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Department of Mathematics, Faculty of Science and Arts, Sakarya University, 54187 Sakarya, Turkey

Correspondence should be addressed to Metin Başarir, basarir@sakarya.edu.tr
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1. Introduction

w(X), c(X), c0(X), c(X), c0(X), l∞(X), m(X), m0(X) will represent the spaces of all, con-
vergent, null, statistically convergent, statistically null, bounded, bounded statistically
convergent, and bounded statistically null X-valued sequence spaces throughout the paper,
where (X, q) is a seminormed space, seminormed by q. For X = C, the space of complex
numbers, these spaces represent the w, c, c0, c, c0, l∞, m, m0 which are the spaces of all,
convergent, null, statistically convergent, statistically null, bounded, bounded statistically
convergent, and bounded statistically null sequences, respectively. The zero sequence is
denoted by θ = (θ, θ, θ, . . .), where θ is the zero element of X.

The idea of statistical convergence was introduced by Fast [1] and studied by various
authors (see [2–4]). The notion depends on the density of subsets of the set N of natural
numbers. A subset E of N is said to have density δ(E) if

δ(E) = lim
n→∞

1
n

n∑

k=1

χE(k) exists, (1.1)

where χE is the characteristic function of E.
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A sequence x = (xk) is said to be statistically convergent to the number L (i.e., (xk) ∈
c) if for every ε > 0

δ({k ∈ N : |xk − L| ≥ ε}) = 0. (1.2)

In this case, we write xk
stat→ L or stat − lim x = L.

Let σ be a mapping of the set of positive integers into itself. A continuous linear
functional φ on l∞, the space of real bounded sequences, is said to be an invariant mean
or σ-mean if and only if

(1) φ(x) ≥ 0 when the sequence x = (xn) has xn ≥ 0 for all n ∈ N,

(2) φ(e) = 1, where e = (1, 1, . . .),

(3) φ(xσ(n)) = φ(x) for all x ∈ l∞.

Themappings σ are one to one and such that σk(n)/=n for all positive integers n and k,
where σk(n) denotes the kth iterate of the mapping σ at n. Thus φ extends the limit functional
on c, the space of convergent sequences, in the sense that φ(x) = lim x for all x ∈ c. In that
case σ is translation mapping n → n + 1, a σ-mean is often called a Banach limit, and Vσ ,
the set of bounded sequences all of whose invariant means are equal, is the set of almost
convergent sequences [5].

If x = (xn), set Tx = (Txn) = (xσ(n)). It can be shown [6] that

Vσ =
{
x = (xn) : lim

m
tmn(x) = Le uniformly in n, L = σ − lim x

}
(1.3)

where tmn(x) = (xn + Txn + . . . + Tmxn)/(m + 1).
Several authors including Schaefer [7], Mursaleen [6], Savas [8], and others have

studied invariant convergent sequences.
An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,

nondecreasing, and convex with M(0) = 0,M(x) > 0 for x > 0 and M(x) → ∞ as x → ∞. If
the convexity of an Orlicz function M is replaced by

M
(
x + y

) ≤ M(x) +M
(
y
)
, (1.4)

then this function is called modulus function, introduced and investigated by Nakano [9]
and followed by Ruckle [10], Maddox [11], and many others.

Lindenstrauss and Tzafriri [12] used the idea of Orlicz function to construct the
sequence space

lM =

{
x ∈ w :

∞∑

k=1

M

( |xk|
ρ

)
< ∞, for some ρ > 0

}
(1.5)

which is called an Orlicz sequence space.
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The space lM becomes a Banach space with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑

k=1

M

( |xk|
ρ

)
≤ 1

}
. (1.6)

The space lM is closely related to the space lp which is an Orlicz sequence space with
M(x) = xp for 1 ≤ p < ∞. Orlicz sequence spaces were introduced and studied by Parashar
and Choudhary [13], Bhardwaj and Singh [14], and many others.

It is well known that since M is a convex function and M(0) = 0 then M(tx) ≤ tM(x)
for all t with 0 < t < 1.

An Orlicz funtion M is said to satisfy Δ2-condition for all values of u, if there exists
constant K > 0, such that M(2u) ≤ KM(u) (u ≥ 0). The Δ2-condition is equivalent to the
inequality M(Lu) ≤ KLM(u) for all values of u and for L > 1 being satisfied [15].

