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Essentially sharp Markov-type inequalities are known for various classes of polynomials with
constraints including constraints of the coefficients of the polynomials. For N and δ > 0 we
introduce the class Fn,δ as the collection of all polynomials of the form P(x) =

∑n
k=h akx

k , ak ∈ Z,
|ak | ≤ nδ , |ah| = maxh≤k≤n|ak |. In this paper, we prove essentially sharp Markov-type inequalities
for polynomials from the classes Fn,δ on [0, 1]. Our main result shows that the Markov factor 2n2

valid for all polynomials of degree at most n on [0, 1] improves to cδn log(n + 1) for polynomials
in the classes Fn,δ on [0, 1].
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1. Introduction

In this paper, n always denotes a nonnegative integer; c and ci always denote absolute
positive constants. In this paper cδ will always denote a positive constant depending only
on δ the value of which may vary from place to place. We use the usual notation Lp =
Lp[a, b] (0 < p ≤ ∞,−∞ ≤ a < b ≤ ∞) to denote the Banach space of functions defined
on [a, b]with the norms
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We introduce the following classes of polynomials. Let

Pn =

{

f : f(x) =
n∑

i=0

aix
i, ai ∈ R

}

(1.2)

denote the set of all algebraic polynomials of degree at most n with real coefficients. Let

Pc
n =

{

f : f(x) =
n∑

i=0

aix
i, ai ∈ C

}

(1.3)

denote the set of all algebraic polynomials of degree at most nwith complex coefficients. For
δ > 0 we introduce the class Fn,δ as the collection of all polynomials of the form

P(x) =
n∑

k=h

akx
k, ak ∈ Z, |ak| ≤ nδ, |ah| = max

h≤k≤n
|ak|. (1.4)

So obviously

Fn,δ ⊂ Pn ⊂ Pc
n. (1.5)

The following so-called Markov inequality is an important tool to prove inverse
theorems in approximation theory. See, for example, Duffin and Schaeffer [1], Devore and
Lorentz [2], and Borwein and Erdelyi [3].
Markov inequality. The inequality

∥
∥P ′∥∥

p ≤ n2‖P‖p, 1 ≤ p ≤ ∞ (1.6)

holds for every P ∈ Pn.
It is well known that there have been some improvements of Markov-type inequality

when the coefficients of polynomial are restricted; see, for example, [3–7]. In [5], Borwein and
Erdélyi restricted the coefficients of polynomials and improved the Markov inequality as in
following form.

Theorem 1.1. There is an absolute constant c > 0 such that

∥
∥P ′∥∥

[0,1] ≤ cn log(n + 1)‖P‖[0,1] (1.7)

for every P ∈ Ln = {f : f(x) =
∑n

i=0 aix
i, ai ∈ {−1, 0, 1}}.

We notice that the coefficients of polynomials in Ln only take three integers: −1, 0, and
1. So, it is natural to raise the question: can we take the coefficients of polynomials as more
general integers, and the conclusion of the theorem still holds? This question was not posed
by Borwein and Erdélyi in [5, 6]. Also, we have not found the study for the question by now.
This paper addresses the question. We shall give an affirmative answer. Indeed, we will prove
the following results.
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Theorem 1.2. There are an absolute constant c1 > 0 and a positive constant cδ depending only on δ
such that

c1n log(n + 1) ≤ max
0/=Pn∈Fn,δ

|P ′
n(1)|

‖Pn‖[0,1]
≤ max

0/=Pn∈Fn,δ

‖P ′
n‖[0,1]

‖Pn‖[0,1]
≤ cδn log(n + 1). (1.8)

Our proof follows [6] closely.

Remark 1.3. Theorem 1.2 does not contradict [6, Theorem 2.4] since the coefficients of
polynomials in Fn,δ are assumed to be integers, in which case there is a room for
improvement.

2. The Proof of Theorem

In order to prove our main results, we need the following lemmas.

Lemma 2.1. Let M ∈ R and n,m ∈ N. Suppose m ≤ M ≤ 2n, f is analytical inside and on the
ellipse An,M, which has focal points (0, 0) and (1, 0), and major axis

[

−M
n
, 1 +

M

n

]

. (2.1)

Let Bn,m,M be the ellipse with focal points (0, 1) and (1, 0), and major axis

[

− m2

nM
, 1 +

m2

nM

]

. (2.2)

Then there is an absolute constant c3 > 0 such that

max
z∈Bn,m,M

log
∣
∣f(z)

∣
∣ ≤ max

z∈[0,1]
log

∣
∣f(z)

∣
∣ +

c3m

M

(

max
z∈An,m

log
∣
∣f(z)

∣
∣ − max

z∈[0,1]
log

∣
∣f(z)

∣
∣
)

. (2.3)

Proof. The proof of Lemma 2.1 is mainly based on the famous Hadamard’s Three Circles
Theorem and the proof [6, Corollary 3.2]. In fact, if one uses it with n replaced by n/m and α
replaced by M/m, Lemma 2.1 follows immediately from [6, Corollary 3.2].

