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We discuss the superstability of generalized module left derivations and generalized module
derivations on a Banach module. Let A be a Banach algebra and X a Banach A-module, f :
X → X and g : A → A. The mappings Δ1

f,g
, Δ2

f,g
, Δ3

f,g
, and Δ4

f,g
are defined and it is

proved that if ‖Δ1
f,g

(x, y, z,w)‖ (resp., ‖Δ3
f,g

(x, y, z,w, α, β)‖) is dominated by ϕ(x, y, z,w), then
f is a generalized (resp., linear) module-A left derivation and g is a (resp., linear) module-X left
derivation. It is also shown that if ‖Δ2

f,g
(x, y, z,w)‖ (resp., ‖Δ4

f,g
(x, y, z,w, α, β)‖) is dominated by

ϕ(x, y, z,w), then f is a generalized (resp., linear) module-A derivation and g is a (resp., linear)
module-X derivation.
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1. Introduction

The study of stability problems had been formulated by Ulam in [1] during a talk
in 1940: under what condition does there exist a homomorphism near an approximate
homomorphism? In the following year 1941, Hyers in [2] has answered affirmatively the
question of Ulam for Banach spaces, which states that if ε > 0 and f : X → Y is a map with
X, a normed space, Y , a Banach space, such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥ ≤ ε, (1.1)

for all x, y in X, then there exists a unique additive mapping T : X → Y such that

∥
∥f(x) − T(x)

∥
∥ ≤ ε, (1.2)
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for all x in X. In addition, if the mapping t �→ f(tx) is continuous in t ∈ R for each fixed x
in X, then the mapping T is real linear. This stability phenomenon is called the Hyers-Ulam
stability of the additive functional equation f(x + y) = f(x) + f(y). A generalized version
of the theorem of Hyers for approximately additive mappings was given by Aoki in [3] and
for approximate linear mappings was presented by Rassias in [4] by considering the case
when the left-hand side of (1.1) is controlled by a sum of powers of norms. The stability
result concerning derivations between operator algebras was first obtained by Šemrl in [5],
Badora in [6] gave a generalization of Bourgin’s result [7]. He also discussed the Hyers-Ulam
stability and the Bourgin-type superstability of derivations in [8].

Singer and Wermer in [9] obtained a fundamental result which started investigation
into the ranges of linear derivations on Banach algebras. The result, which is called the Singer-
Wermer theorem, states that any continuous linear derivation on a commutative Banach
algebra maps into the Jacobson radical. They also made a very insightful conjecture, namely,
that the assumption of continuity is unnecessary. This was known as the Singer- Wermer
conjecture and was proved in 1988 by Thomas in [10]. The Singer-Wermer conjecture implies
that any linear derivation on a commutative semisimple Banach algebra is identically zero
[11]. After then, Hatori and Wada in [12] proved that the zero operator is the only derivation
on a commutative semisimple Banach algebra with the maximal ideal space without isolated
points. Based on these facts and a private communication with Watanabe [13], Miura et al.
proved the Hyers-Ulam-Rassias stability and Bourgin-type superstability of derivations on
Banach algebras in [13]. Various stability results on derivations and left derivations can be
found in [14–20]. More results on stability and superstability of homomorphisms, special
functionals, and equations can be found in [21–30].

Recently, Kang and Chang in [31] discussed the superstability of generalized left
derivations and generalized derivations. Indeed, these superstabilities are the so-called
“Hyers-Ulam superstabilities.” In the present paper, we will discuss the superstability
of generalized module left derivations and generalized module derivations on a Banach
module.

To give our results, let us give some notations. Let A be an algebra over the real or
complex field F and X an A-bimodule.

