Research Article

Inequalities for Generalized Logarithmic Means

Yu-Ming Chu ${ }^{1}$ and Wei-Feng Xia ${ }^{\mathbf{2}}$
${ }^{1}$ Department of Mathematics, Huzhou Teachers College, Huzhou 313000, China
${ }^{2}$ School of Teacher Education, Huzhou Teachers College, Huzhou 313000, China

Correspondence should be addressed to Yu-Ming Chu, chuyuming2005@yahoo.com.cn
Received 2 June 2009; Accepted 10 December 2009
Recommended by Wing-Sum Cheung
For $p \in \mathbb{R}$, the generalized logarithmic mean L_{p} of two positive numbers a and b is defined as $L_{p}(a, b)=a$, for $a=b, L_{P}(a, b)=\left[\left(b^{p+1}-a^{p+1}\right) /(p+1)(b-a)\right]^{1 / p}$, for $a \neq b, p \neq-1, p \neq 0$, $L_{P}(a, b)=(b-a) /(\log b-\log a)$, for $a \neq b, p=-1$, and $L_{P}(a, b)=(1 / e)\left(b^{b} / a^{a}\right)^{1 /(b-a)}$, for $a \neq b$, $p=0$. In this paper, we prove that $G(a, b)+H(a, b) \geqslant 2 L_{-7 / 2}(a, b), A(a, b)+H(a, b) \geqslant 2 L_{-2}(a, b)$, and $L_{-5}(a, b) \geqslant H(a, b)$ for all $a, b>0$, and the constants $-7 / 2,-2$, and -5 cannot be improved for the corresponding inequalities. Here $A(a, b)=(a+b) / 2=L_{1}(a, b), G(a, b)=\sqrt{a b}=L_{-2}(a, b)$, and $H(a, b)=2 a b /(a+b)$ denote the arithmetic, geometric, and harmonic means of a and b, respectively.

Copyright © 2009 Y.-M. Chu and W.-F. Xia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

For $p \in \mathbb{R}$, the generalized logarithmic mean $L_{p}(a, b)$ and power mean $M_{p}(a, b)$ of two positive numbers a and b are defined as

$$
L_{p}(a, b)= \begin{cases}a, & a=b \tag{1.1}\\ {\left[\frac{b^{p+1}-a^{p+1}}{(p+1)(b-a)}\right]^{1 / p},} & a \neq b, p \neq-1, p \neq 0 \\ \frac{b-a}{\log b-\log a}, & a \neq b, p=-1 \\ \frac{1}{e}\left(\frac{b^{b}}{a^{a}}\right)^{1 /(b-a)}, & a \neq b, p=0\end{cases}
$$

$$
M_{p}(a, b)= \begin{cases}\left(\frac{a^{p}+b^{p}}{2}\right)^{1 / p}, & p \neq 0 \tag{1.2}\\ \sqrt{a b}, & p=0 .\end{cases}
$$

It is well known that $L_{p}(a, b)$ and $M_{p}(a, b)$ are continuous and increasing with respect to $p \in \mathbb{R}$ for fixed a and b. Let $A(a, b)=(a+b) / 2, I(a, b)=(1 / e)\left(b^{b} / a^{a}\right)^{1 /(b-a)}, L(a, b)=$ $(b-a) /(\log b-\log a), G(a, b)=\sqrt{a b}$, and $H(a, b)=2 a b /(a+b)$ be the arithmetic, identric, logarithmic, geometric, and harmonic means of a and b, respectively. Then

$$
\begin{align*}
\min \{a, b\} \leqslant H(a, b) & =M_{-1}(a, b) \leqslant G(a, b)=M_{0}(a, b)=L_{-2}(a, b) \leqslant L(a, b) \\
& =L_{-1}(a, b) \leqslant I(a, b)=L_{0}(a, b) \leqslant A(a, b)=L_{1}(a, b) \tag{1.3}\\
& =M_{1}(a, b) \leqslant \max \{a, b\} .
\end{align*}
$$