Lemma 2.2. Let P ∈ Fn,δ with ‖P‖[0,1] = exp(−M), M ≥ log(n + 1). Suppose m ∈ N and
1 ≤ m ≤ M. Then there is a constant cδ ≥ 2 such that

∥
∥
∥P (m)

∥
∥
∥
[0,1]

≤ m!
(
cδnM

m2

)m

‖P‖[0,1]. (2.4)
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Proof. By Chebyshev’s inequality, there is an sn−1 ∈ Pn−1 such that

‖P(x)‖[0,1] =
∥
∥
∥
∥P

(
y + 1
2

)∥
∥
∥
∥
[−1,1]

= 2−n

∥
∥
∥
∥
∥
∥

n∑

j=0

2n−jaj

(
y + 1

)j

∥
∥
∥
∥
∥
∥
[−1,1]

= 2−n|an|
∥
∥yn − sn−1

∥
∥
[−1,1] ≥ 2−n × 21−n = 2 × 4−n,

(2.5)

for every P ∈ Fn,δ with an /= 0. Therefore,M ≤ n log 4. Because of the assumption on P ∈ Fn,δ,
we can write

max
z∈[0,1]

log|P(z)| = −M. (2.6)

Recalling the facts that

max
z∈An,M

|z| ≤ 1 +
M

n
, (2.7)

P ∈ Fn,δ, and z ∈ An,M we obtain

log|P(z)| = log
n∑

k=0

∣
∣
∣akz

k
∣
∣
∣ ≤ log

(

nδ(n + 1)
(

1 +
M

n

)n+1
)

≤ log
(
nδ

)
+ log(n + 1) + (n + 1)

M

n
≤ cδM.

(2.8)

Now by Lemma 2.1 we have

max
z∈Bn,m,M

|P(z)| = max
z∈Bn,m,M

exp
(
log|P(z)|)

≤ max
z∈[0,1]

exp
(
log|P(z)|) exp

(
c3m

M

(

max
z∈An,M

log|P(z)| − max
z∈[0,1]

log|P(z)|
))

≤ max
z∈[0,1]

|P(z)| exp
(c3m

M
(cδ + 1)M

)
≤ (cδ)m max

z∈[0,1]
|P(z)|.

(2.9)

Let y ∈ [0, 1], then there is an absolute constant c4 ≥ 2 such that

Bρ :=

{

w :
∣
∣w − y

∣
∣ = ρ :=

m2

c4nM

}

⊆ Bn,m,M. (2.10)
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By Cauchy’s integral formula and the above inequality, we obtain

∣
∣
∣P (m)(y

)∣∣
∣ =

∣
∣
∣
∣
∣

m!
2πi

∫

Bn,m,M

P(z)
(
z − y

)m+1
dz

∣
∣
∣
∣
∣

≤ m!
2π

(cδ)m‖P‖[0,1]
∫

Bρ

dz
(
z − y

)m+1
≤ m!

2π
(cδ)m‖P‖[0,1]

∫

Bρ

ρdeiθ

ρm+1

≤ m!
(
cδnM

m2

)m

‖P‖[0,1].

(2.11)

The proof of Lemma 2.2 is complete.

Proof of Theorem 1.2. Noting Fn,δ ⊇ Ln and the fact

c1n log(n + 1) ≤ max
0/=Pn∈Ln

|P ′
n(1)|

‖Pn‖[0,1]
(2.12)

proved by [6], we only need to prove the upper bound. To obtain

∣
∣P ′(y

)∣
∣ ≤ cδn log(n + 1)‖P‖[0,1], (2.13)

we distinguish four cases.

Case 1. y ∈ [0, 1/4]. Let y be an arbitrary number in [0, 1/4], then

∣
∣P ′(y

)∣
∣ ≤ |ah|nyh

(
1 + y + y2 + · · ·

)

≤ 2|ah|nyh
(
1 − y − y2 − · · ·

)

= 2nyh
(
|ah| − |ah|y − |ah|y2 − · · ·

)

≤ 2n
∣
∣P

(
y
)∣
∣

≤ 2n‖P‖[0,1].

