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1. Introduction

Throughout this paper, Rm×n, Rs
m, and R≥

m denote the set of m × n real matrices, the
subset of Rm×m consisting of symmetric matrices, and the subset of Rs

m consisting of
nonnegative definite matrices, respectively. The symbolsA′, μ(A), A+, A−, and tr(A) stand for
the transpose, the range, Moore-Penrose inverse, generalized inverse, and trace of A ∈ Rm×n,
respectively. For any A,B ∈ Rs

m, A ≥ B means A − B ≥ 0.
Consider the general multivariate linear model with respect to inequality restricted

parameter set:

Y = XB + ε,

−→ε ∼ (0,Σ ⊗ V ),

(B − B0)′X′NX(B − B0) ≤ Σ,

(1.1)
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where Y ∈ Rn×q is an observable randommatrix,X ∈ Rn×p, B0 ∈ Rp×q, V ∈ R≥
n, andN ∈ R≥

n are
known matrices, respectively. B ∈ Rp×q , Σ ∈ R≥

q (Σ/= 0) are unknown matrices. ε is the error
matrix. −→ε denotes the vector made of the columns of ε and ⊗ denotes the Kronecker product.

Let H(N,B0) = {(B,Σ) : (B − B0)
′X′NX(B − B0) ≤ Σ}. For the linear function KB(K ∈

Rk×p), we use the following matrix loss function:

L(d(Y ), KB) = (d(Y ) −KB)(d(Y ) −KB)′, (1.2)

where d(Y ) is a linear estimator ofKB. The risk function is the expected value of loss function:

R(d, B,Σ) := R(d(Y ), KB) = E(d(Y ) −KB)(d(Y ) −KB)′. (1.3)

Suppose d1(Y ) and d2(Y ) are two estimators of KB, if for any (B,Σ), we have

R(d1, B,Σ) ≤ R(d2, B,Σ), (1.4)

and there exists (B∗,Σ∗), such that R(d2, B∗,Σ∗) − R(d1, B∗,Σ∗)/= 0, then d1(Y ) is said to be
better than d2(Y ). If there does not exist any estimator in setΩ that is better than d(Y ), where
parameters (B,Σ) ∈ H(N,B0), then d(Y ) is called the admissible estimator of KB in the set

Ω. We denote it by d(Y ) Ω∼ KB[H(N,B0)].
In the case of X′NX = 0, model (1.1) degenerates to the general multivariate linear

model without restrictions. Under the quadratic loss function, many articles discussed the
admissibility of linear estimators, such as Cohen [1], Rao [2], LaMotte [3], etc. Under
the matrix loss function, Zhu and Lu [4] and Baksalary and Markiewicz [5] studied the
admissibility of linear estimators when q = 1 respectively. Deng et al. [6] discussed the
admissibility under the matrix loss in multivariate model. Markiewicz [7] discussed the
admissibility in the general multivariate linear model. Marquardt [8] and Perlman [9]
pointed out that the least square estimator is not still the admissible estimator if the
parameters are restricted. Further, Groß and Markiewicz [10] pointed out that the admissible
linear estimator has the form of ridge estimator if the parameters have no restrictions.
Therefore, it is useful and important to discuss the admissibility of linear estimators when
the parameters have some restrictions.

Zhu and Zhang [11], Lu [12], Deng and Chen [13] studied the admissibility of
linear estimators under the quadratic loss and matrix loss when q = 1. Qin et al. [14]
studied the admissibility of the estimators of estimable function under the loss function
(d(Y ) −KB)′(d(Y ) − KB) in multivariate linear model with respect to restricted parameter
set when B0 = 0. In their case, whether an estimator is better than another or not does
not depend on the regression parameters. It is easy to generalize the conclusions from
univariate linear model to multivariate linear model. However under the matrix loss (1.2),
it is more complicated. In this case, whether an estimator is better than another depends on
the regression parameters.

