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Adem Kılıçman1 and Zeyad Al Zhour2

1 Department of Mathematics, Institute for Mathematical Research, University Putra Malaysia,
43400 UPM Serdang, Selangor, Malaysia

2 Department of Mathematics, Zarqa Private University, P.O. Box 2000, Zarqa 1311, Jordan

Correspondence should be addressed to Adem Kılıçman, akilicman@putra.upm.edu.my
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1. Introduction

There has been renewed interest in the Convolution Product of matrix functions that is very
useful in some applications; see for example [1–6]. The importance of this product stems
from the fact that it arises naturally in divers areas of mathematics. In fact, the convolution
product plays very important role in system theory, control theory, stability theory, and,
other fields of pure and applied mathematics. Further the technique has been successfully
applied in various fields of matrix algebra such as, in matrix equations, matrix differential
equations, matrix inequalities, and many other subjects; for details see [1, 7, 8]. For example,
in [2], Nikolaos established some inequalities involving convolution product of matrices
and presented a new method to obtain closed form solutions of transition probabilities
and dependability measures and then solved the renewal matrix equation by using the
convolution product of matrices. In [6], Sumita established the matrix Laguerre transform
to calculate matrix convolutions and evaluated a matrix renewal function, similarly, in [9],
Boshnakov showed that the entries of the autocovariances matrix function can be expressed
in terms of the Kronecker convolution product. Recently in [1], Kiliçman and Al Zhour
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presented the iterative solution of such coupled matrix equations based on the Kronecker
convolution structures.

In this paper, we consider Kronecker and Hadamard convolution products for
matrices and define the so-called Dirac identity matrix Dn(t) which behaves like a group
identity element under the convolution matrix operation. Further, we present some results
which includes matrix equalities as well as inequalities related to these products and give
attractive application to the inequalities that involves Hadamard convolution product. Some
special cases of this application are also considered. First of all, we need the following
notations. The notation MI

m,n is the set of all m × n absolutely integrable matrices for all
t ≥ 0, and if m = n, we write MI

n instead of MI
m,n. The notation AT (t) is the transpose of

matrix function A(t). The notations δ(t) and Dn(t) = δ(t)In are the Dirac delta function and
Dirac identity matrix, respectively; here, the notation In is the scalar identity matrix of order
n×n. The notationsA(t)∗B(t),A(t)�B(t), andA(t)•B(t) are convolution product, Kronecker
convolution product and Hadamard convolution product of matrix functions A(t) and B(t),
respectively.

2. Matrix Convolution Products and Some Properties

In this section, we introduce Kronecker and Hadamard convolution products of matrices,
obtain some new results, and establish connections between these products that will be useful
in some applications.

Definition 2.1. Let A(t) = [fij(t)] ∈ MI
m,n, B(t) = [gjr(t)] ∈ MI

n,p, and C(t) = [zij(t)] ∈ MI
m,n.

The convolution, Kronecker convolution and Hadamard convolution products are matrix
functions defined for t ≥ 0 as follows (whenever the integral is defined).

(i) Convolution product

A(t) ∗ B(t) = (hir(t)) with hir(t) =
n∑

k=1

∫ t

0
fik(t − x)gkr(x)dx =

n∑

k=1

fik(t) ∗ gkr(t). (2.1)

(ii) Kronecker convolution product

A(t) � B(t) =
[
fij(t) ∗ B(t)

]
ij
. (2.2)

(iii) Hadamard convolution product

A(t)•C(t) = [
fij(t) ∗ zij(t)

]
ij
. (2.3)

where fij(t) ∗ B(t) is the ijth submatrix of order n × p; thus A(t) � B(t) is of order mn × np,
A(t) ∗ B(t) is of order m × p, and similarly, the product A(t)•C(t) is of order m × n.

