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For p ∈ R, the generalized logarithmic mean Lp of two positive numbers a and b is defined

as Lp(a, b) = a, for a = b, LP (a, b) = [(bp+1 − ap+1)/(p + 1)(b − a)]1/p , for a/= b, p /= − 1, p /= 0,

LP (a, b) = (b − a)/(log b − loga), for a/= b, p = −1, and LP (a, b) = (1/e)(bb/aa)1/(b−a) , for a/= b,
p = 0. In this paper, we prove that G(a, b) +H(a, b) � 2L−7/2(a, b), A(a, b) +H(a, b) � 2L−2(a, b),
and L−5(a, b) � H(a, b) for all a, b > 0, and the constants −7/2,−2, and −5 cannot be improved
for the corresponding inequalities. Here A(a, b) = (a + b)/2 = L1(a, b), G(a, b) =

√
ab = L−2(a, b),

and H(a, b) = 2ab/(a + b) denote the arithmetic, geometric, and harmonic means of a and b,
respectively.

Copyright q 2009 Y.-M. Chu and W.-F. Xia. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

For p ∈ R, the generalized logarithmic mean Lp(a, b) and power mean Mp(a, b) of two
positive numbers a and b are defined as

Lp(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, a = b,

[
bp+1 − ap+1

(p + 1)(b − a)

]1/p

, a /= b, p /= − 1, p /= 0,

b − a

log b − loga
, a /= b, p = −1,

1
e

(
bb

aa

)1/(b−a)
, a /= b, p = 0,

(1.1)
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Mp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

(
ap + bp

2

)1/p

, p /= 0,

√
ab, p = 0.

(1.2)

It is well known that Lp(a, b) andMp(a, b) are continuous and increasing with respect

to p ∈ R for fixed a and b. Let A(a, b) = (a + b)/2, I(a, b) = (1/e)(bb/aa)1/(b−a), L(a, b) =
(b − a)/(log b − loga), G(a, b) =

√
ab, and H(a, b) = 2ab/(a + b) be the arithmetic, identric,

logarithmic, geometric, and harmonic means of a and b, respectively. Then

min{a, b} � H(a, b) = M−1(a, b) � G(a, b) = M0(a, b) = L−2(a, b) � L(a, b)

= L−1(a, b) � I(a, b) = L0(a, b) � A(a, b) = L1(a, b)

= M1(a, b) � max{a, b}.
(1.3)

In [1], the following results are established: (1) p � 1/3 implies that L(a, b) �
Mp(a, b); (2) p � 0 implies that L(a, b) � Mp(a, b); (3) p < 1/3 implies that there exist
a, b > 0 such that L(a, b) > Mp(a, b); (4) p > 0 implies that there exist a, b > 0 such that
L(a, b) < Mp(a, b). Hence the question was answered: what are the least value q and the
greatest value p such that the inequality Mp(a, b) � L(a, b) � Mq(a, b) holds for all a, b > 0?

Stolarsky [2] proved that I(a, b) = L0(a, b) � M2/3(a, b), with equality if and only if
a = b.

In [3], Pittenger proved that

Mp1(a, b) � Lp(a, b) � Mp2(a, b) (1.4)

for all a, b > 0, where

p1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

{
p + 2
3

,
p log 2

log
(
p + 1

)

}

, p > −1, p /= 0,

2
3
, p = 0,

min
{
p + 2
3

, 0
}

, p � −1,

p2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

max

{
p + 2
3

,
p log 2

log
(
p + 1

)

}

, p > −1, p /= 0,

log 2, p = 0,

max
{
p + 2
3

, 0
}

, p � −1.

(1.5)
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Here p1, p2 are sharp and equality holds only if a = b or p = 1,−2 or −1/2. The case
p = −1 reduces to Lin’s results [1]. Other generalizations of Lin’s results were given by Imoru
[4].

Qi and Guo [5] established that

(
b + δ − a

b − a
· br+1 − ar+1

(b + δ)r+1 − ar+1

)1/r

<
I(a, b)

I(a, b + δ)
(1.6)

for all b > a > 0, δ > 0 and r ∈ R. The upper bound in (1.6) is the best possible.
In [6], Chu et al. established the following result:

(b − L(a, b))Ψ(b) + (L(a, b) − a)Ψ(a) > (b − a)Ψ
(√

ab
)

(1.7)

for all b > a � 2, where the Ψ function is the logarithmic derivative of the gamma function.
Recently, some monotonicity results of the ratio between generalized logarithmic

means were established in [7–9].
The purpose of this paper is to answer the following questions: what are the greatest

values p and q, and the least value r such thatG(a, b)+H(a, b) � 2Lp(a, b),A(a, b)+H(a, b) �
2Lq(a, b), and H(a, b) � Lr(a, b) for all a, b > 0?