In this paper, using the methods of linear algebra and matrix theory, we discuss
the admissibility of linear estimators in model (1.1) under the matrix loss (1.2). We prove
that the admissibility of the estimators of estimable function under univariate linear model
and multivariate linear model are equivalent in the class of homogeneous linear estimators,
and some sufficient and necessary conditions that the estimators in the general multivariate
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linear model with respect to restricted parameter set are admissible are obtained whether
the function of parameter is estimable or not, which enriches the theory of admissibility in
multivariate linear model.

2. Main Results

Let HL = {DY : D ∈ Rk×n} denote the class of homogeneous linear estimators, and let
L = {DY + C : D ∈ Rk×n, C ∈ Rk×q} denote the class of general linear estimators.

Lemma 2.1. Under model (1.1) with the loss function (1.2), suppose DY ∈ HL is an estimator of
KB, one has

R(DY,B,Σ) ≥ R(DPXY, B,Σ). (2.1)

The equality holds if and only if

DV = DPXV, (2.2)

where PX = X(X′E+X)−X′E+, E = V +XX′.

Proof. Since

R(DY,B,Σ) = E(DY −KB)(DY −KB)′

= tr(Σ)DVD′ + (DX −K)BB′(DX −K)′,
(2.3)

It is easy to verify that (2.1) holds, and the equality holds if and only if

E(DY −DPXY )(DY −DPXY )′ = 0. (2.4)

Expanding it, we have

tr(Σ)DVD′ − tr(Σ)DPXVD′ = 0. (2.5)

Thus DVD′ = DPXVD′ = DPXVP ′
XD

′, that is DV = DPXV .

Lemma 2.2. Under model (1.1) with the loss function (1.2), if B0 = 0, suppose D1Y,DY ∈ HL are
estimators of Kβ, then D1Y is better than DY if and only if

D1VD′
1 ≤ DVD′, (2.6)

∀B ∈ Rp×q, tr
(
B′X′NXB

)(
D1VD′

1 −DVD′)

≤ (DX −K)BB′(DX −K)′ − (D1X −K)BB′(D1X −K)′,
(2.7)

and the two equalities above cannot hold simultaneously.
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Proof. Since B0 = 0, B′X′NXB ≤ Σ, tr(B′X′NXB) ≤ tr(Σ), (2.3) implies the sufficiency is true.
Suppose D1Y is better than DY , then for any (B,Σ) ∈ H(N, 0), we have

R(D1Y, B,Σ) = tr(Σ)D1VD′
1 + (D1X −K)BB′(D1X −K)′

≤ tr(Σ)DVD′ + (DX −K)BB′(DX −K)′

= R(DY,B,Σ),

(2.8)

and there exists some (B∗,Σ∗) such that the equality in (2.8) cannot hold. Taking B = 0 in (2.8),
(2.6) follows. Let Σ = B′X′NXB +mIq, m > 0, I is the identity matrix, then for any B ∈ Rp×q,
(B,Σ) ∈ H(N, 0), by (2.8), we have

lim
m→ 0

R(D1Y, B,Σ) = tr(B′X′NXB)D1VD′
1 + (D1X −K)BB′(D1X −K)′

≤ lim
m→ 0

R(DY,B,Σ) = tr
(
B′X′NXB

)
DVD′

+ (DX −K)BB′(DX −K)′.

(2.9)

Therefore, (2.7) holds. It is obvious that the two equalities in (2.6) and (2.7) cannot hold
simultaneously.

Consider univariate linear model with respect to restricted parameter set:

y = Xβ + e,

e ∼
(
0, σ2V

)
,

β′X′NXβ ≤ σ2,

(2.10)

and the loss function

(
d
(
y
) −Kβ

)(
d(y) −Kβ

)′
, (2.11)

where X, V , N and K are as defined in (1.1) and (1.2), β ∈ Rp×1 and σ2 are unknown
parameters. Set H1(N) = {(β, σ2) : β′X′NXβ ≤ σ2}. If d(y) is an admissible estimator of
Kβ, we denote it by d(y) ∼ Kβ[H1(N)].

Similarly to Lemma 2.2, we have the following lemma.