Definition 1.1. A mapping d : A → A is said to be module-Xadditive if

xd(a + b) = xd(a) + xd(b), ∀a, b ∈ A, x ∈ X. (1.3)

A module-X additive mapping d : A → A is said to be a module-X left derivation (resp.,
module-X derivation) if the functional equation

xd(ab) = axd(b) + bxd(a), ∀a, b ∈ A, x ∈ X (1.4)

respectively,

xd(ab) = axd(b) + d(a)xb, ∀a, b ∈ A, x ∈ X. (1.5)

holds.
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Definition 1.2. A mapping f : X → X is said to be module-A additive if

af(x1 + x2) = af(x1) + af(x2), ∀x1, x2 ∈ X, a ∈ A. (1.6)

A module-A additive mapping f : X → X is called a generalized module-A left derivation
(resp., generalized module-A derivation) if there exists a module-X left derivation (resp.,
module-X derivation) δ : A → A such that

af(bx) = abf(x) + axδ(b), ∀x ∈ X, a, b ∈ A (1.7)

respectively,

af(bx) = abf(x) + aδ(b)x, ∀x ∈ X, a, b ∈ A. (1.8)

In addition, if the mappings f and δ are all linear, then the mapping f is called a linear
generalized module-A left derivation (resp., linear generalized module-A derivation).

Remark 1.3. Let A = X and A be one of the following cases: (a) a unital algebra; (b) a
Banach algebra with an approximate unit; (c) a C∗-algebra. Then module-A left derivations,
module-A derivations, generalized module-A left derivations, and generalized module-
A derivations on A become left derivations, derivations, generalized left derivations, and
generalized derivations on A discussed in [31].

2. Main Results

Theorem 2.1. Let A be a Banach algebra, X a Banach A-bimodule, k and l integers greater than 1,
and ϕ : X ×X ×A ×X → [0,∞) satisfy the following conditions:

(a) limn→∞k−n[ϕ(knx, kny, 0, 0) + ϕ(0, 0, knz,w)] = 0, for all x, y,w ∈ X, z ∈ A,

(b) limn→∞k−2nϕ(0, 0, knz, knw) = 0, for all z ∈ A, w ∈ X,

(c) ϕ̃(x) :=
∑∞

n=0 k
−n+1ϕ(knx, 0, 0, 0) < ∞ (∀x ∈ X).

Suppose that f : X → X and g : A → A are mappings such that f(0) = 0, δ(z) :=
limn→∞(1/kn)g(knz) exists for all z ∈ A and

∥
∥
∥Δ1

f,g

(

x, y, z,w
)
∥
∥
∥ ≤ ϕ

(

x, y, z,w
)

(2.1)

for all x, y,w ∈ X and z ∈ A, where

Δ1
f,g

(

x, y, z,w
)

= f

(
x

k
+
y

l
+ zw

)

+ f

(
x

k
− y

l
+ zw

)

− 2f(x)
k

− 2zf(w) − 2wg(z). (2.2)

Then f is a generalized module-A left derivation and g is a module-X left derivation.
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Proof. By taking w = z = 0, we see from (2.1) that

∥
∥
∥
∥
f

(
x

k
+
y

l

)

+ f

(
x

k
− y

l

)

− 2f(x)
k

∥
∥
∥
∥
≤ ϕ

(

x, y, 0, 0
)

(2.3)

for all x, y ∈ X. Letting y = 0 and replacing x by kx in (2.3) yield that

∥
∥
∥
∥
f(x) − f(kx)

k

∥
∥
∥
∥
≤ 1

2
ϕ(kx, 0, 0, 0) (2.4)

for all x ∈ X. From [32, Theorem1] (analogously as in [33, the proof of Theorem1] or [34]),
one can easily deduce that the limit d(x) = limn→∞f(knx)/kn exists for every x ∈ X, f(0) =
d(0) = 0 and

∥
∥f(x) − d(x)

∥
∥ ≤ 1

2
ϕ̃(x), ∀x ∈ X. (2.5)

Next, we show that the mapping d is additive. To do this, let us replace x, y by knx, kny in
(2.3), respectively. Then

∥
∥
∥
∥

1
kn

f

(
knx

k
+
kny

l

)

+
1
kn

f

(
knx

k
− kny

l

)

− 1
k
· 2f(k

nx)
kn

∥
∥
∥
∥
≤ k−nϕ

(

knx, kny, 0, 0
)