The notion of paranormed space was introduced by Nakano [16] and Simons [17].
Later on it was investigated by Maddox [18], Lascarides [19], Rath and Tripathy [20],
Tripathy and Sen [21], Tripathy [22], and many others.

The following inequality will be used throughout this paper. Let p = (pk) be a sequence
of positive real numbers with 0 < pk ≤ sup pk = G and let D = max(1, 2G−1). Then for
ak, bk ∈ C, the set of complex numbers for all k ∈ N, we have [23]

|ak + bk|pk ≤ D
{|ak|pk + |bk|pk

}
. (1.7)

2. Definitions and Notations

A sequence space E is said to be solid (or normal) if (αkxk) ∈ E, whenever (xk) ∈ E and for
all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N.

A sequence space E is said to be symmetric if (xk) ∈ E implies (xπ(k)) ∈ E, where π(k)
is a permutation of N.

A sequence space E is said to be monotone if it contains the canonical preimages of its
step spaces.

Throughout the paper p = (pk)will represent a sequence of positive real numbers and
(X, q) a seminormed space over the field C of complex numbers with the seminorm q. We
define the following sequence spaces:

c
(
σ,M, p, q, s

)
=

{
(xk) ∈ l∞(X) : k−s

[
M

(
q

(
xσk(n) − L

ρ

))]pk
stat−→ 0,

as k −→ ∞, uniformly in n, s ≥ 0, for some ρ > 0, L ∈ X

}
,

c0
(
σ,M, p, q, s

)
=
{
(xk) ∈ l∞(X) : k−s

[
M

(
q

(
xσk(n)

ρ

))]pk
stat−→ 0,

as k −→ ∞, uniformly in n, s ≥ 0, for some ρ > 0
}
,
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l∞
(
σ,M, p, q, s

)
=

{
(xk) ∈ l∞(X) : sup

k,n

k−s
[
M

(
q

(
xσk(n)

ρ

))]pk
< ∞,

s ≥ 0, for some ρ > 0
}
,

W
(
σ,M, p, q, s

)
=

{
(xk) ∈ l∞(X) : lim

j

1
j

j∑

k=1

k−s
[
M

(
q

(
xσk(n) − L

ρ

))]pk
= 0,

uniformly in n, s ≥ 0, for some ρ > 0

}
.

(2.1)

We write

m
(
σ,M, p, q, s

)
= c
(
σ,M, p, q, s

) ∩ l∞
(
σ,M, p, q, s

)
,

m0
(
σ,M, p, q, s

)
= c0
(
σ,M, p, q, s

) ∩ l∞
(
σ,M, p, q, s

)
.

(2.2)

IfM(x) = x, q(x) = |x|, s = 0, σ(n) = n+1 for each n and k = 0 then these spaces reduce
to the spaces

c
(
p
)
=
{
(xk) ∈ w : |xk − L|pk stat−→ 0, as k −→ ∞, L ∈ X

}
,

c0
(
p
)
=
{
(xk) ∈ w : |xk|pk stat−→ 0, as k −→ ∞

}
,

l∞
(
p
)
=

{
(xk) ∈ w : sup

k

|xk|pk < ∞
}
,

m
(
p
)
= c
(
p
) ∩ l∞

(
p
)
,

m0
(
p
)
= c0
(
p
) ∩ l∞

(
p
)
,

(2.3)

defined by Tripathy and Sen [21].
Firstly, we give some results; those will help in establishing the results of this paper.

Lemma 2.1 ([21]). For two sequences (pk) and (tk) one has m0(p) ⊇ m0(t) if and only if
lim infk∈K(pk/tk) > 0, where K ⊆ N such that δ(K) = 1.

Lemma 2.2 ([21]). Let h = inf pk and G = sup pk, then the followings are equivalent:

(i) G < ∞ and h > 0,

(ii) m(p) = m.

Lemma 2.3 ([21]). Let K = {n1, n2, n3, . . .} be an infinite subset of N such that δ(K) = 0. Let

T = {(xk) : xk = 0 or 1 for k = ni, i ∈ N and xk = 0, otherwise}. (2.4)

Then T is uncountable.
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Lemma 2.4 ([24]). If a sequence space E is solid then E is monotone.

3. Main Results

Theorem 3.1. c(σ,M, p, q, s), c0(σ,M, p, q, s),m(σ,M, p, q, s),m0(σ,M, p, q, s) are linear spaces.