Lemma 2.3. Under model (2.10) with the loss function (2.11), suppose D1y and Dy are estimators
of Kβ, then D1y is better than Dy if and only if

D1VD′
1 ≤ DVD′, (2.12)

∀β ∈ Rp×1, β′X′NXβ
(
D1VD′

1 −DVD′)

≤ (DX −K)ββ′(DX −K)′ − (D1X −K)ββ′(D1X −K)′,
(2.13)

and the two equalities above cannot hold simultaneously.
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Theorem 2.4. Consider the model (1.1) with the loss function (1.2), DY
HL∼ KB[H(N, 0)] if and

only if Dy ∼ Kβ[H1(N)] in model (2.10) with the loss function (2.11).

Proof. From Lemmas 2.2 and 2.3, we need only to prove the equivalence of (2.7) and (2.13).
Suppose (2.7) is true, we can take B = (β, 0, . . . , 0), β ∈ Rp×1, and plug it into (2.7). Then

(2.13) follows.
For the inverse part, suppose (2.13) is true, let B = (b1, b2, . . . , bq), bi ∈ Rp×1, we have

tr
(
B′X′NXB

)(
D1VD′

1 −DVD′) =
q∑

i=1

b′iX
′NXbi

(
D1VD′

1 −DVD′)

≤
q∑

i=1

[
(DX −K)bib′i(DX −K)′ − (D1X −K)bib′i(D1X −K)′

]

= (DX −K)BB′(DX −K)′ − (D1X −K)BB′(D1X −K)′.
(2.14)

The claim follows.

Remark 2.5. From this Theorem, we can easily generalize the result under univariate linear
model to the case under multivariate linear model in the class of homogeneous linear
estimators.

Theorem 2.6. Consider the model (1.1) with the loss function (1.2), ifKB is estimable, thenDY
HL∼

KB[H(N, 0)] if and only if:

(1) DV = DPXV ,

(2) if there exists λ > 0, such that

2DVD′ + 2DVNVD′ −DXWK′ −KWX′D′ ≥ λ(DX −K)W(DX −K)′, (2.15)

then DX = K, DVN = 0, where W = (X′E+X)− − Ip.

Proof. From the corresponding theorem in article Deng and Chen [13], under themodel (2.10)
with the loss function (2.11), if Kβ is estimable, then DY ∼ Kβ[H1(N)] if and only if (1) and
(2) in Theorem 2.6 are satisfied. Now Theorem 2.6 follows from Theorem 2.4.

Lemma 2.7. Consider the model (1.1) with the loss function (1.2), suppose DY + C ∈ L is an
estimator of KB. One has

R(DY + C,B,Σ) ≥ R(DPXY + C,B,Σ), (2.16)

and the equality holds if and only if DV = DPXV .
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Proof. The proof follows from the following equalities:

R(DY + C,B,Σ) = E(DY + C −KB)(DY + C −KB)′

= tr(Σ)DVD′ + [(DX −K)B + C][(DX −K)B + C]′,

R(DPXY + C,B,Σ) = tr(Σ)DPXVP ′
XD

′ + [(DPXX −K)B + C][(DPXX −K)B + C]′

= tr(Σ)DPXVP ′
XD

′ + [(DX −K)B + C][(DX −K)B + C]′.

(2.17)

Lemma 2.8. Assume A,B ∈ Rs
n, one has

(1) if A ≥ 0 and μ(B) ⊂ μ(A), then there exists t ≥ 0, for every |r| ≤ t, A − rB ≥ 0 and
rank(A − rB) = rank(A).

(2) μ(B) ⊂ μ(A) if and only if for any vector α ∈ Rn×1, α′A = 0 implies α′B = 0.