The following two theorems are easily proved by using the definition of the
convolution product and Kronecker product of matrices, respectively.
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Theorem 2.2. Let A(t), B(t), C(t) ∈ MI
n, and let Dn(t) = δ(t)In ∈ MI

n. Then for scalars α and β

(i)

(
αA(t) + βB(t)

) ∗ C(t) = α(A(t) ∗ C(t)) + β(B(t) ∗ C(t)), (2.4)

(ii)

(A(t) ∗ B(t)) ∗ C(t) = A(t) ∗ (B(t) ∗ C(t)), (2.5)

(iii)

A(t) ∗Dn(t) = Dn(t) ∗A(t) = A(t), (2.6)

(iv)

(A(t) ∗ B(t))T = BT (t) ∗AT (t). (2.7)

Theorem 2.3. Let A(t), C(t) ∈ MI
m,n, B(t) ∈ MI

p,q, and let Dn(t) = δ(t)In ∈ MI
n. Then

(i)

Dn(t) �A(t) = diag(A(t), A(t), . . . , A(t)), (2.8)

(ii)

Dn(t) �Dm(t) = Dnm(t), (2.9)

(iii)

(A(t) + C(t)) � B(t) = A(t) � B(t) + C(t) � B(t), (2.10)

(iv)

(A(t) � B(t))T = AT (t) � BT (t), (2.11)

(v)

(A(t) � B(t)) ∗ (C(t) �D(t)) = (A(t) ∗ C(t)) � (B(t) ∗D(t)), (2.12)

(vi)

(A(t) �Dm(t)) ∗ (Dn(t) � B(t)) = (Dn(t) � B(t)) ∗ (A(t) �Dm(t)) = A(t) � B(t). (2.13)
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The above results can easily be extended to the finite number of matrices as in the following
corollary.

Corollary 2.4. Let Ai(t) and Bi(t) ∈ MI
n(1 ≤ i ≤ k) be matrices. Then

(i)

k∏

i=1

∗ (Ai(t) � Bi(t)) =

(
k∏

i=1

∗Ai(t)

)
�
(

k∏

i=1

∗ Bi(t)

)
, (2.14)

(ii)

k∏

i=1

� (Ai(t) ∗ Bi(t)) =

(
k∏

i=1

�Ai(t)

)
∗
(

k∏

i=1

� Bi(t)

)
. (2.15)

Proof. (i) The proof is a consequence of Theorem 2.3(v). Now we can proceed by induction
on k. Assume that Corollary 2.4 holds for products of k − 1 matrices. Then

(A1(t) � B1(t)) ∗ (A2(t) � B2(t)) ∗ · · · ∗ (Ak(t) � Bk(t))

= {(A1(t) � B1(t)) ∗ (A2(t) � B2(t)) ∗ · · · ∗ (Ak−1(t) � Bk−1(t))} ∗ (Ak(t) � Bk(t))

= {(A1(t) ∗A2(t) ∗ · · · ∗Ak−1(t)) � (B1(t) ∗ B2(t) ∗ · · · ∗ Bk−1(t))} ∗ (Ak(t) � Bk(t))

= {(A1(t) ∗A2(t) ∗ · · · ∗Ak−1(t) ∗Ak(t))} � {(B1(t) ∗ B2(t) ∗ · · · ∗ Bk−1(t) ∗ Bk(t))}

=

(
k∏

i=1

∗Ai(t)

)
�
(

k∏

i=1

∗ Bi(t)

)
.

(2.16)

Similarly we can prove (ii).

Theorem 2.5. Let A(t) = [fij(t)], and let B(t) = [gij(t)] ∈ MI
m,n. Then

A•B(t) = PT
m(t) ∗ (A � B)(t) ∗ Pn(t). (2.17)

Here, Pn(t) = (Vec E
(n)
11 (t), . . . ,Vec E

(n)
nn (t)) ∈ Mn2,n and Eij(t) = ei(t) ∗ eTj (t) of order n × n, ei(t)

is the ith column of Dirac identity matrixDn(t) = δ(t)In ∈ Mn with property PT
n (t) ∗Pn(t) = Dn(t).

In particular, ifm = n, then we have

A•B(t) = PT
n (t) ∗ (A � B)(t) ∗ Pn(t). (2.18)
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Proof. Compute

PT
m(t) ∗ (A � B)(t) ∗ Pn(t) =

(
Vec E

(m)
11 (t), . . . ,Vec E

(m)
mm(t)

)T ∗ (A � B)(t)

∗
(
Vec E

(n)
11 (t), . . . ,Vec E

(n)
nn (t)

)

=
n∑

k=1

diag
(
fik(t), f2k(t), . . . , fmk(t)

) ∗ B(t) ∗ E(n)
kk (t)

=

(
n∑

k=1

fik(t) ∗ gij(t) ∗ δjk(t)
)

=
(
fij(t) ∗ gij(t)

)
= A•B(t).

(2.19)

This completes the proof of Theorem 2.5.

