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1. Introduction and Preliminaries

Let H denote the class of all analytic functions f in the unit disk D = {z ∈ C : |z| < 1}. For
n ≥ 0, a positive integer, let

An =

{
f ∈ H : f(z) = z +

∞∑
k=1

an+kz
n+k

}
, (1.1)

with A1 := A, where A is referred to as the normalized analytic functions in the unit disc. A
function f ∈ A is called starlike inD if f(D) is starlike with respect to the origin. The class of
all starlike functions is denoted by S∗ := S∗(0). For α < 1, we define

S∗(α) =
{
f ∈ A : Re

(
zf ′(z)
f(z)

)
> α, z ∈ D

}
, (1.2)

and it is called the class of all starlike functions of order α. Clearly, S∗(α) ⊆ S∗ for 0 < α < 1.
For functions fj(z), given by

fj(z) =
∞∑
k=0

ak,jz
k,
(
j = 1, 2

)
, (1.3)
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we define the Hadamard product (or convolution) of f1(z) and f2(z) by

(
f1 ∗ f2

)
(z) :=

∞∑
k=0

ak,1ak,2z
k =:
(
f2 ∗ f1

)
(z). (1.4)

An interesting subclass of S (the class of all analytic univalent functions) is denoted by
U(α, μ, λ) and is defined by

U
(
α, μ, λ

)
=

{
f ∈ A :

∣∣∣∣∣(1 − α)
(

z

f(z)

)μ

+ α

(
z

f(z)

)μ+1

f ′(z) − 1

∣∣∣∣∣ < λ, z ∈ D

}
, (1.5)

where 0 < α ≤ 1, 0 ≤ μ < αn, and λ > 0.
The special case of this class has been studied by Ponnusamy and Vasundhra [1] and

Obradović et al. [2].
For a,b,c ∈ C and c/= 0,-1,-2,. . ., the Gussian hypergeometric series F(a,b;c;z) is defined

as

F(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, z ∈ D, (1.6)

where (a)n = a(a + 1)(a + 2) · · · (a + n − 1) and (a)0 = 1. It is well-known that F(a, b; c; z) is
analytic in D. As a special case of the Euler integral representation for the hypergeometric
function, we have

F(1, b; c; z) =
Γ(c)

Γ(b)Γ(c − b)

∫1

0

1
1 − tz

tb−1(1 − t)c−b−1dt, z ∈ D, Re c > Re b > 0. (1.7)

Now by letting

φ(a; c; z) := F(1, a; c; z), (1.8)

it is easily seen that

zφ(a; c + 1; z)′ = cφ(a; c; z) − cφ(a; c + 1; z). (1.9)

For f ∈ A, Owa and Srivastava [3] introduced the operator Ωλ : A 	→ A defined by

Ωλf(z) =
Γ(2 − λ)
Γ(1 − λ)

zλ
d

dz

∫z

0

f(t)

(z − t)λ
dt, (λ/= 2, 3, 4 . . .), (1.10)
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which is extensions involving fractional derivatives and fractional integrals. Using definition
of φ(a; c; z) := F(1, a; c; z)we may write

Ωλf(z) = zφ(2; 2 − λ; z) ∗ f(z). (1.11)

This operator has been studied by Srivastava et al. [4] and Srivastava and Mishra [5].
Also for λ < 1, Re α > 0, and f(z) = z +

∑∞
k=2akz

k, let us define the function F by

F(z) := λz +
1 − λ

α

∫1

0
t(1/α)−2f(tz)dt

= z + (1 − λ)
∞∑
k=2

ak

(k − 1)α + 1
zk.

(1.12)

This operator has been investigated by many authors such as Trimble [6], and
Obradović et al. [7].