Proof. (1) If A = 0, the claim is trivial. If A ≥ 0, A = P diag{a1, . . . , ak, 0, . . . , 0}P ′, where P
is an orthogonal matrix, a1 ≥ a2 ≥ · · · ≥ ak > 0, k = rank(A). From μ(B) ⊂ μ(A), we have
μ(P ′BP) ⊂ μ(P ′AP), notice that B′ = B, we get P ′BP =

(
B1 0

0 0

)
, where B1 ∈ Rs

k. Clearly, there
exists r2 > 0 > r1, such that r2Ik ≥ B1 ≥ r1Ik. Let t = mink{−ak/r1, ak/r2}, then t > 0, and for
every |r| < t, diag{a1, . . . , ak, 0, . . . , 0} > rB1, thus A − rB ≥ 0 and rank(A − rB) = rank(A).

(2) The claim is easy to verify.

Theorem 2.9. Consider the model (1.1)with the loss function (1.2), ifKB is estimable, thenDY+C L∼
KB[H(N, 0)] if and only if:

(1) DV = DPXV ,

(2) if there exists λ > 0 such that

2DVD′ + 2DVNVD′ −DXWK′ −KWX′D′ ≥ λ(DX −K)W(DX −K)′, (2.18)

then DX = K, DVN = 0 and C = 0, where W = (X′E+X)− − Ip.

Proof. If DX = K, by (2.17) we obtain R(DY + C,B,Σ) = tr(Σ)DVD′ + CC′. Then DY + C
L∼

KB[H(N, 0)] implies C = 0. The claim is true by Theorem 2.6. Now we assume DX/=K.

Necessity

Assume DY + C
L∼ KB[H(N, 0)], by Lemma 2.7, (1) is true. Now we will prove (2). Denote

F = K(X′E+X)−X′E+, FX = K. Since DV = DPXV , rewrite (2.18) as the following

2DVD′ + 2DVNVD′ −DVF ′ − FVD′ ≥ λ(D − F)V (D − F)′. (2.19)

If there exists λ > 0 such that (2.19) holds, for sufficient small η > 0, take M = (1 − η)D −
2ηDVN + ηF. Since

MXB +
(
1 − η

)
C −KB =

(
1 − η

)
DXB +

(
1 − η

)
C − (

1 − η
)
FXB − 2ηDVNXB. (2.20)
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Thus

R(DY + C,B,Σ) − R
(
MY +

(
1 − η

)
C,B,Σ

)

= tr(Σ)DVD′ − tr(Σ)MVM′ + (DXB + C − FXB)(DXB + C − FXB)′

− [
(1 − η)(DXB + C − FXB) − 2ηDVNXB

][
(1 − η)(DXB + C − FXB) − 2ηDVNXB

]′

= tr(Σ)DVD′ − tr(Σ)MVM′ +
(
2η − η2

)
(DXB + C − FXB)(DXB + C − FXB)′

+ 2η
(
1 − η

)
(DXB + C − FXB)B′X′NVD′ + 2η

(
1 − η

)
DVNXB(DXB + C − FXB)′

− 4η2DVNXBB′X′N ′VD′

= tr(Σ)DVD′ − tr(Σ)MVM′

+ η
(
2 − η

)
(
DXB + C − FXB +

2 − 2η
2 − η

DVNXB

)

×
(
DXB + C − FXB +

2 − 2η
2 − η

DVNXB

)′

− η
(
2 − 2η

)2

2 − η
DVNXBB′X′N ′VD′ − 4η2DVNXBB′X′N ′VD′

(2.21)

≥ tr(Σ)DVD′ − tr(Σ)MVM′ −
(

η
(
2 − 2η

)2

2 − η
+ 4η2

)

DVNXBB′X′N ′VD′ (2.22)

≥ tr(Σ)DVD′ − tr(Σ)MVM′ −
(
2η + 4η2

)
DVNXBB′X′N ′VD′ (2.23)

≥ tr(Σ)DVD′ − tr(Σ)MVM′ −
(
2η + 4η2

)
tr(Σ)DVNVD′. (2.24)

In the above, η is sufficiently small, (2 − 2η)2/(2 − η) < 2, thus (2.23) follows. B′X′NXB ≤ Σ,
tr(B′X′NXB) = tr(N1/2B′X′NXBN1/2) ≤ tr(Σ), N1/2B′X′NXBN1/2 ≤ tr(Σ)N, thus (2.24)
follows