(2.6)

for all x, y ∈ X. If we let n → ∞ in the above inequality, then the condition (a) yields that

d

(
x

k
+
y

l

)

+ d

(
x

k
− y

l

)

=
2
k
d(x) (2.7)

for all x, y ∈ X. Since d(0) = 0, taking y = 0 and y = (l/k)x, respectively, we see that
d(x/k) = d(x)/k and d(2x) = 2d(x) for all x ∈ X. Now, for all u, v ∈ X, put x = (k/2)(u +
v), y = (l/2)(u − v). Then by (2.7), we get that

d(u) + d(v) = d

(
x

k
+
y

l

)

+ d

(
x

k
− y

l

)

=
2
k
d(x) =

2
k
d

(
k

2
(u + v)

)

= d(u + v). (2.8)

This shows that d is additive.
Now, we are going to prove that f is a generalized module-A left derivation. Letting

x = y = 0 in (2.1) gives that

∥
∥f(zw) + f(zw) − 2zf(w) − 2wg(z)

∥
∥ ≤ ϕ(0, 0, z,w), (2.9)

that is,

∥
∥f(zw) − zf(w) −wg(z)

∥
∥ ≤ 1

2
ϕ(0, 0, z,w) (2.10)
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for all z ∈ A and w ∈ X. By replacing z,w with knz, knw in (2.10), respectively, we deduce
that

∥
∥
∥
∥

1
k2n

f
(

k2nzw
)

− z
1
kn

f(knw) −w
1
kn

g(knz)
∥
∥
∥
∥
≤ 1

2
k−2nϕ(0, 0, knz, knw) (2.11)

for all z ∈ A and w ∈ X. Letting n → ∞, the condition (b) yields that

d(zw) = zd(w) +wδ(z) (2.12)

for all z ∈ A and w ∈ X. Since d is additive, δ is module-X additive. Put Δ(z,w) = f(zw) −
zf(w) −wg(z). Then by (2.10)we see from the condition (a) that

k−n‖Δ(knz,w)‖ ≤ 1
2
k−nϕ(0, 0, knz,w) −→ 0 (n → ∞) (2.13)

for all z ∈ A and w ∈ X. Hence

d(zw) = lim
n→∞

f(knz ·w)
kn

= lim
n→∞

(
knzf(w) +wg(knz) + Δ(knz,w)

kn

)

= zf(w) +wδ(z)

(2.14)

for all z ∈ A and w ∈ X. It follows from (2.12) that zf(w) = zd(w) for all z ∈ A and w ∈ X,
and then d(w) = f(w) for all w ∈ X. Since d is additive, f is module-A additive. So, for all
a, b ∈ A and x ∈ X by (2.12)

af(bx) = ad(bx) = abf(x) + axδ(b),

xδ(ab) = d(abx) − abf(x)

= af(bx) + bxδ(a) − abf(x)

= a
(

d(bx) − bf(x)
)

+ bxδ(a)

= axδ(b) + bxδ(a).

(2.15)

This shows that δ is a module-X left derivation on A and then f is a generalized module-A
left derivation on X.

Lastly, we prove that g is a module-X left derivation on A. To do this, we compute
from (2.10) that

∥
∥
∥
∥

f(knzw)
kn

− z
f(knw)

kn
−wg(z)

∥
∥
∥
∥
≤ 1

2
k−nϕ(0, 0, z, knw) (2.16)
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for all z ∈ A, w ∈ X. By letting n → ∞, we get from the condition (a) that

d(zw) = zd(w) +wg(z) (2.17)

for all z ∈ A, w ∈ X. Now, (2.12) implies that wg(z) = wδ(z) for all z ∈ A and all w ∈ X.
Hence, g is a module-X left derivation on A. This completes the proof.

Remark 2.2. It is easy to check that the functional ϕ(x, y, z,w) = ε(‖x‖p + ‖y‖q + ‖z‖s‖w‖t)
satisfies the conditions (a), (b), and (c) in Theorem 2.1, where ε ≥ 0, p, q, s, t ∈ [0, 1).
Especially, if A has a unit and f, g : A → A are mappings with f(0) = 0 such that
‖Δ1

f,g
(x, y, z,w)‖ ≤ ε for all x, y,w, z ∈ A, then f is a generalized left derivation and g is

a left derivation.