2. Main Results

Theorem 2.1. G(a, b) +H(a, b) � 2L−7/2(a, b) for all a, b > 0, with inequality if and only if a = b,
and the constant −7/2 cannot be improved.

Proof. If a = b, then from (1.1) we clearly see that G(a, b) +H(a, b) = 2L−7/2(a, b) = 2a. Next,
we assume that a/= b and t =

√
a/b, and then elementary computations yield

L−7/2(a, b) = b

[
(5/2)t5(t + 1)

t4 + t3 + t2 + t + 1

]2/7

,

G(a, b) +H(a, b) = b
t(t + 1)2

t2 + 1
,

[G(a, b) +H(a, b)]7 − [2L−7/2(a, b)]
7

=
b7t7(t + 1)2

(t2 + 1)7
(
t4 + t3 + t2 + t + 1

)2

[

(t + 1)12
(
t4 + t3 + t2 + t + 1

)2 − 800t3
(
t2 + 1

)7
]
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=
b7t7(t + 1)2

(t2 + 1)7
(
t4 + t3 + t2 + t + 1

)2

×
(
t20 + 14t19 + 93t18 − 408t17 + 1186t16−2830t15 + 5254t14 − 8402t13 + 11597t12 − 13974t11

+14938t10−13974t9+11597t8−8402t7+5254t6−2830t5+1186t4−408t3+93t2+14t + 1
)

=
b7t7(t + 1)2(t − 1)4

(t2 + 1)7
(
t4 + t3 + t2 + t + 1

)2

×
(
t16 + 18t15 + 159t14 + 124t13 + 799t12 + 240t11 + 1757t10 + 258t9 + 2248t8

+258t7 + 1757t6 + 240t5 + 799t4 + 124t3 + 159t2 + 18t + 1
)
> 0.

(2.1)

To prove that −7/2 is the largest number for which the inequality holds, we take 0 <
ε < 1 and 0 < x < 1, and we see that

L−7/2+ε
(
(1 + x)2, 1

)
=

[
(5 − 2ε)x(1 + x/2)(1 + x)5−2ε

(1 + x)5−2ε − 1

]1/(7/2−ε)
,

G
(
(1 + x)2, 1

)
+H

(
(1 + x)2, 1

)
=

2(1 + x)(1 + x/2)2

1 + x + x2/2
,

(2.2)

[
2L−7/2+ε

(
(1 + x)2, 1

)]7/2−ε −
[
G
(
(1 + x)2, 1

)
+H

(
(1 + x)2, 1

)]7/2−ε

=
27/2−ε(1 + x/2)(1 + x)7/2−ε

[
(1 + x)5−2ε − 1

]
(1 + x + x2/2)7/2−ε

f(x),
(2.3)

where f(x) = (5 − 2ε)x(1 + x)3/2−ε(1 + x + x2/2)7/2−ε − (1 + x/2)6−2ε[(1 + x)5−2ε − 1].
Making use of the Taylor expansion, we have

f(x) = (5 − 2ε)x
[

1 +
3 − 2ε

2
x +

(3 − 2ε)(1 − 2ε)
8

x2 − (3 − 2ε)(1 − 2ε)(1 + 2ε)
48

x3 + o
(
x3
)]

×
[

1 +
7 − 2ε

2
x +

(7 − 2ε)2

8
x2 +

(9 − 2ε)(7 − 2ε)(5 − 2ε)x3

48
x3 + o

(
x3
)
]

−
[

1 + (3 − ε)x +
(3 − ε)(5 − 2ε)

4
x2 +

(3 − ε)(5 − 2ε)(2 − ε)
12

x3 + o
(
x3
)]

× (5 − 2ε)x
[

1 + (2 − ε)x +
(2 − ε)(3 − 2ε)

3
x2 +

(2 − ε)(3 − 2ε)(1 − ε)
6

x3 + o
(
x3
)]
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= (5 − 2ε)x

[

1 + (5 − 2ε)x +
47 − 38ε + 8ε2

4
x2 + o

(
x2
)
]

− (5 − 2ε)x

[

1 + (5 − 2ε)x +
141 − 121ε + 26ε2

12
x2 + o

(
x2
)
]

=
ε(7 − 2ε)(5 − 2ε)

12
x3 + o

(
x3
)
.

(2.4)

Equations (2.3) and (2.4) imply that for any 0 < ε < 1 there exists 0 < δ = δ(ε) < 1,
such that 2L−7/2+ε((1 + x)2, 1) > G((1 + x)2, 1) +H((1 + x)2, 1) for x ∈ (0, δ).

Theorem 2.2. A(a, b) +H(a, b) � 2L−2(a, b) for all a, b > 0, with equality if and only if a = b, and
the constant −2 cannot be improved.

