y1

,
1
y2

, . . . ,
1
yn

)

(2.5)

for each pair of x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in E, such that x ≺ y.

Definitions 2.4 and 2.5 have the following consequences.
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Fact B. Let E ⊆ Rn
+ be a set, and H = 1/E = {1/x : x ∈ E}, then f : E → R1

+ is a Schur
harmonic convex (or concave, resp.) function on E if and only if 1/f(1/x) is a Schur concave
(or convex, resp.) function on H.

The notion of generalized convex function was first introduced by Aczél in [20]. Later,
many authors established inequalities by using harmonic convex function theory [21–28].
Recently, Anderson et al. [29] discussed an attractive class of inequalities, which arise from
the notation of harmonic convex functions.

The following well-known result was proved by Marshall and Olkin [6].

TheoremA. Let E ⊆ Rn be a symmetric convex set with nonempty interior intE, and let ϕ : E → R1

be a continuous symmetric function on E. If ϕ is differentiable on intE, then ϕ is Schur convex (or
concave, resp.) on E if and only if

(
xi − xj

)
(

∂ϕ

∂xi
− ∂ϕ

∂xj

)

≥ (or ≤ resp.) 0 (2.6)

for all i, j = 1, 2, . . . , n and (x1, x2, . . . , xn) ∈ intE. Here, E is a symmetric set means that x ∈ E
implies Px ∈ E for any n × n permutation matrix P .

Remark 2.6. Since ϕ is symmetric, the Schur’s condition in Theorem A, that is, (2.6) can be
reduced to

(x1 − x2)
(

∂ϕ

∂x1
− ∂ϕ

∂x2

)

≥ (
or ≤ resp.

)
0. (2.7)

The following Lemma 2.7 can easily be derived from Fact B, Theorem A and
Remark 2.6 together with elementary computation.

Lemma 2.7. Let E ⊆ Rn
+ be a symmetric harmonic convex set with nonempty interior intE, and let

ϕ : E → R1
+ be a continuous symmetry function on E. If ϕ is differentiable on intE, then ϕ is Schur

harmonic convex (or concave, resp.) on E if and only if

(x1 − x2)
(

x1
2 ∂ϕ

∂x1
− x2

2 ∂ϕ

∂x2

)

≥ (or ≤ resp.) 0 (2.8)

for all (x1, x2, . . . , xn) ∈ intE.

Next we introduce two lemmas, which are used in Sections 3 and 4.
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Lemma 2.8 (see [5, page 234]). For x = (x1, x2, . . . , xn) ∈ Rn
+, if th rth order symmetric function

is defined as

En (x, r) = En (x1, x2, . . . , xn; r)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, r < 0 or r > n,

1, r = 0,

∑

1≤i1<i2<···<ir≤n

⎛

⎝
r∏

j=1

xij

⎞

⎠ , r = 1, 2, . . . , n,

(2.9)

then

En (x1, x2, . . . , xn; r) = x1x2En−2 (x3, x4, . . . , xn; r − 2)

+ (x1 + x2)En−2 (x3, x4, . . . , xn; r − 1)

+ En−2 (x3, x4, . . . , xn; r) .

(2.10)

Lemma 2.9 (see [2, Lemma 2.2]). Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+ and

∑n
i=1 xi = s. If

c ≥ s, then

(i)
c − x

nc/s − 1
=
(

c − x1

nc/s − 1
,

c − x2

nc/s − 1
, . . . ,

c − xn

nc/s − 1

)

≺ (x1, x2, . . . , xn) = x;

(ii)
c + x

nc/s + 1
=
(

c + x1

nc/s + 1
,

c + x2

nc/s + 1
, . . . ,

c + xn

nc/s + 1

)

≺ (x1, x2, . . . , xn) = x.

(2.11)

3. Main Result

In this section, we give and prove the main result of this paper.

Theorem 3.1. The Hamy symmetric function Fn(x, r), r = 1, 2, . . . , n, is Schur harmonic convex in
Rn

+.

Proof. By Lemma 2.7, we only need to prove that

(x1 − x2)
(

x1
2 ∂Fn (x, r)

∂x1
− x2

2 ∂Fn (x, r)
∂x2

)

≥ 0. (3.1)

To prove (3.1), we consider the following possible cases for r.