1
ηtr(Σ)

{
tr(Σ)DVD′ − tr(Σ)MVM′ −

(
2η + 4η2

)
tr(Σ)DVNVD′

}

= 2DVD′ + 4DVNVD′ −DVF ′ − FVD′

− η
[
DVD′ + 4DVNVD′ + FVF ′ −DVF ′ − FVD′ + 4DVNVD′

− 2DVNVF ′ − 2FVNVD′] − 2DVNVD′ − 4ηDVNVD′

= 2DVD′ + 2DVNVD′ −DVF ′ − FVD′

− η
[
DVD′ + 4DVNVD′ + FVF ′ −DVF ′ − FVD′ + 8DVNVD′

− 2DVNVF ′ − 2FVNVD′].

(2.25)
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For any compatible vector α, assume

α′[2DVD′ + 2DVNVD′ −DVF ′ − FVD′] = 0. (2.26)

By (2.19) we obtain α′(D − F)V (D − F)′α = 0, that is, α′DV = α′FV , plug it into (2.26), then
α′DVNV ′D′α = 0, α′DVN = 0, thus

α′[DVD′ + 4DVNVD′ + FVF ′ −DVF ′ − FVD′ + 8DVNVD′ − 2DVNVF ′ − 2FVNVD′]

= α′[DVD′ + FVF ′ −DVF ′ − FVD′ − 2FVNVD′]

= α′[DVD′ +DVF ′ −DVF ′ −DVD′ − 2DVNVN ′]

= 0.
(2.27)

From Lemma 2.8, we have

μ
[
DVD′ + 4DVNVD′ + FVF ′ −DVF ′ − FVD′ + 8DVNVD′ − 2DVNVF ′ − 2FVNVD′]

⊂ μ
[
2DVD′ + 2DVNV ′D′ −DVF ′ − FVD′].

(2.28)

Therefore, there exists t > 0, for 0 < η < t, the right side of (2.25) is nonnegative definite
and its rank is rank(2DVD′ + 2DVNV ′D′ − DVF ′ − FVD′). If η is small enough, for every
(B,Σ) ∈ H(N, 0), we have R(DY +C,B,Σ) ≥ R(MY + (1 − η)C,B,Σ), and the equality cannot

always hold if (2) does not hold. It contradicts DY + C
L∼ KB[H(N, 0)].

Sufficiency

Assume (1) and (2) are true. Since DX/=K, by Theorem 2.6, DY
HL∼ KB[H(N, 0)]. If there

exists an estimator D1Y + C1 that is better than DY + C, then for every (B,Σ) ∈ H(N, 0),

tr(Σ)DVD′ + (DXB + C −KB)(DXB + C −KB)′

≥ tr(Σ)D1VD′
1 + (D1XB + C1 −KB)(D1XB + C1 −KB)′.

(2.29)

Note that for any r > 0, if (B,Σ) ∈ H(N, 0), then (rB, r2Σ) ∈ H(N, 0). Replace B and Σ in
(2.29)with rB and r2Σ, respectively, divide by r2 on both sides, and let r → +∞, we get

tr(Σ)DVD′ + (DXB −KB)(DXB −KB)′

≥ tr(Σ)D1VD′
1 + (D1XB −KB)(D1XB −KB)′.

(2.30)
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Since DY
HL∼ KB[H(N, 0)], we have DVD′ = D1VD′

1 and DX = D1X (otherwise, (1/2)(D +
D1)Y is better than DY ). Plug them into (2.29), for every B ∈ Rp×q,

CC′ − C1C
′
1 + (C − C1)B′(DX −K)′ + (DX −K)B(C − C1)′ ≥ 0. (2.31)

Thus CC′ − C1C
′
1 ≥ 0 and (C − C1)B′(DX −K)′ = 0. DX/=K implies C = C1, and the equality

in (2.29) holds always. It contradicts that D1Y + C1 is better than DY + C.