Proof. Let (xk), (yk) ∈ c(σ,M, p, q, s). Then there exist ρ1, ρ2 positive real numbers and K,
L ∈ X such that

k−s
[
M

(
q

(
xσk(n) −K

ρ1

))]pk
stat−→ 0, as k −→ ∞, uniformly in n,

k−s
[
M

(
q

(
yσk(n) − L

ρ2

))]pk
stat−→ 0, as k −→ ∞, uniformly in n.

(3.1)

Let α, β be scalars and let ρ3 = max(2|α|ρ1, 2|β|ρ2). Then by (1.7)we have

k−s
[
M

(
q

(
αxσk(n) + βyσk(n) − (αK + βL)

ρ3

))]pk

≤ k−s
[
M

(
q

(
xσk(n) −K

2ρ1

)
+ q

(
yσk(n) − L

2ρ2

))]pk

≤ k−s 1
2pk

[
M

(
q

(
xσk(n) −K

ρ1

))
+M

(
q

(
yσk(n) − L

ρ2

))]pk

≤ D

{
k−s
[
M

(
q

(
xσk(n) −K

ρ1

))]pk

+k−s
[
M

(
q

(
yσk(n) − L

ρ2

))]pk}
stat−→ 0 as k −→ ∞, uniformly in n.

(3.2)

Hence c(σ,M, p, q, s) is a linear space.
The rest of the cases will follow similarly.

Theorem 3.2. The spacesm(σ,M, p, q, s) andm0(σ,M, p, q, s) are paranormed spaces, paranormed
by

g(x) = inf

{
ρpm/H : sup

k

k−sM
(
q

(
xσk(n)

ρ

))
≤ 1, uniformly in n, s ≥ 0, ρ > 0, m ∈ N

}
, (3.3)

whereH = max(1, sup pk).
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Proof. We prove the theorem for the space m0(σ,M, p, q, s). The proof for the other space can
be proved by the same way. Clearly g(x) = g(−x) for all x ∈ m0(σ,M, p, q, s) and g(θ) = 0.
Let x, y ∈ m0(σ,M, p, q, s). Then we have ρ1, ρ2 > 0 such that

sup
k

k−sM
(
q

(
xσk(n)

ρ1

))
≤ 1, uniformly in n,

sup
k

k−sM
(
q

(
yσk(n)

ρ2

))
≤ 1, uniformly in n.

(3.4)

Let ρ = ρ1 + ρ2. Then by the convexity of M, we have

sup
k

k−sM
(
q

(
xσk(n) + yσk(n)

ρ

))

≤ sup
k

k−sM
(

ρ1
ρ1 + ρ2

q

(
xσk(n)

ρ1

)
+

ρ2
ρ1 + ρ2

q

(
yσk(n)

ρ2

))

≤ ρ1
ρ1 + ρ2

sup
k

k−sM
(
q

(
xσk(n)

ρ1

))

+
ρ2

ρ1 + ρ2
sup
k

k−sM
(
q

(
yσk(n)

ρ2

))
≤ 1, uniformly in n.

(3.5)

Hence from above inequality, we have

g
(
x + y

)

= inf

{
ρpm/H : sup

k

k−sM
(
q

(
xσk(n) + yσk(n)

ρ

))
≤ 1,

uniformly in n, ρ > 0, m ∈ N

}

≤ inf

{
ρ
pm/H

1 : sup
k

k−sM
(
q

(
xσk(n)

ρ1

))
≤ 1, uniformly in n, ρ1 > 0

}

+ inf

{
ρ
pm/H

2 : sup
k

k−sM
(
q

(
yσk(n)

ρ1

))
≤ 1, uniformly in n, ρ2 > 0

}

= g(x) + g
(
y
)
.

(3.6)
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For the continuity of scalar multiplication let λ/= 0 be any complex number. Then by
the definition of g we have

g(λx) = inf

{
ρpm/H : sup

k

k−sM
(
q

(
λxσk(n)

ρ

))
≤ 1, uniformly in n, ρ > 0

}

= inf

{
(r|λ|)pm/H : sup

k

k−sM
(
q

(
xσk(n)

r

))
≤ 1, uniformly in n, r > 0

}
,

(3.7)

where r = ρ/|λ|.
Since |λ|pm ≤ max(1, |λ|H),we have |λ|pm/H ≤ (max(1, |λ|H))

1/H
. Then

g(λx) ≤
(
max
(
1, |λ|H

))1/H
inf

{
(r)pm/H : sup

k

k−sM
(
q

(
xσk(n)

r

))
≤ 1,

uniformly in n, r > 0
}

= (max(1, |λ|H))
1/H · g(x),

(3.8)

and therefore g(λx) converges to zero when g(x) converges to zero or λ converges to zero.
Hence the spaces m(σ,M, p, q, s) and m0(σ,M, p, q, s) are paranormed by g.