In [1], the following results are established: (1) $p \geqslant 1 / 3$ implies that $L(a, b) \leqslant$ $M_{p}(a, b)$; (2) $p \leqslant 0$ implies that $L(a, b) \geqslant M_{p}(a, b)$; (3) $p<1 / 3$ implies that there exist $a, b>0$ such that $L(a, b)>M_{p}(a, b)$; (4) $p>0$ implies that there exist $a, b>0$ such that $L(a, b)<M_{p}(a, b)$. Hence the question was answered: what are the least value q and the greatest value p such that the inequality $M_{p}(a, b) \leqslant L(a, b) \leqslant M_{q}(a, b)$ holds for all $a, b>0$?

Stolarsky [2] proved that $I(a, b)=L_{0}(a, b) \geqslant M_{2 / 3}(a, b)$, with equality if and only if $a=b$.

In [3], Pittenger proved that

$$
\begin{equation*}
M_{p_{1}}(a, b) \leqslant L_{p}(a, b) \leqslant M_{p_{2}}(a, b) \tag{1.4}
\end{equation*}
$$

for all $a, b>0$, where

$$
\begin{align*}
& p_{1}= \begin{cases}\min \left\{\frac{p+2}{3}, \frac{p \log 2}{\log (p+1)}\right\}, & p>-1, p \neq 0, \\
\frac{2}{3}, & p=0, \\
\min \left\{\frac{p+2}{3}, 0\right\}, & p \leqslant-1,\end{cases} \tag{1.5}\\
& p_{2}= \begin{cases}\max \left\{\frac{p+2}{3}, \frac{p \log 2}{\log (p+1)}\right\}, & p>-1, p \neq 0, \\
\log 2, & p=0, \\
\max \left\{\frac{p+2}{3}, 0\right\}, & p \leqslant-1 .\end{cases}
\end{align*}
$$

Here p_{1}, p_{2} are sharp and equality holds only if $a=b$ or $p=1,-2$ or $-1 / 2$. The case $p=-1$ reduces to Lin's results [1]. Other generalizations of Lin's results were given by Imoru [4].

Qi and Guo [5] established that

$$
\begin{equation*}
\left(\frac{b+\delta-a}{b-a} \cdot \frac{b^{r+1}-a^{r+1}}{(b+\delta)^{r+1}-a^{r+1}}\right)^{1 / r}<\frac{I(a, b)}{I(a, b+\delta)} \tag{1.6}
\end{equation*}
$$

for all $b>a>0, \delta>0$ and $r \in \mathbb{R}$. The upper bound in (1.6) is the best possible.
In [6], Chu et al. established the following result:

$$
\begin{equation*}
(b-L(a, b)) \Psi(b)+(L(a, b)-a) \Psi(a)>(b-a) \Psi(\sqrt{a b}) \tag{1.7}
\end{equation*}
$$

for all $b>a \geqslant 2$, where the Ψ function is the logarithmic derivative of the gamma function.
Recently, some monotonicity results of the ratio between generalized logarithmic means were established in [7-9].

The purpose of this paper is to answer the following questions: what are the greatest values p and q, and the least value r such that $G(a, b)+H(a, b) \geqslant 2 L_{p}(a, b), A(a, b)+H(a, b) \geqslant$ $2 L_{q}(a, b)$, and $H(a, b) \leqslant L_{r}(a, b)$ for all $a, b>0$?

2. Main Results

Theorem 2.1. $G(a, b)+H(a, b) \geqslant 2 L_{-7 / 2}(a, b)$ for all $a, b>0$, with inequality if and only if $a=b$, and the constant -7/2 cannot be improved.