Corollary 2.6. Let Ai(t) ∈ MI
m,n(1 ≤ i ≤ k, k ≥ 2). Then there exist two matrices Pkm(t) of order

mk ×m and Pkn(t) of order nk × n such that

k∏

i=1

•Ai(t) = PT
km(t) ∗

(
k∏

i=1

�Ai(t)

)
∗ Pkn(t), (2.20)

where

PT
km(t) =

(
E
(m)
11 (t), 0(m), . . . , 0(m), E

(m)
22 (t), 0(m), . . . , 0(m), E

(m)
mm(t)

)
(2.21)

is of orderm×mk, 0(m) is anm×mmatrix with all entries equal to zero, E(m)
ij (t) is anm×mmatrix of

zeros except for a δ(t) in the ijth position, and there are
∑k−2

s=1 m
s zero matrices 0(m) between E

(m)
ii (t)

and E
(m)
i+1,i+1(t) (1 ≤ i ≤ m − 1). In particular, ifm = n, then we have

k∏

i=1

•Ai(t) = PT
km(t) ∗

(
k∏

i=1

�Ai(t)

)
∗ Pkm(t). (2.22)

Proof. The proof is by induction on k. If k = 2, then the result is true by using (2.17). Now
suppose that corollary holds for the Hadamard convolution product of k matrices. Then we
have

k+1∏

i=1

•Ai(t) = A1(t)•
(

k+1∏

i=1

•Ai(t)

)
= PT

m(t) ∗
(
A1(t) �

(
k+1∏

i=1

•Ai(t)

))
∗ Pn(t)

= PT
m(t) ∗

((
Dm(t) � PT

km(t)
)
∗
(

k+1∏

i=1

�Ai(t)

)
∗ (Dn(t) � Pkn(t))

)
∗ Pn(t)

=
(
PT
m(t) ∗

(
Dm(t) � PT

km(t)
))

∗
(

k+1∏

i=1

�Ai(t)

)
∗ ((Dn(t) � Pkn(t)) ∗ Pn(t)),

(2.23)
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which is based on the fact that

PT
m(t) ∗

(
Dm(t) � PT

km(t)
)
= PT

(k+1)m(t), (Dn(t) � Pkn(t)) ∗ Pn(t) = P(k+1)n(t), (2.24)

and thus the inductive step is completed.

Corollary 2.7. Let A(t), B(t) ∈ MI
m and Pm(t) be a matrix of zeros and Dm(t) that satisfies the

(2.17). Then PT
m(t) ∗ Pm(t) = Dm(t) and Pm ∗ PT

m is a diagonalm2 ×m2 matrix of zeros, and then the
following inequality satisfied

0 ≤ Pm(t) ∗ PT
m(t) ≤ Dm2 . (2.25)

Proof. It follows immediately by the definition of matrix Pm(t).

Theorem 2.8. Let A(t) and B(t) ∈ MI
m,n. Then for any m2 × n2 matrix L(t),

PT
m(t) ∗ L(t) ∗ LT (t) ∗ Pm(t) ≥

(
PT
m(t) ∗ L(t) ∗ Pn(t)

)
∗
(
PT
m(t) ∗ L(t) ∗ Pn(t)

)T ≥ 0. (2.26)

Proof. By Corollary 2.7, it is clear that Dn2(t) ≥ Pn(t) ∗ PT
n (t) ≥ 0 and so

PT
m(t) ∗ L(t) ∗Dn2(t) ∗ LT (t) ∗ Pm(t) = PT

m(t) ∗ L(t) ∗ LT (t) ∗ Pm(t)

≥ PT
m(t) ∗ L(t) ∗ Pn(t) ∗ PT

n (t) ∗ LT (t) ∗ Pm(t)

=
(
PT
m(t) ∗ L(t) ∗ Pn(t)

)
∗
(
PT
m(t) ∗ L(t) ∗ Pn(t)

)T ≥ 0.

(2.27)

This completes the proof of Theorem 2.8.

We note that Hadamard convolution product differs from the convolution product of
matrices in many ways. One important difference is the commutativity of Hadamard
convolution multiplication

A•B(t) = B•A(t). (2.28)

Similarly, the diagonal matrix function can be formed by using Hadamard convolution
multiplication with Dirac identity matrix. For example, if A(t), B(t) ∈ MI

n, and Dn(t) Dirac
identity then we have

(i) A•B(t) = A ∗ B(t) if and only if A(t) and B(t) are both diagonal matrices;

(ii) (A•B(t))•Dn(t) = (A•Dn(t)) ∗ (B•Dn(t)).
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3. Some New Applications

Now based on inequality (2.26) in the previous section we can easily make some different
inequalities on using the commutativity of Hadamard convolution product. Thus we have
the following theorem.