Case 1 (r = 1). Then (1.2) leads to Fn(x, 1) =
∑n

i=1 xi, and (3.1) is clearly true.

Case 2 (r = n). Then (1.2) leads to the following identity:

(x1 − x2)
(

x1
2 ∂Fn (x, n)

∂x1
− x2

2 ∂Fn (x, n)
∂x2

)

=
Fn (x, n)

n
(x1 − x2)2, (3.2)

and therefore, (3.1) follows from (3.2).
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Case 3 (r = n − 1). Then (1.2) leads to

Fn (x, n − 1) =
n∑

i=1

(∏n
j=1xj

xi

)1/(n−1)
. (3.3)

Simple computation yields

x1
2 ∂Fn (x, n − 1)

∂x1
=

x1

n − 1

⎡

⎢
⎣x

−1/(n−1)
2

⎛

⎝
n∏

j=1

xj

⎞

⎠

1/(n−1)

+
n∑

i=3

(∏n
j=1xj

xi

)1/(n−1)
⎤

⎥
⎦

x2
2 ∂Fn (x, n − 1)

∂x2
=

x2

n − 1

⎡

⎢
⎣x

−1/(n−1)
1

⎛

⎝
n∏

j=1

xj

⎞

⎠

1/(n−1)

+
n∑

i=3

(∏n
j=1xj

xi

)1/(n−1)
⎤

⎥
⎦ .

(3.4)

From (3.4)we get

(x1 − x2)
(

x1
2 ∂Fn (x, n − 1)

∂x1
− x2

2 ∂Fn (x, n − 1)
∂x2

)

=
1

n − 1
(x1 − x2)

(
x
1+1/(n−1)
1 − x1+1/n

2

)
⎛

⎝
n∏

j=3

xj

⎞

⎠

1/(n−1)

+
(x1 − x2)2

n − 1

n∑

i=3

(∏n
j=1xj

xi

)1/(n−1)
.

(3.5)

Therefore, (3.1) follows from (3.5) and the fact that x1+ 1/(n−1) is increasing in R1
+.

Case 4 (r = 2, 3, . . . , n − 2). Fix r and let u = (u1, u2, . . . , un) and ui = x1/r
i , i = 1, 2, . . . , n. We

have the following identity:

Fn (x1, x2, . . . , xn; r) = En (u1, u2, . . . , un; r) . (3.6)
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Differentiating (3.6) with respect to x1 and x2, respectively, and using Lemma 2.8, we
get

∂Fn (x, r)
∂x1

=
n∑

i=1

∂En (u, r)
∂ui

· ∂ui

∂x1
=

∂En (u, r)
∂u1

· ∂u1

∂x1

=
1
rx1

r
√
x1x2En−2 (u3, u4, . . . , un; r − 2)

+
r
√
x1

rx1
En−2 (u3, u4, . . . , un; r − 1) ,

∂Fn (x, r)
∂x2

=
1
rx2

r
√
x1x2En−2 (u3, u4, . . . , un; r − 2)

+
r
√
x2

rx2
En−2 (u3, u4, . . . , un; r − 1) .

(3.7)

From (3.7) we obtain

(x1 − x2)
(

x1
2 ∂Fn (x, r)

∂x1
− x2

2 ∂Fn (x, r)
∂x2

)

=
r
√
x1x2

r
(x1 − x2)2En−2 (u3, u4, . . . , un; r − 2)

+
1
r
(x1 − x2)

(
x1+ 1/r
1 − x1+ 1/r

2

)
En−2 (u3, u4, . . . , un; r − 1) .

(3.8)

Therefore, (3.1) follows from (3.8) and the fact that x1+ 1/r is increasing in R1
+.

4. Applications

In this section, making use of our main result, we give some inequalities.

Theorem 4.1. Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+ with

∑n
i=1 xi = s. If c ≥ s and r = 1, 2, . . . , n,

then

(i)
(
nc

s
− 1

)

Fn

(
1

c − x1
,

1
c − x2

, . . . ,
1

c − xn
; r
)

≤ Fn

(
1
x1

,
1
x2

, . . . ,
1
xn

; r
)

;

(ii)
(
nc

s
+ 1

)

Fn

(
1

c + x1
,

1
c + x2

, . . . ,
1

c + xn
; r
)

≤ Fn

(
1
x1

,
1
x2

, . . . ,
1
xn

; r
)

.