Proof. If $a=b$, then from (1.1) we clearly see that $G(a, b)+H(a, b)=2 L_{-7 / 2}(a, b)=2 a$. Next, we assume that $a \neq b$ and $t=\sqrt{a / b}$, and then elementary computations yield

$$
\begin{aligned}
& L_{-7 / 2}(a, b)=b\left[\frac{(5 / 2) t^{5}(t+1)}{t^{4}+t^{3}+t^{2}+t+1}\right]^{2 / 7}, \\
& G(a, b)+H(a, b)=b \frac{t(t+1)^{2}}{t^{2}+1}, \\
& {[G(a, b)+H(a, b)]^{7}-\left[2 L_{-7 / 2}(a, b)\right]^{7}} \\
& \quad=\frac{b^{7} t^{7}(t+1)^{2}}{\left(t^{2}+1\right)^{7}\left(t^{4}+t^{3}+t^{2}+t+1\right)^{2}}\left[(t+1)^{12}\left(t^{4}+t^{3}+t^{2}+t+1\right)^{2}-800 t^{3}\left(t^{2}+1\right)^{7}\right]
\end{aligned}
$$

$$
\begin{align*}
= & \frac{b^{7} t^{7}(t+1)^{2}}{\left(t^{2}+1\right)^{7}\left(t^{4}+t^{3}+t^{2}+t+1\right)^{2}} \\
\times & \times\left(t^{20}+14 t^{19}+93 t^{18}-408 t^{17}+1186 t^{16}-2830 t^{15}+5254 t^{14}-8402 t^{13}+11597 t^{12}-13974 t^{11}\right. \\
& \left.\quad+14938 t^{10}-13974 t^{9}+11597 t^{8}-8402 t^{7}+5254 t^{6}-2830 t^{5}+1186 t^{4}-408 t^{3}+93 t^{2}+14 t+1\right) \\
= & \frac{b^{7} t^{7}(t+1)^{2}(t-1)^{4}}{\left(t^{2}+1\right)^{7}\left(t^{4}+t^{3}+t^{2}+t+1\right)^{2}} \\
& \times\left(t^{16}+18 t^{15}+159 t^{14}+124 t^{13}+799 t^{12}+240 t^{11}+1757 t^{10}+258 t^{9}+2248 t^{8}\right. \\
& \left.\quad+258 t^{7}+1757 t^{6}+240 t^{5}+799 t^{4}+124 t^{3}+159 t^{2}+18 t+1\right)>0 . \tag{2.1}
\end{align*}
$$

To prove that $-7 / 2$ is the largest number for which the inequality holds, we take $0<$ $\varepsilon<1$ and $0<x<1$, and we see that

$$
\begin{gather*}
L_{-7 / 2+\varepsilon}\left((1+x)^{2}, 1\right)=\left[\frac{(5-2 \varepsilon) x(1+x / 2)(1+x)^{5-2 \varepsilon}}{(1+x)^{5-2 \varepsilon}-1}\right]^{1 /(7 / 2-\varepsilon)}, \tag{2.2}\\
G\left((1+x)^{2}, 1\right)+H\left((1+x)^{2}, 1\right)=\frac{2(1+x)(1+x / 2)^{2}}{1+x+x^{2} / 2}, \\
{\left[2 L_{-7 / 2+\varepsilon}\left((1+x)^{2}, 1\right)\right]^{7 / 2-\varepsilon}-\left[G\left((1+x)^{2}, 1\right)+H\left((1+x)^{2}, 1\right)\right]^{7 / 2-\varepsilon}} \\
\quad=\frac{2^{7 / 2-\varepsilon}(1+x / 2)(1+x)^{7 / 2-\varepsilon}}{\left[(1+x)^{5-2 \varepsilon}-1\right]\left(1+x+x^{2} / 2\right)^{7 / 2-\varepsilon}} f(x), \tag{2.3}
\end{gather*}
$$

where $f(x)=(5-2 \varepsilon) x(1+x)^{3 / 2-\varepsilon}\left(1+x+x^{2} / 2\right)^{7 / 2-\varepsilon}-(1+x / 2)^{6-2 \varepsilon}\left[(1+x)^{5-2 \varepsilon}-1\right]$.
Making use of the Taylor expansion, we have