Theorem 3.1. For matrices A(t) and B(t) ∈ MI
m,n and for s ∈ [−1, 1], we have (A(t) ∗

AT (t))•(B(t) ∗ BT (t)) + s((A(t) ∗ BT (t)•B(t) ∗AT (t)))

≥ (1 + s)
(
(A(t)•B(t)) ∗ (A(t)•B(t))T

)
. (3.1)

In particular, if s = 0, then we have

(
A(t) ∗AT (t)

)
•
(
B(t) ∗ BT (t)

)
≥ (A(t)•B(t)) ∗ (A(t)•B(t))T . (3.2)

Proof. Choose L(t) = αA(t)�B(t)+βB(t)�A(t), whereA(t), and B(t) ∈ MI
m,n and α, β are real

scalars not both zero. Since

L(t) ∗ LT (t) =
{(

αA(t) � B(t) + βB(t) �A(t)
) ∗ (αA(t) � B(t) + βB(t) �A(t)

)T}
, (3.3)

on using Theorem 2.5 we can easily obtain that

PT
m(t) ∗ L(t) ∗ LT (t) ∗ Pm(t) =

(
α2
(
A(t) ∗AT (t)

)
•
(
B(t) ∗ BT (t)

))

+
(
αβ

(
A(t) ∗ BT (t)

)
•
(
B(t) ∗AT (t)

))

+
(
αβ

(
B(t) ∗AT (t)

)
•
(
A(t) ∗ BT (t)

))

+
(
β2
(
B(t) ∗ BT (t)

)
•
(
A(t) ∗AT (t)

))

=
(
α2 + β2

)((
A(t) ∗AT (t)

)
•
(
B(t) ∗ BT (t)

))

+ 2αβ
((

A(t) ∗ BT (t)
)
•
(
B(t) ∗AT (t)

))
.

(3.4)

Now one can also easily show that

(
PT
m(t) ∗ L(t) ∗ Pn(t)

)
∗
(
PT
m(t) ∗ L(t) ∗ Pn(t)

)T
=
(
α + β

)2(A(t)•B(t)) ∗ (A(t)•B(t))T . (3.5)

By setting s = 2αβ/(α2+β2), then it follows that s+1 = (α + β)2/(α2+β2); further the arithmetic-
geometric mean inequality ensures that |s| ≤ 1 and the choices β = 1 and α ∈ [−1, 1] thus s
takes all values in [−1, 1]. Now by using (3.4), (3.5) and inequality (2.26) we can establish
Theorem 3.1.
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Further, Theorem 3.1 can be extended to the case of Hadamard convolution products which
involves finite number of matrices as follows.

Theorem 3.2. LetAi ∈ MI
m,n(1 ≤ i ≤ k, k ≥ 2). Then for real scalars α1, α2, . . . , αk, which are not

all zero

(
k∑

i=1

α2
i

)(
k∏

i=1

•
(
Ai(t) ∗AT

i (t)
))

+

(
k−1∑

r=1

μr

k∏

w=1

•
(
Aw(t) ∗AT

(w+r)′(t)
))

≥
(

k∑

i=1

αi

)2( k∏

i=1

•Ai(t)

)(
k∏

i=1

•Ai(t)

)T

,

(3.6)

where μr =
∑k

w=1 αwα(w+r)′ and w + r ≡ (w + r)′ mod k with 1 ≤ (w + r)′ ≤ k.

Proof. Let

L(t) = α1(A1(t) �A2(t) � · · · �Ak(t)) + α2(A2(t) � · · · �Ak(t) �A1(t))

+ · · · + αk(Ak(t) �A1(t) � · · · �Ak−1(t)).
(3.7)

By taking indices “modk” and using (2.20) of Corollary 2.6 follows that

L(t) ∗ LT (t) = α2
1

(
A1(t) ∗AT

1 (t)
)
� · · · �

(
Ak(t) ∗AT

k(t)
)

+ · · · + α2
k

(
Ak(t) ∗AT

k(t)
)
�
(
A1(t) ∗AT

1 (t)
)

� · · · �
(
Ak−1(t) ∗AT

k−1(t)
)

+
k∑

i /= j

αiαj

{(
Ai(t) ∗AT

j (t)
)
�
(
Aj+1(t) ∗AT

j+1(t)
)

� · · · �
(
Aj−1(t) ∗AT

j−1(t)
)}

.