If we take

ψ
(
m, γ, z

)
= 1 + (1 −m)

∞∑
k=2

1
(k − 1)γ + 1

zk, (1.13)

then we can rewrite operator F defined by (1.11) as

F(z) = z

(
ψ(λ, α, z) ∗ f(z)

z

)
. (1.14)

From the definition of ψ(m, γ, z) it is easy to check that

zψ ′(m, γ, z
)
+
1
γ
ψ
(
m, γ, z

)
=

1
γ

[
1 + (1 −m)

z

1 − z

]
. (1.15)

For f ∈ U(α, μ, λ)with (z/f(z))μ∗φ(a; c+1; z)/= 0 for all z ∈ Dwe define the transform
G by

G(z) = z

(
1(

z/f(z)
)μ ∗ φ(a; c + 1; z)

)1/μ

, (1.16)

where a, c ∈ C and c /= 0,−1,−2, . . . .
Also for f ∈ U(α, μ, λ) with (z/f(z))μ ∗ ψ(m, γ, z)/= 0 for all z ∈ D we define the

transform H by

H(z) = z

(
1(

z/f(z)
)μ ∗ ψ(m, γ, z)

)1/μ

, (1.17)

where m < 1 and γ /= 0; Re γ ≥ 0.
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In this investigation we aim to find conditions on α, μ, λ such that f ∈ U(α, μ, λ)
implies that the function f to be starlike. Also we find conditions on α, μ, λ,m, γ, a, c for each
f ∈ U(α, μ, λ); the transforms G andH belong toU(α, μ, λ) and S∗.

For proving our results we need the following lemmas.

Lemma 1.1 (cf. Hallenbeck and Ruscheweyh [8]). Let h(z) be analytic and convex univalent in
the unit disk D with h(0) = 1. Also let

g(z) = 1 + b1z + b2z
2 + · · · (1.18)

be analytic in D. If

g(z) +
zg ′(z)

c
≺ h(z) (z ∈ U; c /= 0), (1.19)

then

g(z) ≺ ψ(z) =
c

zc

∫z

0
tc−1h(t)dt ≺ h(z) (z ∈ D; Re c ≥ 0; c /= 0). (1.20)

and ψ(z) is the best dominant of (1.20).

Lemma 1.2 (cf. Ruscheweyh and Stankiewicz [8]). If f andg are analytic and F and G are
convex functions such that f ≺ F, g ≺ G, then f ∗ g ≺ F ∗G.

Lemma 1.3 (cf. Ruscheweyh and Sheil-Small [9]). Let F and G be univalent convex functions in
D. Then the Hadamard product F ∗G is also univalent convex in D.

2. Main Results

We follow the method of proof adopted in [1, 10].

Theorem 2.1. Let n be positive integer with n ≥ 2. Also let (n+1)/2n < α ≤ 1 and n(1−α) < μ < αn.
If f(z) = z + an+1z

n+1 + · · · belongs to U(α, μ, λ), Then f ∈ S∗(γ) whenever 0 < λ ≤ λ(α, μ, n, γ),
where

λ
(
α, μ, n, γ

)
:=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
αn − μ

)√
2α
(
1 − γ

) − 1√(
αn − μ

)2 + μ2
[
2α
(
1 − γ

) − 1
] , 0 ≤ γ ≤ μ − n(1 − α)

μ(1 + n)
,

(
αn − μ

)(
1 − γ

)
n + μγ − μ

,
μ − n(1 − α)
μ(1 + n)

< γ < 1.

(2.1)

Proof. Let us define

p(z) =
(

z

f(z)

)μ

. (2.2)
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Since f ∈ U(α, μ, λ), we have

(1 − α)
(

z

f(z)

)μ

+ α

(
z

f(z)

)μ+1

f ′(z) = p(z) − α

μ
zf ′(z)

= 1 +
(
αn − μ

)
an+1z

n + · · ·
= 1 + λω(z),

(2.3)

where ω(z) is an analytic function with |ω(z)| < 1 and ω(0) = ω′(0) = · · · = ω(n−1)(0) = 0. By
Schwarz lemma, we have |ω(z)| ≤ |z|n. By (2.3), it is easy to check that

p(z) = 1 − μλ

α

∫1

0

ω(tz)
tμ/α+1

dt,

(1 − α) + α
zf ′(z)
f(z)

=
1 + λω(z)

1 − μλ/α
∫1
0ω(tz)/

(
tμ/α+1

)
dt

.