Remark 2.3. In Theorem 2.1, if the condition (2.1) is replaced with

∥
∥
∥Δ2

f,g

(

x, y, z,w
)
∥
∥
∥ ≤ ϕ

(

x, y, z,w
)

(2.18)

for all x, y,w ∈ X and z ∈ A where

Δ2
f,g

(

x, y, z,w
)

=f
(
x

k
+
y

l
+ zw

)

+f
(
x

k
− y

l
+ zw

)

− 2f(x)
k

− 2zf(w) − 2g(z)w, (2.19)

then f is a generalized module-A derivation and g is a module-X derivation. Especially, if
A has a unit and f, g : A → A are mappings with f(0) = 0 such that ‖Δ2

f,g
(x, y, z,w)‖ ≤

ε(‖x‖p + ‖y‖q + ‖z‖s‖w‖t) for all x, y,w, z ∈ A and some constants p, q, s, t ∈ [0, 1), then f is
a generalized derivation and g is a derivation.

Lemma 2.4. Let X,Y be complex vector spaces. Then a mapping f : X → Y is linear if and only if

f
(

αx + βy
)

= αf(x) + βf
(

y
)

(2.20)

for all x, y ∈ X and all α, β ∈ T := {z ∈ C : |z| = 1}.

Proof. It suffices to prove the sufficiency. Suppose that f(αx + βy) = αf(x) + βf(y) for all
x, y ∈ X and all α, β ∈ T := {z ∈ C : |z| = 1}. Then f is additive and f(αx) = αf(x) for all
x ∈ X and all α ∈ T. Let α be any nonzero complex number. Take a positive integer n such
that |α/n| < 2. Take a real number θ such that 0 ≤ a := e−iθα/n < 2. Put β = arccos(a/2). Then
α = n(ei(β+θ) + e−i(β−θ)) and, therefore,

f(αx) = nf
(

ei(β+θ)x
)

+ nf
(

e−i(β−θ)x
)

= nei(β+θ)f(x) + ne−i(β−θ)f(x) = αf(x) (2.21)

for all x ∈ X. This shows that f is linear. The proof is completed.
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Theorem 2.5. Let A be a Banach algebra, X a Banach A-bimodule, k and l integers greater than 1,
and ϕ : X ×X ×A ×X → [0,∞) satisfy the following conditions:

(a) limn→∞k−n[ϕ(knx, kny, 0, 0) + ϕ(0, 0, knz,w)] = 0, for all x, y,w ∈ X, z ∈ A,

(b) limn→∞k−2nϕ(0, 0, knz, knw) = 0, for all z ∈ A, w ∈ X.

(c) ϕ̃(x) :=
∑∞

n=0 k
−n+1ϕ(knx, 0, 0, 0) < ∞, for all x ∈ X.

Suppose that f : X → X and g : A → A are mappings such that f(0) = 0, δ(z) := limn→∞(1/
kn)g(knz) exists for all z ∈ A and

∥
∥
∥Δ3

f,g

(

x, y, z,w, α, β
)
∥
∥
∥ ≤ ϕ

(

x, y, z,w
)

(2.22)

for all x, y,w ∈ X, z ∈ A and all α, β ∈ T := {z ∈ C : |z| = 1}, where Δ3
f,g

(x, y, z,w, α, β) stands
for

f

(
αx

k
+
βy

l
+ zw

)

+ f

(
αx

k
− βy

l
+ zw

)

− 2αf(x)
k

− 2zf(w) − 2wg(z). (2.23)

Then f is a linear generalized module-A left derivation and g is a linear module-X left derivation.