Proof. Simple computations yield

A(a, b) +H(a, b) − 2L−2(a, b) =
a + b

2
+

2ab
a + b

− 2
√
ab =

(√
a −

√
b
)4

2(a + b)
� 0. (2.5)

Next we prove that −2 is the optimal value for which the inequality holds.
For 0 < ε < 1 and 0 < t < 1, elementary computations yield

L−2+ε(1 + t, 1) =

[
(1 − ε)t(1 + t)1−ε

(1 + t)1−ε − 1

]1/(2−ε)
,

A(1 + t, 1) +H(1 + t, 1) =
2
(
1 + t + t2/8

)

1 + t/2
,

(2.6)

[2L−2+ε(1 + t, 1)]2−ε − [A(1 + t, 1) +H(1 + t, 1)]2−ε =
22−ε

[
(1 + t)1−ε − 1

]
(1 + t/2)2−ε

f(t), (2.7)

where f(t) = (1 − ε)t(1 + t)1−ε(1 + t/2)2−ε − [(1 + t)1−ε − 1](1 + t + t2/8)2−ε.
Using Taylor expansion we get

f(t) = (1 − ε)t
[

1 + (1 − ε)t − ε(1 − ε)
2

t2 + o
(
t2
)]

×
[

1 +
2 − ε

2
t +

(2 − ε)(1 − ε)
8

t2 + o
(
t2
)]

− (1 − ε)t
[

1 − ε

2
t +

ε(1 + ε)
6

t2 + o
(
t2
)]

×
[

1 + (2 − ε)t +
(2 − ε)(5 − 4ε)

8
t2 + o

(
t2
)]



6 Journal of Inequalities and Applications

= (1 − ε)t

[

1 +
4 − 3ε

2
t +

10 − 19ε + 9ε2

8
t2 + o

(
t2
)
]

− (1 − ε)t

[

1 +
4 − 3ε

2
t +

30 − 59ε + 28ε2

24
t2 + o

(
t2
)
]

=
ε(1 − ε)(2 − ε)

24
t3 + o

(
t3
)
. (2.8)

Equations (2.7) and (2.8) imply that for any 0 < ε < 1 there exists 0 < δ = δ(ε) < 1,
such that 2L−2+ε(1 + t, 1) > A(1 + t, 1) +H(1 + t, 1) for t ∈ (0, δ).

Theorem 2.3. H(a, b) � L−5(a, b) for all a, b > 0, with equality if and only if a = b, and the
constant −5 cannot be improved.

Proof. Form (1.1) we clearly see that L−5(a, b) = H(a, b) = a if a = b. If a/= b, then simple
computations yield

L−5(a, b) = b

[
4(a/b)4

((a/b)2 + 1)(a/b + 1)

]1/5

,

H(a, b) = b
2 · a/b
1 + a/b

,

[L−5(a, b)]
5 − [H(a, b)]5 =

4b5(a/b)4

(1 + a/b)5
(
1 + (a/b)2

)
(a

b
− 1

)4
> 0.

(2.9)

To show that −5 is the best possible constant for which the inequality holds, let 0 < ε <
1 and 0 < t < 1, and then

[H(1 + t, 1)]5+ε − [
L−(5+ε)(1 + t, 1)

]5+ε =
(1 + t)4+ε

(1 + t/2)5+ε
[
(1 + t)4+ε − 1

]f(t), (2.10)

where f(t) = (1 + t)[(1 + t)4+ε − 1] − (4 + ε)t(1 + t/2)5+ε.
Using Taylor expansion we have

f(t) = (1 + t)
[

(4 + ε)t +
(4 + ε)(3 + ε)

2
t2 +

(4 + ε)(3 + ε)(2 + ε)
6

t3 + o
(
t3
)]

− (4 + ε)t
[

1 +
5 + ε

2
t +

(5 + ε)(4 + ε)
8

t2 + o
(
t2
)]

=
ε(4 + ε)(5 + ε)

24
t3 + o

(
t3
)
.

(2.11)

Equations (2.10) and (2.11) imply that for any 0 < ε < 1 there exists 0 < δ = δ(ε) < 1,
such that H(1 + t, 1) > L−(5+ε)(1 + t, 1) for t ∈ (0, δ).
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Remark 2.4. If p � 5, then

[
L−p(a, 1)

]p − [H(a, 1)]p =
1

(
ap−1 − 1

)
(1 + a)p

[(
p − 1

)
(a − 1)ap−1(1 + a)p − 2pap

(
ap−1 − 1

)]
,

lim
a→+∞

[(
p − 1

)
(a − 1)ap−1(1 + a)p − 2pap

(
ap−1 − 1

)]
= +∞.

(2.12)

Therefore, we cannot get inequality H(a, b) � Lp(a, b) for any p ∈ R and all a, b > 0.

Remark 2.5. It is easy to verify that A(a, b) +G(a, b) = 2L−1/2(a, b) for all a, b > 0.
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