(2.4)

Therefore

1
1 − γ

(
zf ′(z)
f(z)

− γ

)

=

[(
(α − 1) − αγ

)
/
(
1 − γ

)](
α − μλ

∫1
0

(
ω(tz)/tμ/α+1

)
dt
)
+
(
α/
(
1 − γ

))
(1 + λω(z))

α
(
α − μλ

∫1
0

(
ω(tz)/tμ/α+1

)
dt
) .

(2.5)

We need to show that f ∈ S∗(γ). To do this, according to a well-known result [9] and (2.5) it
suffices to show that

[(
(α− 1)−αγ)/(1− γ

)](
α − μλ

∫1
0

(
ω(tz)/t(μ/α)+1

)
dt
)
+
(
α/
(
1−γ))(1+λω(z))

α
(
α−μλ∫10(ω(tz)/t(μ/α)+1dt

)) /= − iT, T ∈ R,

(2.6)

which is equivalent to

λ

⎡
⎣ω(z) + μ

((
αγ + 1 − α

)
/α − i

(
1 − γ

)
T
)∫1

0

(
ω(tz)/tμ/α+1

)
dt

α
(
1 − γ

)
(1 + iT)

⎤
⎦/= − 1, T ∈ R. (2.7)

Suppose that Bn denote the class of all Schwarz functions ω such that ω(0) = ω′(0) =
· · · = ω(n−1)(0) = 0, and let

M = sup
z∈D,ω∈Bn,T∈R

∣∣∣∣∣∣
ω(z) + μ

((
αγ + 1 − α

)
/α − i

(
1 − γ

)
T
)∫1

0

(
ω(tz)/tμ/α+1

)
dt

α
(
1 − γ

)
(1 + iT)

∣∣∣∣∣∣, (2.8)
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then, f ∈ S∗(γ) if λM ≤ 1. This observation shows that it suffices to find M. First we notice
that

M ≤ sup
T∈R

⎧⎪⎨
⎪⎩

1 +
(
μ/
(
n − μ

)
/α
)√(

αγ + 1 − α
)2
/α2 +

(
1 − γ

)2
T2

α
(
1 − γ

)
(1 + T2)

⎫⎪⎬
⎪⎭. (2.9)

Define φ : [0,∞) 	→ R by

φ(x) =

(
αn − μ

)
+ μ
√(

αγ + 1 − α
)2 + (1 − γ

)2
α2x(

αn − μ
)
α
(
1 − γ

)√
1 + x

. (2.10)

Differentiating φ with respect to x, we get

φ′(x) =
μ
(
αn − μ

)
α3(1 − γ

)3√1 + x/2
√(

αγ + 1 − α
)2 + (1 − γ

)2
α2x(

αn − μ
)2
α2
(
1 − γ

)2(1 + x)

−

[(
αn − μ

)
α
(
1 − γ

)][(
αn − μ

)
+ μ
√(

αγ + 1 − α
)2 + (1 − γ

)2
α2x

]
/2

√
1 + x

(
αn − μ

)2
α2
(
1 − γ

)2(1 + x)
.

(2.11)

Case 1. Let 0 < γ < (μ − n(1 − α))/μ(1 + n). Then we see that φ has its only critical point in the
positive real line at

x0 =
1(

1 − γ
)2
α2

[
μ2(2α(1 − γ) − 1

)2
(
αn − μ

)2 − (αγ + 1 − γ
)2]

. (2.12)

Furthermore, we can see that φ′(x) > 0 for 0 ≤ x < x0 and φ′(x) < 0 for x > x0. Hence φ(x)
attains its maximum value at x0 and

φ(x) ≤ φ(x0) =

(
αn − μ

)2 + μ2[2α(1 − γ
) − 1

]
(
αn − μ

)√[
2α
(
1 − γ

) − 1
](
αn − μ

)2 + μ2
[
2α(1 − γ) − 1

]2 . (2.13)

Case 2. Let γ > (μ − n(1 − α))/μ(1 + n), then it is easy to see that φ′(x) < 0, and so φ(x) attains
its maximum value at 0 and

φ(x) ≤ φ(0) =
n + μγ − μ(

αn − μ
)(
1 − γ

) , ∀x ≥ 0. (2.14)

Now the required conclusion follows from (2.13) and (2.14).
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By putting γ = 0 in Theorem 2.1 we obtain the following result.