Proof. Clearly, the inequality (2.1) is satisfied. Hence, Theorem 2.1 and its proof show that f
is a generalized left derivation and g is a left derivation onA with

f(x) = lim
n→∞

f(knx)
kn

, g(x) = f(x) − xf(e) (2.24)

for every x ∈ X. Taking z = w = 0 in (2.22) yields that

∥
∥
∥
∥
f

(
αx

k
+
βy

l

)

+ f

(
αx

k
− βy

l

)

− 2αf(x)
k

∥
∥
∥
∥
≤ ϕ

(

x, y, 0, 0
)

(2.25)

for all x, y ∈ X and all α, β ∈ T. If we replace x and y with knx and kny in (2.25), respectively,
then we see that

∥
∥
∥
∥

1
kn

f

(
αknx

k
+
βkny

l

)

+
1
kn

f

(
αknx

k
− βkny

l

)

− 1
kn

2αf(knx)
k

∥
∥
∥
∥

≤ k−nϕ
(

knx, kny, 0, 0
)

−→ 0

(2.26)

as n → ∞ for all x, y ∈ X and all α, β ∈ T. Hence,

f

(
αx

k
+
βy

l

)

+ f

(
αx

k
− βy

l

)

=
2αf(x)

k
(2.27)
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for all x, y ∈ X and all α, β ∈ T. Since f is additive, taking y = 0 in (2.27) implies that

f(αx) = αf(x) (2.28)

for all x ∈ X and all α ∈ T. Lemma 2.4 yields that f is linear and so is g. This completes the
proof.

Remark 2.6. It is easy to check that the functional ϕ(x, y, z,w) = ε(‖x‖p + ‖y‖q + ‖z‖s‖w‖t)
satisfies the conditions (a), (b), and (c) in Theorem 2.5, where ε ≥ 0, p, q, s, t ∈ [0, 1) are
constants. Especially, if A is a complex semiprime Banach algebra with unit and f, g : A →
A are mappings with f(0) = 0 such that

∥
∥
∥Δ3

f,g

(

x, y, z,w, α, β
)
∥
∥
∥ ≤ ε

(

‖x‖p + ∥
∥y

∥
∥
q + ‖z‖s‖w‖t

)

(2.29)

for all x, y,w, z ∈ A, α, β ∈ T. Then f is a linear generalized left derivation and g is a linear
derivation which maps A into the intersection of the center Z(A) and the Jacobson radical
rad (A) of A.

Remark 2.7. In Theorem 2.5, if the condition (2.22) is replaced with

∥
∥
∥Δ4

f,g

(

x, y, z,w, α, β
)
∥
∥
∥ ≤ ϕ

(

x, y, z,w
)

(2.30)

for all x, y,w ∈ X, z ∈ A and α, β ∈ Twhere Δ4
f,g

(x, y, z,w, α, β) stands for

f

(
αx

k
+
βy

l
+ zw

)

+ f

(
αx

k
− βy

l
+ zw

)

− 2αf(x)
k

− 2zf(w) − 2g(z)w, (2.31)

then f is a linear generalized module-A derivation on X and g is a linear module-X
derivation on A. Especially, if A is a unital commutative Banach algebra and f, g : A → A
are mappings with f(0) = 0 such that ‖Δ4

f,g
(x, y, z,w, α, β)‖ ≤ ε(‖x‖p+‖y‖q+‖z‖s‖w‖t) for all

x, y,w, z ∈ A, all α, β ∈ T and some constants p, q, s, t ∈ [0, 1), then f is a linear generalized
derivation and g is a linear derivation which maps A into the Jacobson radical rad(A) ofA.

Remark 2.8. The controlling function

ϕ
(

x, y, z,w
)

= ε
(

‖x‖p + ∥
∥y

∥
∥
q + ‖z‖s‖w‖t

)

(2.32)

consists of the “mixed sum-product of powers of norms,” introduced by Rassias (in 2007)
[28] and applied afterwards by Ravi et al. (2007-2008) . Moreover, it is easy to check that the
functional

ϕ
(

x, y, z,w
)

= P‖x‖p +Q
∥
∥y

∥
∥
q + S‖z‖s + T‖w‖t (2.33)

satisfies the conditions (a), (b), and (c) in Theorems 2.1 and 2.5, where P,Q, T, S ∈ [0,∞) and
p, q, s, t ∈ [0, 1) are all constants.
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