(2.14)

Case 2. y ∈ [1 − μ2/cδnM, 1] and ‖P‖[0,1] = exp(−M) ≤ (2n + 2)−4, where μ = min{[M], k}
and k denotes the number of zeros of P at 1. Let n be a positive integer. If P ∈ Fn,δ satisfies
the assumptions, then |P (k)(1)|/= 0, and P (r)(1) = 0 (0 ≤ r < k). Therefore, Markov inequality
implies

1 ≤
∣
∣
∣P (k)(1)

∣
∣
∣ ≤ n2 · · · (n − k + 1)2‖P‖[0,1] ≤ (2n)2k exp(−M). (2.15)
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Hence

k ≥ M

2 log(2n)
. (2.16)

So, the last inequality and M ≥ 4 log(2n + 2) imply

μ ≥ min
{

M − 1,
M

2 log(2n)

}

≥ M

2 log(2n + 2)
≥ 2,

M

μ
≤ 2 log(2n + 2).

(2.17)

Now using Taylor’s theorem, Lemma 2.2 with m = μ − 1, the above inequality, and the fact
P (r)(1) = 0 (0 ≤ r < k), we obtain

∣
∣P ′(y

)∣
∣ ≤ 1

(
μ − 1

)
!

∥
∥
∥
(
P ′)(μ−1)

∥
∥
∥
[1−y,1]

(
1 − y

)μ−1

≤ μ!
(
μ − 1

)
!

(
cδnM

μ2

)μ

‖P‖[0,1]
(
1 − y

)μ−1

≤ μ!
(
μ − 1

)
!

(
cδnM

μ2

)μ

‖P‖[0,1]
(

μ2

cδnM

)μ−1

≤ 21−μcδn
M

μ
‖P‖[0,1] ≤ cδn log(2n + 2)‖P‖[0,1].

(2.18)

Case 3. y ∈ [1/4, 1 − μ2/cδnM] and ‖P‖[0,1] = exp(−M) ≤ (2n + 2)−4. Let (u, v) ∈ Bn,m,M. We
have u = 1/2 + a cos θ, v = b sin θ, where 2a and 2b are the major axis and minor axis of
Bn,m,M, respectively, and 0 ≤ θ < 2π . Let m = 1, we see

a =
1
2
+

1
nM

, b =

√
1

nM

(

1 +
1

nM

)

. (2.19)

Denote

h(θ) =
(
1
2
− y + a cos θ

)2

+ b2sin2θ. (2.20)

The solution of equation h′(θ) = 0 is

cos θ1 = 4a
(

y − 1
2

)

, sin θ2 = 0. (2.21)
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It is obvious that

min
θ∈[0,2π)

h(θ) = h(θ1). (2.22)

So, a2 = b2 + 1/4 and the assumption of Lemma 2.2 imply

h(θ1) =
(

y − 1
2

)2(
4a2 − 1

)2
+ b2

(

1 − 16a2
(

y − 1
2

)2
)

= b2 +
(

y − 1
2

)2(
16a4 − 8a2 + 1 − 16a2b2

)

= b2 +
(

y − 1
2

)2(
1 − 4a2

)
= b2

(
1 − (

2y − 1
)2
)

= 4b2y
(
1 − y

) ≥ μ2

cδ(nM)2
.

(2.23)

And from (2.17) and Cauchy’s integral formula, it follows that for every y ∈ [1/4, 1 −
μ2/cδnM],

Bρ′ :=

⎧
⎨

⎩
w :

∣
∣w − y

∣
∣ ≤ ρ′ =

√
μ2

cδnM

⎫
⎬

⎭
⊆ Bn,1,M, (2.24)

and there holds

∣
∣P ′(y

)∣
∣ =

∣
∣
∣
∣
∣

1
2πi

∫

Bn,1,M

P(z)
(
z − y

)2dz

∣
∣
∣
∣
∣

≤ cδ‖P‖[0,1]
∣
∣
∣
∣
∣

∫

Bρ′

ρ′
(
ρ′)2

deiθ
∣
∣
∣
∣
∣

≤ cδ
nM

μ2 ‖P‖[0,1]

≤ cδn log(n + 1)‖P‖[0,1].

(2.25)

Case 4. ‖P‖[0,1] ≥ (2n + 2)−4. Applying Lemma 2.1 with m = 1 and M = log(n + 2), we obtain
that there is constant cδ > 0 such that

max
z∈Bn,1,log(n+2)

|P(z)| ≤ cδ‖P‖[0,1]. (2.26)
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Indeed, noting that

max
z∈[0,1]

log|P(z)| ≥ −4 log(2n + 2),

max
z∈An,log(n+2)

log|P(z)| ≤ log

(

nδ

(

1 +
log(n + 2)

n

)n+1
)

≤ cδ log(n + 2),
(2.27)

we get the result want to be proved by a simple modification of the proof of Lemma 2.2. We
omit the details. The proof of Theorem 1.2 is complete.
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[6] P. Borwein and T. Erdélyi, “Markov-Bernstein type inequalities under Littlewood-type coefficient
constraints,” Indagationes Mathematicae, vol. 11, no. 2, pp. 159–172, 2000.
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