Theorem 3.3. Let (X, q) be complete seminormed space, then the spaces m(σ,M, p, q, s) and
m0(σ,M, p, q, s) are complete.

Proof. We prove it for the casem0(σ,M, p, q, s) and the other case can be established similarly.
Let xs = (xs

σk(n)) be a Cauchy sequence inm0(σ,M, p, q, s) for all k, n ∈ N. Then g(xi−xj) → 0,
as i, j → ∞. For a given ε > 0, let r > 0 and δ > 0 to be such that (ε/rδ) > 0. Then there exists
a positive integer N such that

g
(
xi − xj

)
<

ε

rδ
∀i, j ≥ N. (3.9)

Using definition of paranorm we get

inf

⎧
⎨

⎩ρpk/H : sup
k

k−sM

⎛

⎝q

⎛

⎝
xi
σk(n) − x

j

σk(n)

ρ

⎞

⎠

⎞

⎠ ≤ 1, uniformly in n, ρ > 0

⎫
⎬

⎭ <
ε

rδ
.

(3.10)

Hence xi is a Cauchy sequence in (X, q). Therefore for each ε (0 < ε < 1) there exists a
positive integer N such that

q
(
xi − xj

)
< ε ∀i, j ≥ N. (3.11)
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Using continuity of M, we find that

sup
k

k−sM

(
q

(
xi − limj x

j

ρ

))
≤ 1. (3.12)

Thus

sup
k

k−sM

(
q

(
xi − x

ρ

))
≤ 1. (3.13)

Taking infimum of such ρ′s we get

inf

{
ρpk/H : sup

k

k−sM

(
q

(
xi − x

ρ

))
≤ 1

}
< ε (3.14)

for all i ≥ N and j → ∞. Since xi ∈ m0(σ,M, p, q, s) and M is continuous, it follows that
x ∈ m0(σ,M, p, q, s). This completes the proof of the theorem.

Theorem 3.4. LetM1 and M2 be two Orlicz functions satisfying Δ2-condition. Then

(i) Z(σ,M1, p, q, s) ⊆ Z(σ,M2 ◦M1, p, q, s),

(ii) Z(σ,M1, p, q, s) ∩ Z(σ,M2, p, q, s) ⊆ Z(σ,M1 +M2, p, q, s),

where Z = c, m, c0, and m0.

Proof. (i) We prove this part for Z = c0 and the rest of the cases will follow similarly. Let
(xk) ∈ c0(σ,M1, p, q, s). Then for a given 0 < ε < 1, there exists ρ > 0 such that there exists a
subset K of Nwith δ(K) = 1, where

K =
{
k ∈ N : k−s

[
M1

(
q

(
xσk(n)

ρ

))]pk
<

ε

B

}
,

B = max

(
1, sup

[
M2

(
1

(k−s)1/pk

)]pk)
.

(3.15)

If we take ak = (k−s)1/pkM1(q(xσk(n)/ρ)) then a
pk
k

< (ε/B) < 1 implies that ak < 1.
Hence we have by convexity ofM,

(M2 ◦M1)
(
q

(
xσk(n)

ρ

))
= M2

(
ak

(k−s)1/pk

)
≤ akM2

(
1

(k−s)1/pk

)
. (3.16)

Thus

k−s[M2(ak)]pk ≤ k−s
[
M2

(
ak

(k−s)1/pk

)]pk
≤ k−sB(ak)pk ≤ B(ak)pk < ε. (3.17)
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Hence by (3.15) it follows that for a given ε > 0, there exists ρ > 0 such that

δ

({
k ∈ N : k−s

[
M2

(
M1

(
q

(
xσk(n)

ρ

)))]pk
< ε

})
= 1. (3.18)

Therefore (xk) ∈ c0(σ,M2 ◦M1, p, q, s).
(ii)We prove this part for the case Z = c0 and the other cases will follow similarly.
Let (xk) ∈ c0(σ,M1, p, q, s) ∩ c0(σ,M2, p, q, s). Then by using (1.7) it can be shown that

(xk) ∈ c0(σ,M1 +M2, p, q, s). Hence

c0
(
σ,M1, p, q, s

) ∩ c0
(
σ,M2, p, q, s

) ⊆ c0
(
σ,M1 +M2, p, q, s

)
. (3.19)

This completes the proof.