Theorem 2.10. Under model (1.1) and the loss function (1.2), if KB is estimable, then DY + C
L∼

KB[H(N,B0)] if and only if DY + C
L∼ KB[H(N, 0)].

Proof. Denote Z = Y −XB0, G = B − B0, model (1.1) is transformed into

Z = XG + ε,

−→ε ∼ (0,Σ ⊗ V ),

G′X′NXG ≤ Σ,

(2.32)

Since

E(DY + C −KB)(DY + C −KB)′

= E
[
(DZ + C + (DX −K)B0 −KG)(DZ + C + (DX −K)B0 −KG)′

]
,

(2.33)

then (2.33) implies thatDY +C ∼ KB[H(N,B0)] ⇔ DZ + [C + (DX −K)B0] ∼ KG[H(N, 0)],
which combining Theorem 2.4 and the fact that “ifDX = K, thenC = 0 ⇔ C+(DX−K)B0 = 0”
yields DY + C ∼ KB[H(N,B0)] ⇔ DY + C ∼ KB[H(N, 0)].

Corollary 2.11. Under model (1.1) and the loss function (1.2), if KB is estimable, then DY
HL∼

KB[H(N,B0)] if and only if DY
HL∼ KB[H(N, 0)].

Lemma 2.12. Consider model (1.1) with the loss function (1.2), suppose D1Y,DY ∈ HL, if D1X =
DX, then

D1VD′
1 ≥ DPXVP ′

XD
′. (2.34)

Proof.

DPXVP ′
XD

′ = DX
(
X′E+X

)−
X′E+(E −XX′)E+X

(
X′E+X

)−
X′D′

= D1X
(
X′E+X

)−
X′D′

1 −D1XX′D′
1

= D1E
1/2QE+1/2XE

1/2D′
1 −D1XX′D′

1

≤ D1E
1/2E1/2D′

1 −D1XX′D′
1 = D1VD′

1,

(2.35)

where QA = A(A′A)−A′ refers to the orthogonal projection onto μ(A).
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Lemma 2.13. Suppose S and G are t × q and k × t real matrices, respectively, there exists a q × k
matrix B /= 0 such thatH ≡ SBG +G′B′S′ /= 0 if and only if S/= 0 and G/= 0.

Proof (necessity is obvious). For the proof of sufficiency, we need only to prove that there exists
a B1 /= 0 such that SB1G is not an inverse symmetric matrix.

Since St×q = (s1, . . . , st)
′
/= 0, Gk×t = (g1, . . . , gt)

′
/= 0.

(1) If there is i ∈ {1, . . . , t} such that si /= 0, gi /= 0, take B1 = si · g ′
i /= 0, then

e′iSB1Gei = e′iS · (sig ′
i

) ·Gei = s′isi · g ′
igi /= 0, (2.36)

where ei is the column vector whose only nonzero entry is a 1 in the ith position.

(2) If there does not exist i such that si /= 0, gi /= 0, then there must exist i /= j such that
si /= 0, gj /= 0 and sj = 0, gi = 0, take B1 = si · g ′

j /= 0, then

e′iSB1Gej = e′iS · (sig ′
i

) ·Gej = s′isi · g ′
jgj /= 0,

e′jSB1Gei = e′jS · (sig ′
i

) ·Gei = s′jsi · g ′
jgi = 0.

(2.37)

That is, e′iSB1Gej /= − e′jSB1Gei.
The proof is complete.

Theorem 2.14. Consider the model (1.1) with the loss function (1.2), if KB is inestimable, then

DY
HL∼ KB[H(N,B0)] if and only if DV = DPXV .