$$
\begin{aligned}
f(x)= & (5-2 \varepsilon) x\left[1+\frac{3-2 \varepsilon}{2} x+\frac{(3-2 \varepsilon)(1-2 \varepsilon)}{8} x^{2}-\frac{(3-2 \varepsilon)(1-2 \varepsilon)(1+2 \varepsilon)}{48} x^{3}+o\left(x^{3}\right)\right] \\
& \times\left[1+\frac{7-2 \varepsilon}{2} x+\frac{(7-2 \varepsilon)^{2}}{8} x^{2}+\frac{(9-2 \varepsilon)(7-2 \varepsilon)(5-2 \varepsilon) x^{3}}{48} x^{3}+o\left(x^{3}\right)\right] \\
& -\left[1+(3-\varepsilon) x+\frac{(3-\varepsilon)(5-2 \varepsilon)}{4} x^{2}+\frac{(3-\varepsilon)(5-2 \varepsilon)(2-\varepsilon)}{12} x^{3}+o\left(x^{3}\right)\right] \\
& \times(5-2 \varepsilon) x\left[1+(2-\varepsilon) x+\frac{(2-\varepsilon)(3-2 \varepsilon)}{3} x^{2}+\frac{(2-\varepsilon)(3-2 \varepsilon)(1-\varepsilon)}{6} x^{3}+o\left(x^{3}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
= & (5-2 \varepsilon) x\left[1+(5-2 \varepsilon) x+\frac{47-38 \varepsilon+8 \varepsilon^{2}}{4} x^{2}+o\left(x^{2}\right)\right] \\
& -(5-2 \varepsilon) x\left[1+(5-2 \varepsilon) x+\frac{141-121 \varepsilon+26 \varepsilon^{2}}{12} x^{2}+o\left(x^{2}\right)\right] \\
= & \frac{\varepsilon(7-2 \varepsilon)(5-2 \varepsilon)}{12} x^{3}+o\left(x^{3}\right) . \tag{2.4}
\end{align*}
$$

Equations (2.3) and (2.4) imply that for any $0<\varepsilon<1$ there exists $0<\delta=\delta(\varepsilon)<1$, such that $2 L_{-7 / 2+\varepsilon}\left((1+x)^{2}, 1\right)>G\left((1+x)^{2}, 1\right)+H\left((1+x)^{2}, 1\right)$ for $x \in(0, \delta)$.

Theorem 2.2. $A(a, b)+H(a, b) \geqslant 2 L_{-2}(a, b)$ for all $a, b>0$, with equality if and only if $a=b$, and the constant -2 cannot be improved.

Proof. Simple computations yield

$$
\begin{equation*}
A(a, b)+H(a, b)-2 L_{-2}(a, b)=\frac{a+b}{2}+\frac{2 a b}{a+b}-2 \sqrt{a b}=\frac{(\sqrt{a}-\sqrt{b})^{4}}{2(a+b)} \geqslant 0 . \tag{2.5}
\end{equation*}
$$

Next we prove that -2 is the optimal value for which the inequality holds. For $0<\varepsilon<1$ and $0<t<1$, elementary computations yield

$$
\begin{gather*}
L_{-2+\varepsilon}(1+t, 1)=\left[\frac{(1-\varepsilon) t(1+t)^{1-\varepsilon}}{(1+t)^{1-\varepsilon}-1}\right]^{1 /(2-\varepsilon)}, \tag{2.6}\\
A(1+t, 1)+H(1+t, 1)=\frac{2\left(1+t+t^{2} / 8\right)}{1+t / 2}, \\
{\left[2 L_{-2+\varepsilon}(1+t, 1)\right]^{2-\varepsilon}-[A(1+t, 1)+H(1+t, 1)]^{2-\varepsilon}=\frac{2^{2-\varepsilon}}{\left[(1+t)^{1-\varepsilon}-1\right](1+t / 2)^{2-\varepsilon}} f(t),} \tag{2.7}
\end{gather*}
$$