(4.1)

Proof. The proof follows from Theorem 3.1 and Lemma 2.9 together with (1.2).

If taking r = 1 and r = n in Theorem 4.1, respectively, then we have the following
corollaries.
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Corollary 4.2. Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+ with

∑n
i=1 xi = s. If c ≥ s, then

(i)
∑n

i=1 1/xi
∑n

i=1 1/ (c − xi )
≥ nc

s
− 1;

(ii)
∑n

i=1 1/xi
∑n

i=1 1/ (c + xi )
≥ nc

s
+ 1.

(4.2)

Corollary 4.3. Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+ with

∑n
i=1 xi = s. If c ≥ s, then

(i)
n∏

i=1

c − xi

xi
≥
(
nc

s
− 1

)n

;

(ii)
n∏

i=1

c + xi

xi
≥
(
nc

s
+ 1

)n

.

(4.3)

Taking c = s = 1 in Corollaries 4.2 and 4.3, respectively, we get the following.

Corollary 4.4. If xi > 0, i = 1, 2, . . . , n, and
∑n

i=1 xi = 1, then

(i)
∑n

i=1 1/xi
∑n

i=1 1/ (1 − xi)
≥ n − 1;

(ii)
∑n

i=1 1/xi
∑n

i=1 1/ (1 + xi)
≥ n + 1.

(4.4)

Corollary 4.5 (Weierstrass inequalities [30, Page 260]). If xi > 0, i = 1, 2, . . . , n, and
∑n

i=1 xi = 1,
then

(i)
n∏

i=1

(
x−1
i − 1

)
≥ (n − 1)n;

(ii)
n∏

i=1

(
x−1
i + 1

)
≥ (n + 1)n.

(4.5)

Theorem 4.6. If x = (x1, x2, . . . , xn) ∈ Rn
+ and r ∈ {1, 2, . . . , n}, then

Fn (x, r) = Fn (x1, x2, . . . , xn; r) ≥ n (n!)
r! (n − r)!

∑n
i=1 1/xi

. (4.6)

Proof. Let t = (1/n)
∑n

i=1 1/xi , and T = (t, t, . . . , t) be the n-tuple, then obviously

T = (t, t, . . . , t) ≺
(

1
x1

,
1
x2

, . . . ,
1
xn

)

=
1
x
. (4.7)
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Therefore, Theorem 4.6 follows from Theorem 3.1, (4.7) ,and (1.2).

Theorem 4.7. Let A be an n-dimensional simplex in n-dimensional Euclidean space Rn(n ≥ 3), and
{A1, A2, . . . , An+1} be the set of vertices. Let P be an arbitrary point in the interior of A. If Bi is the
intersection point of the extension line of AiP and the (n − 1)-dimensional hyperplane opposite to the
point A, and r ∈ {1, 2, . . . , n + 1}, then one has

Fn+1

(
A1B1

PB1
,
A2B2

PB2
, . . . ,

An+1Bn+1

PBn+1
; r
)

≥ (n + 1) [(n + 1)!]
r! (n − r + 1)!

,

Fn+1

(
A1B1

PA1
,
A2B2

PA2
, . . . ,

An+1Bn+1

PAn+1
; r
)

≥ (n + 1) [(n + 1)!]
n · r! (n − r + 1)!

.

(4.8)

Proof. It is easy to see that

n+1∑

i=1

PBi

AiBi
= 1,

n+1∑

i=1

PAi

AiBi
= n.

(4.9)

(4.9) implies that

(
1

n + 1
,

1
n + 1

, . . . ,
1

n + 1

)

≺
(

PB1

A1B1
,
PB2

A2B2
, . . . ,

PBn+1

An+1Bn+1

)

,

(
n

n + 1
,

n

n + 1
, . . . ,

n

n + 1

)

≺
(

PA1

A1B1
,
PA2

A2B2
, . . . ,

PAn+1

An+1Bn+1

)

.

(4.10)

Therefore, Theorem 4.7 follows from Theorem 3.1, (4.10), and (1.2).
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