Proof. Lemma 2.1 implies the necessity. For the proof of the inverse part, assume there exists
D1Y ∈ HL, for any (B,Σ) ∈ H(N,B0), we have

R(D1Y, B,Σ) ≤ R(DY,B,Σ). (2.38)

Since

R(DY,B,Σ) = tr(Σ)DVD′ +DXB(DXB −KTB)′ −KTB(DXB)′

−K(I − T)B(DXB)′ −DXB[K(I − T)B]′ +KBB′K′,
(2.39)

where T = X+X, thus

R(DY,B,Σ) − R(D1Y, B,Σ) = G(XB,Σ) +K(I − T)B(D1XB −DXB)′

+ (D1XB −DXB)[K(I − T)B]′ ≥ 0,
(2.40)

where G(XB,Σ) is a known function. If there exists (B1,Σ1) ∈ H(N,B0) such that

D1XB1 −DXB1 /= 0, (2.41)
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note that KB is inestimable, then K(I − T)/= 0, by Lemma 2.13, there exists B2 /= 0 such that

K(I − T)B2(D1XB1 −DXB1)′ + (D1XB1 −DXB1)[K(I − T)B2]
′
/= 0. (2.42)

Take B = m(I − T)B2 + TB1, m ∈ R, since XB = XB1, so (B,Σ1) ∈ H(N,B0).
According to (2.40), we have for any real m,

G(XB1,Σ1) +m
{
K(I − T)B2(D1XB −DXB)′ + (D1XB1 −DXB1)[K(I − T)B2]

′} ≥ 0.
(2.43)

It is a contradiction. Therefore D1X = DX. Since DV = DPXV , by Lemma 2.12, we obtain

D1VD′
1 ≥ DVD′. (2.44)

Take B = 0 in (2.38), we have

D1VD′
1 ≤ DVD′. (2.45)

Thus D1VD′
1 = DVD′, R(D1Y, B,Σ) ≡ R(DY,B,Σ). There is no estimator that is better than

DY in HL.

Similarly to Theorem 2.14, we have the following theorem.

Theorem 2.15. Under model (1.1) and the loss function (1.2), ifKB is inestimable, thenDY +C
HL∼

KB[H(N,B0)] if and only if DV = DPXV .

Remark 2.16. This theorem indicates that ifKB is inestimable, then the admissibility ofDY +C
has no relation with the choice of C owing to DX −K/= 0.

Acknowledgments

The authors would like to thank the Editor Dr. Kunquan Lan and the anonymous referees
whose work and comments made the paper more readable. The research was supported
by National Science Foundation (60736047, 60772036, 10671007) and Foundation of BJTU
(2006XM037), China.

References

[1] A. Cohen, “All admissible linear estimates of the mean vector,” Annals of Mathematical Statistics, vol.
37, pp. 458–463, 1966.

[2] C. R. Rao, “Estimation of parameters in a linear model,” The Annals of Statistics, vol. 4, no. 6, pp.
1023–1037, 1976.

[3] L. R. LaMotte, “Admissibility in linear estimation,” The Annals of Statistics, vol. 10, no. 1, pp. 245–255,
1982.

[4] X. H. Zhu and C. Y. Lu, “Admissibility of linear estimates of parameters in a linear model,” Chinese
Annals of Mathematics, vol. 8, no. 2, pp. 220–226, 1987.



12 Journal of Inequalities and Applications

[5] J. K. Baksalary and A. Markiewicz, “A matrix inequality and admissibility of linear estimators with
respect to the mean square error matrix criterion,” Linear Algebra and Its Applications, vol. 112, pp.
9–18, 1989.

[6] Q. R. Deng, J. B. Chen, and X. Z. Chen, “All admissible linear estimators of functions of the mean
matrix in multivariate linear models,” Acta Mathematica Scientia, vol. 18, supplement, pp. 16–24, 1998.

[7] A. Markiewicz, “Estimation and experiments comparison with respect to the matrix risk,” Linear
Algebra and Its Applications, vol. 354, pp. 213–222, 2002.

[8] D. W. Marquardt, “Generalized inverses, ridge regression, biased linear estimation and nonlinear
estimation,” Technometrics, vol. 12, pp. 591–612, 1970.

[9] M. D. Perlman, “Reduced mean square error estimation for several parameters,” Sankhyā B, vol. 34,
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