where $f(t)=(1-\varepsilon) t(1+t)^{1-\varepsilon}(1+t / 2)^{2-\varepsilon}-\left[(1+t)^{1-\varepsilon}-1\right]\left(1+t+t^{2} / 8\right)^{2-\varepsilon}$.
Using Taylor expansion we get

$$
\begin{aligned}
f(t)= & (1-\varepsilon) t\left[1+(1-\varepsilon) t-\frac{\varepsilon(1-\varepsilon)}{2} t^{2}+o\left(t^{2}\right)\right] \times\left[1+\frac{2-\varepsilon}{2} t+\frac{(2-\varepsilon)(1-\varepsilon)}{8} t^{2}+o\left(t^{2}\right)\right] \\
& -(1-\varepsilon) t\left[1-\frac{\varepsilon}{2} t+\frac{\varepsilon(1+\varepsilon)}{6} t^{2}+o\left(t^{2}\right)\right] \times\left[1+(2-\varepsilon) t+\frac{(2-\varepsilon)(5-4 \varepsilon)}{8} t^{2}+o\left(t^{2}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
= & (1-\varepsilon) t\left[1+\frac{4-3 \varepsilon}{2} t+\frac{10-19 \varepsilon+9 \varepsilon^{2}}{8} t^{2}+o\left(t^{2}\right)\right] \\
& -(1-\varepsilon) t\left[1+\frac{4-3 \varepsilon}{2} t+\frac{30-59 \varepsilon+28 \varepsilon^{2}}{24} t^{2}+o\left(t^{2}\right)\right] \\
= & \frac{\varepsilon(1-\varepsilon)(2-\varepsilon)}{24} t^{3}+o\left(t^{3}\right) . \tag{2.8}
\end{align*}
$$

Equations (2.7) and (2.8) imply that for any $0<\varepsilon<1$ there exists $0<\delta=\delta(\varepsilon)<1$, such that $2 L_{-2+\varepsilon}(1+t, 1)>A(1+t, 1)+H(1+t, 1)$ for $t \in(0, \delta)$.

Theorem 2.3. $H(a, b) \leqslant L_{-5}(a, b)$ for all $a, b>0$, with equality if and only if $a=b$, and the constant -5 cannot be improved.

Proof. Form (1.1) we clearly see that $L_{-5}(a, b)=H(a, b)=a$ if $a=b$. If $a \neq b$, then simple computations yield

$$
\begin{gather*}
L_{-5}(a, b)=b\left[\frac{4(a / b)^{4}}{\left((a / b)^{2}+1\right)(a / b+1)}\right]^{1 / 5}, \\
H(a, b)=b \frac{2 \cdot a / b}{1+a / b^{\prime}} \tag{2.9}\\
{\left[L_{-5}(a, b)\right]^{5}-[H(a, b)]^{5}=\frac{4 b^{5}(a / b)^{4}}{(1+a / b)^{5}\left(1+(a / b)^{2}\right)}\left(\frac{a}{b}-1\right)^{4}>0 .}
\end{gather*}
$$

To show that -5 is the best possible constant for which the inequality holds, let $0<\varepsilon<$ 1 and $0<t<1$, and then

$$
\begin{equation*}
[H(1+t, 1)]^{5+\varepsilon}-\left[L_{-(5+\varepsilon)}(1+t, 1)\right]^{5+\varepsilon}=\frac{(1+t)^{4+\varepsilon}}{(1+t / 2)^{5+\varepsilon}\left[(1+t)^{4+\varepsilon}-1\right]} f(t) \tag{2.10}
\end{equation*}
$$

where $f(t)=(1+t)\left[(1+t)^{4+\varepsilon}-1\right]-(4+\varepsilon) t(1+t / 2)^{5+\varepsilon}$.
Using Taylor expansion we have