(3.8)

Now on using Corollary 2.6 and the commutativity of Hadamard convolution product yields

PT
km(t) ∗ L(t) ∗ LT (t) ∗ Pkm(t) =

(
k∑

i=1

α2
i

)(
k∏

i=1

•
(
Ai(t) ∗AT

i (t)
))

+

(
k−1∑

r=1

μr

k∏

w=1

•
(
Aw(t) ∗AT

(w+r)′(t)
))

(3.9)
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where μr =
∑k

w αwα(w+r)
′ and w + r ≡ (w + r)

′
mod k with 1 ≤ (w + r)

′ ≤ k then

(
PT
km(t) ∗ L(t) ∗ Pkn(t)

)
= α1P

T
km(t) ∗ (A1(t) �A2(t) � · · · �Ak(t)) ∗ Pkn(t)

+ α2P
T
km(t) ∗ (A2(t) � · · · �Ak(t) �A1(t)) ∗ Pkn(t)

+ · · · + αkP
T
km(t) ∗ (Ak(t) �A1(t) � · · · �Ak−1(t)) ∗ Pkn(t)

=

(
k∑

i=1

αi

)(
k∏

i=1

•Ai(t)

)
.

(3.10)

Thus it follows that

(
PT
km(t) ∗ L(t) ∗ Pkn(t)

)T =

(
k∑
i=1
αi

)(
k∏
i=1

•Ai(t)

)T

,

(
PT
km(t)∗L(t)∗Pkn(t)

)
∗
(
PT
km(t)∗L(t)∗Pkn(t)

)T
=

(
k∑

i=1

αi

)2( k∏

i=1

•Ai(t)

)
∗
(

k∏

i=1

•Ai(t)

)T

.

(3.11)

Now by applying inequality (2.26), and (3.6) and (3.7) thus we establish Theorem 3.2.

We note that many special cases can be derived from Theorem 3.2. For example, in order to
see that inequality (3.6) is an extension of inequality (3.2) we set α1 = 1 and α2 = · · · = αk = 0.
Next, we recover inequality (3.1) of Theorem 3.1, by letting k = 2, then μ1 =

∑2
w=1 αwα(w+1)′

with w + 1 ≡ (w + 1)′ mod 2, that is, μ1 = 2α1α2 then we have

(
α2
1 + α2

2

)((
A1(t) ∗AT

1 (t)
)
•
(
A2(t) ∗AT

2 (t)
))

+ 2α1α2

((
A1(t) ∗AT

2 (t)
)
•
(
A2(t) ∗AT

1 (t)
))

≥ (α1 + α2)2(A1(t)•A(t)) ∗ (A1(t)•A2(t))
T .

(3.12)

By simplification we have

A
(
1(t) ∗AT

1 (t)
)
•
(
A2(t) ∗AT

2 (t)
)
+ s

((
A1(t) ∗AT

2 (t)
)
•
(
A2(t) ∗AT

1 (t)
))

≥ (1 + s)(A1(t)•A2(t)) ∗ (A1(t)•A2(t))
T

(3.13)



10 Journal of Inequalities and Applications

for every s ∈ [−1, 1], just as required. Finally, if we let k = 3, α1 = 1, and α2 = α3 = −1/2, then
on using Theorem 3.2 we have an attractive inequality as follows.

(
A1(t) ∗AT

1 (t)
)
•A

(
2(t) ∗AT

2 (t)
)
•A3(t) ∗AT

3 (t)

≥ 1
2

{
A1

(
(t) ∗AT

2 (t)
)
•
(
A2(t) ∗AT

3 (t)
)
•
(
A3(t) ∗AT

1 (t)
)

+
(
A2(t) ∗AT

1 (t)
)
•
(
A3(t) ∗AT

2 (t)
)
•
(
A1(t) ∗AT

3 (t)
)}

.

(3.14)
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[7] Z. Al Zhour and A. Kiliçman, “Some new connections between matrix products for partitioned and
non-partitioned matrices,” Computers & Mathematics with Applications, vol. 54, no. 6, pp. 763–784, 2007.
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