Theorem 3.5. For any sequence p = (pk) of positive real numbers and for any two seminorms q1 and
q2 on X one has

Z
(
σ,M, p, q1, s

) ∩ Z
(
σ,M, p, q2, s

)
/= ∅, (3.20)

where Z = c, m, c0, and m0.

Proof. The proof follows from the fact that the zero sequence belongs to each of the classes the
sequence spaces involved in the intersection.

The proof of the following result is easy, so omitted.

Proposition 3.6. LetM be an Orlicz function which satisfies Δ2−condition, and let q1 and q2 be two
seminorms on X. Then

(i) c0(σ,M, p, q1, s) ⊆ c(σ,M, p, q1, s),

(ii) m0(σ,M, p, q1, s) ⊆ m(σ,M, p, q1, s),

(iii) Z(σ,M, p, q1, s) ∩ Z(σ,M, p, q2, s) ⊆ Z(σ,M, p, q1 + q2, s) where Z = c, m, c0, and m0,

(iv) if q1 is stronger than q2, then

Z
(
σ,M, p, q1, s

) ⊆ Z
(
σ,M, p, q2, s

)
, (3.21)

where Z = c, m, c0, and m0.

Theorem 3.7. The spaces Z(σ,M, p, q, s) are not solid, where Z = c and m.

Proof. To show that the spaces are not solid in general, consider the following example. Let
M(x) = xp(1 ≤ p < ∞), pk = (1/p) for all k, q(x) = supi|xi|, where x = (xi) ∈ l∞ and
σ(n) = n + 1 for all n ∈ N. Then we have σk(n) = n + k for all k, n ∈ N. Consider the
sequence (xk), where xk = (xi

k
) ∈ l∞is defined by (xi

k
) = (k, k, k, . . .), k = i2, i ∈ N and

(xi
k) = (2, 2, 2, . . .), k /= i2, i ∈ N for each fixed k ∈ N. Hence (xk) ∈ Z(σ,M, p, q, s) for Z = c

andm. Let αk = (1, 1, 1, . . .) if k is odd and αk = θ, otherwise. Then (αkxk)/∈Z(σ,M, p, q, s) for
Z = c and m. Thus Z(σ,M, p, q, s) is not solid for Z = c and m.
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The proof of the following result is obvious in view of Lemma 2.4.

Proposition 3.8. The space Z(σ,M, p, q, s) is solid as well as monotone for Z = c0 and m0.

Theorem 3.9. The spaces Z(σ,M, p, q, s) are not symmetric, where Z = c,m, c0, and m0.

Proof. To show that the spaces are not symmetric, consider the following examples. Let
M(x) = xp(1 ≤ p < ∞), pk = (1/p) for all k, q(x) = supi|xi|, where x = (xi) ∈ l∞ and
σ(n) = n + 1 for all n ∈ N. Then we have σk(n) = n + k for all k ∈ N. We consider the
sequence (xk) defined by xk = (1, 1, 1, . . .) if k = i2, i ∈ N, and xk = θ, otherwise. Then
(xk) ∈ Z(σ,M, p, q, s) forZ = c0 andm0. Let (yk) be a rearrangement of (xk), which is defined
as yk = (1, 1, 1, . . .) if k is odd and yk = θ, otherwise. Then (yk)/∈Z(σ,M, p, q, s) for Z = c0
and m0.

To show forZ = c andm, let pk = 1 for all k odd and pk = 2−1 for all k even. LetX = R
3

and q(x) = max{|x1|, |x2|, |x3|}, where x = (x1, x2, x3) ∈ R
3. Let M(x) = x4 and σ(n) = n + 1

for all n ∈ N. Then we have σk(n) = n + k for all k, n ∈ N. We consider

(xk) =

⎧
⎨

⎩
(1, 1, 1), i2 ≤ k < i2 + 2i − 1, i ∈ N,

(3,−3, 5), otherwise.
(3.22)

Then (xk) ∈ Z(σ,M, p, q, s) for Z = c and m. We consider the rearrengement (yk) of (xk) as

(
yk

)
=

⎧
⎨

⎩
(1, 1, 1), k is odd,

(3,−3, 5), k is even.
(3.23)

Then (yk)/∈Z(σ,M, p, q, s) forZ = c andm. Thus the spacesZ(σ,M, p, q, s) are not symmetric
in general, where Z = c, m, c0 and m0.