$$
\begin{align*}
f(t)= & (1+t)\left[(4+\varepsilon) t+\frac{(4+\varepsilon)(3+\varepsilon)}{2} t^{2}+\frac{(4+\varepsilon)(3+\varepsilon)(2+\varepsilon)}{6} t^{3}+o\left(t^{3}\right)\right] \\
& -(4+\varepsilon) t\left[1+\frac{5+\varepsilon}{2} t+\frac{(5+\varepsilon)(4+\varepsilon)}{8} t^{2}+o\left(t^{2}\right)\right] \tag{2.11}\\
= & \frac{\varepsilon(4+\varepsilon)(5+\varepsilon)}{24} t^{3}+o\left(t^{3}\right)
\end{align*}
$$

Equations (2.10) and (2.11) imply that for any $0<\varepsilon<1$ there exists $0<\delta=\delta(\varepsilon)<1$, such that $H(1+t, 1)>L_{-(5+\varepsilon)}(1+t, 1)$ for $t \in(0, \delta)$.

Remark 2.4. If $p \geqslant 5$, then

$$
\begin{gather*}
{\left[L_{-p}(a, 1)\right]^{p}-[H(a, 1)]^{p}=\frac{1}{\left(a^{p-1}-1\right)(1+a)^{p}}\left[(p-1)(a-1) a^{p-1}(1+a)^{p}-2^{p} a^{p}\left(a^{p-1}-1\right)\right]} \\
\lim _{a \rightarrow+\infty}\left[(p-1)(a-1) a^{p-1}(1+a)^{p}-2^{p} a^{p}\left(a^{p-1}-1\right)\right]=+\infty \tag{2.12}
\end{gather*}
$$

Therefore, we cannot get inequality $H(a, b) \geqslant L_{p}(a, b)$ for any $p \in \mathbb{R}$ and all $a, b>0$.
Remark 2.5. It is easy to verify that $A(a, b)+G(a, b)=2 L_{-1 / 2}(a, b)$ for all $a, b>0$.

Acknowledgments

This research is partly supported by N S Foundation of China under Grant 60850005 and N S Foundation of Zhejiang Province under Grants D7080080 and Y7080185.

References

[1] T. P. Lin, "The power mean and the logarithmic mean," The American Mathematical Monthly, vol. 81, pp. 879-883, 1974.
[2] K. B. Stolarsky, "The power and generalized logarithmic means," The American Mathematical Monthly, vol. 87, no. 7, pp. 545-548, 1980.
[3] A. O. Pittenger, "Inequalities between arithmetic and logarithmic means," Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika i Fizika, no. 678-715, pp. 15-18, 1980.
[4] C. O. Imoru, "The power mean and the logarithmic mean," International Journal of Mathematics and Mathematical Sciences, vol. 5, no. 2, pp. 337-343, 1982.
[5] F. Qi and B.-N. Guo, "An inequality between ratio of the extended logarithmic means and ratio of the exponential means," Taiwanese Journal of Mathematics, vol. 7, no. 2, pp. 229-237, 2003.
[6] Y. M. Chu, X. M. Zhang, and T. M. Tang, "An elementary inequality for psi function," Bulletin of the Institute of Mathematics. Academia Sinica, vol. 3, no. 3, pp. 373-380, 2008.
[7] X. Li, C.-P. Chen, and F. Qi, "Monotonicity result for generalized logarithmic means," Tamkang Journal of Mathematics, vol. 38, no. 2, pp. 177-181, 2007.
[8] F. Qi, S.-X. Chen, and C.-P. Chen, "Monotonicity of ratio between the generalized logarithmic means," Mathematical Inequalities \& Applications, vol. 10, no. 3, pp. 559-564, 2007.
[9] C.-P. Chen, "The monotonicity of the ratio between generalized logarithmic means," Journal of Mathematical Analysis and Applications, vol. 345, no. 1, pp. 86-89, 2008.