Corollary 2.2. Let n be the positive integer with n ≥ 2. Also let (n + 1)/2n < α ≤ 1 and n(1 − α) <
μ < αn. If f(z) = z + an+1z

n+1 + · · · belongs to U(α, μ, λ), then f ∈ S∗ whenever 0 < λ ≤ (αn −
μ)
√
2α − 1/

√
(αn − μ)2 + μ2(2α − 1).

Remark 2.3. Taking α = 1, μ = 1 in Theorem 2.1 and Corollary 2.2 we get results of [10].

We follow the method ofproof adopted in [11].

Theorem 2.4. Let n ≥ 2, a /= 0, c ∈ C with Re c ≥ 0/= c and the function ϕ(z) = 1+b1z+b2z2 + · · ·
with bn /= 0 be univalent convex inD. If f(z) = z+ an+1z

n+1 + · · · ∈ U(α, μ, λ) and φ(a; c; z) defined
by (1.8) satisfy the conditions

(
z

f(z)

)μ

∗ φ(a; c + 1; z)/= 0 ∀z ∈ D,

φ(a; c; z) ≺ ϕ(z),

(2.15)

then the transform G defined by (1.16) has the following:

(1) G ∈ U(α, μ, λ|bn||c|/|c + n|),
(2) G ∈ S∗whenever

0 < λ ≤ |c + n|(αn − μ
)√

2α − 1

|bn||c|
√(

αn − μ
)2 + μ2(2α − 1)

. (2.16)

Proof. From the definition of G we obtain

(
z

G(z)

)μ

=
(

z

f(z)

)μ

∗ φ(a; c + 1; z). (2.17)

Differentiating (z/G(z))μ shows that

z

((
z

G(z)

)μ)′
= μ

(
z

G(z)

)μ

− μ

(
z

G(z)

)μ+1

G′(z). (2.18)

It is easy to see that

z

((
z

f(z)

)μ)′
∗ φ(a; c + 1; z) = z

((
z

f(z)

)μ

∗ φ(a; c + 1; z)
)′
. (2.19)

From (1.9) and (2.19)we deduce that

z

((
z

f(z)

)μ

∗ φ(a; c + 1; z)
)′

= c

(
z

f(z)

)μ

∗ φ(a; c; z) − c

(
z

f(z)

)μ

∗ φ(a; c + 1; z), (2.20)
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or

z

((
z

G(z)

)μ)′
+ c

(
z

G(z)

)μ

= c

(
z

f(z)

)μ

∗ φ(a; c; z). (2.21)

Let us define

p(z) = (1 − α)
(

z

G(z)

)μ

+ α

(
z

G(z)

)μ+1

G′(z) := 1 + dnz
n + · · · , (2.22)

then p(z) is analytic inD, with p(0) = 1 and p′(0) = · · · = p(n−1)(0) = 0. Combining (2.18)with
(2.21), one can obtain

p(z) =
(
1 +

αc

μ

)(
z

G(z)

)μ

− αc

μ

(
z

f(z)

)μ

∗ φ(a; c; z). (2.23)

Differentiating p(z) yields

zp′(z) =
(
1 +

αc

μ

)
z

((
z

G(z)

)μ)′
− αc

μ
z

((
z

f(z)

)μ)′
∗ φ(a; c; z). (2.24)

In view of (2.21), (2.23), and (2.24), we obtain

cp(z) + zp′(z) = c

(
1 +

αc

μ

)(
z

G(z)

)μ

− αc2

μ

(
z

f(z)