Proposition 3.10. For two sequences (pk) and (tk) one has m0(σ,M, p, q, s) ⊇ m0(σ,M, t, q, s) if
and only if lim infk∈K(pk)/(tk) > 0, where K ⊆ N such that δ(K) = 1.

Proof. The proof is obvious in view of Lemma 2.1.

The following result is a consequence of the above result.

Corollary 3.11. For two sequences (pk) and (tk) one hasm0(σ,M, p, q, s) = m0(σ,M, t, q, s) if and
only if lim infk∈K(pk)/(tk) > 0 and lim infk∈K(tk)/(pk) > 0, where K ⊆ N such that δ(K) = 1.

The following result is obvious in view of Lemma 2.2.

Proposition 3.12. Let h = inf pk and G = sup pk, then the followings are equivalent:

(i) G < ∞ and h > 0,

(ii) m(σ,M, p, q, s) = m(σ,M, q, s).
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Theorem 3.13. Let p = (pk) be a sequence of nonnegative bounded real numbers such that inf pk > 0.
Then

m
(
σ,M, p, q, s

)
= W

(
σ,M, p, q, s

) ∩ l∞
(
σ,M, p, q, s

)
. (3.24)

Proof. Let (xk) ∈ W(σ,M, p, q, s) ∩ l∞(σ,M, p, q, s). Then for a given ε > 0, we have

j∑

k=1

k−s
[
M

(
q

(
xσk(n) − L

ρ

))]pk
≥
∣∣∣∣∣

{
k ≤ j : k−s

[
M

(
q

(
xσk(n) − L

ρ

))]pk
≥ ε

}∣∣∣∣∣ · ε,

(3.25)

where the vertical bar indicates the number of elements in the enclosed set.
From the above inequality it follows that (xk) ∈ m(σ,M, p, q, s).
Conversely let (xk) ∈ m(σ,M, p, q, s). Let ρ > 0 such that

k−s
[
M

(
q

(
xσk(n) − L

ρ

))]pk
stat−→ 0, as k −→ ∞,uniformly in n. (3.26)

For a given ε > 0, let B = supk(k
−s[M(q(xσk(n) − L/ρ))]pk)1/h < ∞.

Let Lj = {k ≤ j : k−s[M(q(xσk(n) − L/ρ))]pk ≥ ε/2}.
Since (xk) ∈ m(σ,M, p, q, s), so |{Lj}|/j → 0, uniformly in n, as j → ∞. There exits a

positive integer n0 such that |{Lj}|/j < ε/2Bh for all j > n0. Then for all j > n0, we have

1
j

j∑

k=1

k−s
[
M

(
q

(
xσk(n) − L

ρ

))]pk

=
1
j

∑

k /∈Lj

k−s
[
M

(
q

(
xσk(n) − L

ρ

))]pk

+
1
j

∑

k∈Lj

k−s
[
M

(
q

(
xσk(n) − L

ρ

))]pk

≤ j − ∣∣{Lj

}∣∣

j

ε

2
+

∣∣{Lj

}∣∣

j
Bh <

ε

2
+
ε

2
= ε.

(3.27)

Hence (xk) ∈ W(σ,M, p, q, s) ∩ l∞(σ,M, p, q, s).
This completes the proof of the theorem.

The following result is a consequence of the above theorem.

Corollary 3.14. Let (pk) and (tk) be two bounded sequences of real numbers such that inf pk > 0
and inf tk > 0. Then

W
(
σ,M, p, q, s

) ∩ l∞
(
σ,M, p, q, s

)
= W

(
σ,M, t, q, s

) ∩ l∞
(
σ,M, t, q, s

)
. (3.28)
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Since the inclusion relations m(σ,M, p, q, s) ⊂ l∞(σ,M, p, q, s) and m0(σ,M, p, q, s) ⊂
l∞(σ,M, p, q, s) are strict, we have the following result.

Corollary 3.15. The spaces m(σ,M, p, q, s) and m0(σ,M, p, q, s) are nowhere dense subsets of
l∞(σ,M, p, q, s).

The following result is obvious in view of Lemma 2.3.

Proposition 3.16. The spacesm(σ,M, p, q, s) and m0(σ,M, p, q, s) are not separable.
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