)μ

∗ φ(a; c; z)

+
(
1 +

αc

μ

)
z

[(
z

G(z)

)μ]′
− αc

μ
z

[(
z

f(z)

)μ]′
∗ φ(a; c; z)

= c

(
1 +

αc

μ

)(
z

f(z)

)μ

∗ φ(a; c; z)

− αc2

μ

(
z

f(z)

)μ

∗ φ(a; c; z) − αc

μ

[(
z

f(z)

)μ]′
∗ φ(a; c; z)

= c

(
z

f(z)

)μ

∗ φ(a; c; z) − cα

[(
z

f(z)

)μ

−
(

z

f(z)

)μ+1

f ′(z)

]
∗ φ(a; c; z)

= c

[
(1 − α)

(
z

f(z)

)μ

+ α

(
z

f(z)

)μ+1

f ′(z)

]
∗ φ(a; c; z).

(2.25)

Hence

p(z) +
1
c
zp′(z) =

[
(1 − α)

(
z

f(z)

)μ

+ α

(
z

f(z)

)μ+1

f ′(z)

]
∗ φ(a; c; z). (2.26)
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Since 1 + λzn and ϕ(z) = 1 + b1z + b2z
2 + · · · are convex and

(1 − α)
(

z

f(z)

)μ

+ α

(
z

f(z)

)μ+1

f ′(z) ≺ 1 + λzn, φ(a; c; z) ≺ ϕ(z), (2.27)

by using Lemmas 1.2 and 1.3, from (2.26) we deduce that

p(z) +
1
c
zp′(z) ≺ 1 + bnλz

n. (2.28)

It now follows from Lemma 1.1 that

p(z) ≺ ψ(z) =
c

zc

∫z

0
tc−1(1 + bnλz

n)dt. (2.29)

Therefore

p(z) ≺ 1 +
λbnc

c + n
zn, (2.30)

and the result follows from the last subordination and Corollary 2.2.

It is well-known that (see, [12]) if c, a > 0 and c ≥ max{2, a}, then φ(a; c; z) is univalent
convex function in D. So if we take ϕ(z) = φ(a; c; z) in the Theorem 2.4, we obtain the
following.

Corollary 2.5. For n ≥ 2, c, a > 0, and c ≥ max{2, a}, let the function f(z) = z + anz
n+1 + · · · ∈

U(α, μ, λ) and φ(a; c; z) defined by (1.8) satisfy the condition

(
z

f(z)

)μ

∗ φ(a; c + 1; z)/= 0 ∀z ∈ D. (2.31)

Then the transform G defined by (1.16) has the following:

(1) G ∈ U(α, μ, λ|(a)n|c/|(c)n|(c + n));

(2) G ∈ S∗ whenever

0 < λ ≤ (c + n)|(c)n|
(
αn − μ

)√
2α − 1

|(a)n|c
√(

αn − μ
)2 + μ2(2α − 1)

. (2.32)

By putting a = c on the (1.8), we get φ(c; c; z) = 1/(1 − z) which is evidently convex.
So by taking ϕ(z) = 1/(1 − z) on Theorem 2.4 we have the following.
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Corollary 2.6. For n ≥ 2, c ∈ Cwith Re c ≥ 0/= c, let the function f(z) = z+anz
n+1+· · · ∈ U(α, μ, λ)

and φ(a; c; z) defined by (1.8) satisfy the condition

(
z

f(z)

)μ

∗ φ(a; c + 1; z)/= ∀z ∈ D. (2.33)

Then the transform G defined by (1.16) has the following:

(1) G ∈ U(α, μ, λ|c|/|c + n|);
(2) G ∈ S∗whenever

0 < λ ≤ |c + n|(αn − μ
)√

2α − 1

|c|
√(

αn − μ
)2 + μ2(2α − 1)

. (2.34)

Remark 2.7. Taking α = 1 and μ = 1 on Corollary 2.6, we get a result of [11].

By putting c = 1 −M and a = 2 on Theorem 2.10 we obtain the following.

Corollary 2.8. Let n ≥ 2 and ϕ(z) = 1 +
∑∞

k=1bkz
k with bn /= 0 be univalent convex function in D.

Also letM ∈ C with ReM < 1 and f(z) = z + an+1z
n+1 + · · · ∈ U(α, μ, λ), satisfy

ΩM

[(
z

f(z)

)μ]
/= 0 z ∈ D, (2.35)

and let G be the function which is defined by

G(z) = z

(
1

ΩM
[(
z/f(z)

)μ]
)1/μ

. (2.36)

If

φ(2; 1 −M; z) ≺ ϕ(z), (2.37)

then we have the following:

(1) G ∈ U(α, μ, λ|bn||1 −M|/|n + 1 −M|);
(2) G ∈ S∗ whenever

0 < λ ≤ |1 −M + n|(αn − μ
)√

2α − 1

|bn||1 −M|
√(

αn − μ
)2 + μ2(2α − 1)

. (2.38)

Remark 2.9. We note that if M < −1, then φ(2; 1 − M; z) is convex function, and so we can
replace ϕ(z) with φ(2; 1 −M; z) in Corollary 2.8 to get other new results.
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In [13], Pannusamy and Sahoo have also considered the class U(α, μ, λ) for the case
α = 1 with μ = n.

Theorem 2.10. For m < 1, γ /= 0; Re γ > 0, n ≥ 2, let f(z) = z + an+1z
n+1 + · · · ∈ U(α, μ, λ) and

ψ(m, γ, z) defined by (1.13) satisfy the condition

(
z

f(z)

)μ

∗ ψ(m, γ, z
)
/= 0 ∀z ∈ D. (2.39)

Then the transformH defined by (1.17) has the following:

(1) H ∈ U(α, μ, λ(1 −m)/|1 + nγ |);
(2) H ∈ S∗ whenever

0 < λ ≤
∣∣1 + nγ

∣∣(αn − μ
)√

2α − 1

(1 −m)
√(

αn − μ
)2 + μ2(2α − 1)

. (2.40)

Proof. Let us define

p(z) = (1 − α)
(

z

H(z)

)μ

+ α

(
z

H(z)

)μ+1

H ′(z), (2.41)

then p(z) is analytic inD, with p(0) = 1 and p′(0) = · · · = p(n−1)(0) = 0.Using the samemethod
as on Theorem 2.4 we get

p(z) + γzp′(z) =

[
(1 − α)

(
z

f(z)

)μ

+ α

(
z

f(z)

)μ+1

f ′(z)

]
∗
(
1 + (1 −m)

z

1 − z

)
. (2.42)

Since 1 + λzn and h(z) = (1 + (1 −m)(z/(1 − z))) are convex,

(1 − α)
(

z

f(z)

)μ

+ α

(
z

f(z)

)μ+1

f ′(z) ≺ 1 + λzn. (2.43)

Using Lemmas 1.2 and 1.3, from (2.42) it yields

p(z) + γzp′(z) ≺ (1 −m)λzn. (2.44)

It now follows from Lemma 1.1 that

p(z) ≺ 1
γz1/γ

∫z

0
t(1/γ)−1(1 + (1 −m)λtn)dt. (2.45)
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Therefore

∣∣p(z) − 1
∣∣ ≤ λ(1 −m)∣∣1 + nγ

∣∣ |z|n, (2.46)

and the result follows from (2.46) and Corollary 2.2.
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[7] M. Obradović, S. Ponnusamy, and P. Vasundhra, “Univalence, strong starlikeness and integral
transforms,” Annales Polonici Mathematici, vol. 86, no. 1, pp. 1–13, 2005.

[8] St. Ruscheweyh and J. Stankiewicz, “Subordination under convex univalent functions,” Bulletin of the
Polish Academy of Sciences, Mathematics, vol. 33, no. 9-10, pp. 499–502, 1985.

[9] St. Ruscheweyh and T. Sheil-Small, “Hadamard products of Schlicht functions and the Pölya-
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