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formula with best possible error bound. Then, these results will be used to establish existence and
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problemswhich consist of a (2m+1)th order differential equation and the complementary Lidstone
boundary conditions.
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1. Introduction

In our earlier work [1, 2] we have shown that the interpolating polynomial theory and the
qualitative as well as quantitative study of boundary value problems such as existence and
uniqueness of solutions, and convergence of various iterativemethods are directly connected.
In this paper we will extend this technique to the following complementary Lidstone boundary
value problem involving an odd order differential equation

(−1)mx(2m+1)(t) = f(t, x(t)), t ∈ (0, 1), m ≥ 1, (1.1)

and the boundary data at the odd order derivatives

x(0) = α0, x(2i−1)(0) = αi, x(2i−1)(1) = βi, 1 ≤ i ≤ m. (1.2)
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Here x = (x, x′, . . . , x(q)), 0 ≤ q ≤ 2m but fixed, and f : [0, 1] × R
q+1 → R is continuous

at least in the interior of the domain of interest. Problem (1.1), (1.2) complements Lidstone
boundary value problem (nomenclature comes from the expansion introduced by Lidstone [3]
in 1929, and thoroughly characterized in terms of completely continuous functions in the
works of Boas [4], Poritsky [5], Schoenberg [6–8], Whittaker [9, 10], Widder [11, 12], and
others) which consists of an even-order differential equation and the boundary data at the
even-order derivatives

(−1)mx(2m)(t) = f(t, x(t)), t ∈ (0, 1), m ≥ 1,

x(2i)(0) = ai, x(2i)(1) = bi, 0 ≤ i ≤ m − 1.
(1.3)

Problem (1.3) has been a subject matter of numerous studies in the recent years [13–45], and
others.

In Section 2, we will show that for a given function x : C(2m+1)[0, 1] → R explicit
representations of the interpolation polynomial P2m(t) of degree 2m satisfying the conditions

P2m(0) = x(0), P
(2i−1)
2m (0) = x(2i−1)(0), P

(2i−1)
2m (1) = x(2i−1)(1), 1 ≤ i ≤ m (1.4)

and the corresponding residue term R(t) = x(t) − P2m(t) can be deduced rather easily from
our earlier work on Lidstone polynomials [46–48]. Our method will avoid unnecessarily long
procedure followed in [49] to obtain the same representations of P2m(t) and R(t).Wewill also
obtain error inequalities

∣
∣
∣x(k)(t) − P

(k)
2m (t)

∣
∣
∣ ≤ C2m+1,kmax

0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣, k = 0, 1, . . . , 2m, (1.5)

where the constants C2m+1,k are the best possible in the sense that in (1.5) equalities hold if
and only if x(t) is a certain polynomial. The best possible constant C2m+1,0 was also obtained
in [49]; whereas they left the cases 1 ≤ k ≤ 2mwithout any mention. In Section 2, we will also
provide best possible criterion for the convergence of complementary Lidstone series, and a
quadrature formula with best possible error bound.

If f = 0 then the complementary Lidstone boundary value problem (1.1), (1.2)
obviously has a unique solution x(t) = P2m(t); if f is linear, that is, f =

∑q

i=0 ai(t)x(i) then
(1.1), (1.2) gives the possibility of interpolation by the solutions of the differential equation
(1.1). In Sections 3–5, we will use inequalities (1.5) to establish existence and uniqueness
criteria, and the convergence of Picard’s, approximate Picard’s, quasilinearization, and
approximate quasilinearization iterative methods for the complementary Lidstone boundary
value problem (1.1), (1.2). In Section 6, we will show the monotone convergence of Picard’s
iterative method. Since the proofs of most of the results in Sections 3–6 are similar to those of
our previous work [1, 2] the details are omitted; however, through some simple examples it
is shown how easily these results can be applied in practice.

2. Interpolating Polynomial

We begin with the following well-known results.
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Lemma 2.1 (see [47]). Let y ∈ C(2m)[0, 1]. Then,

y(t) = Q2m−1(t) + E(t), (2.1)

where Q2m−1(t) is the Lidstone interpolating polynomial of degree (2m − 1),

Q2m−1(t) =
m−1∑

i=0

[

y(2i)(0)Λi(1 − t) + y(2i)(1)Λi(t)
]

, (2.2)

and E(t) is the residue term

E(t) =
∫1

0
gm(t, s)y(2m)(s)ds, (2.3)

here

Λ0(t) = t, Λ′′
i (t) = Λi−1(t), Λi(0) = Λi(1) = 0, i ≥ 1, (2.4)

g1(t, s) =

⎧

⎨

⎩

(t − 1)s, s ≤ t,

(s − 1)t, t ≤ s,

gi(t, s) =
∫1

0
g1(t, t1)gi−1(t1, s)dt1, i ≥ 2.

(2.5)

Recursively, it follows that

Λi(t) =
∫1

0
gi(t, s)sds =

1
6

[

6t2i+1

(2i + 1)!
− t2i−1

(2i − 1)!

]

−
i−2∑

k=0

2
(

22k+3 − 1
)

(2k + 4)!
B2k+4

t2i−2k−3

(2i − 2k − 3)!

=
22i+1

(2i + 1)!
B2i+1

(
1 + t

2

)

, i ≥ 1

(2.6)

(B2i+1(t) is the Bernoulli polynomial of degree 2i + 1, and B2k+4 is the (2k + 4)th Bernoulli
number B2k+1 = 0, k = 1, 2, 3, . . .; B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, B6 = 1/42,
B8 = −1/30, B10 = 5/66, B12 = −691/2730, B14 = 7/6).



4 Journal of Inequalities and Applications

Lemma 2.2 (see [47]). The following hold:

gm(t, s) =

⎧

⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪
⎩

g1
m(t, s) = −

m−1∑

i=0

Λi(t)
(1 − s)2m−2i−1

(2m − 2i − 1)!
, t ≤ s,

g2
m(t, s) = −

m−1∑

i=0

Λi(1 − t)
s2m−2i−1

(2m − 2i − 1)!
, s ≤ t,

(2.7)

0 ≤ (−1)mgm(t, s) =
∣
∣gm(t, s)

∣
∣, (2.8)

∫1

0

∣
∣gm(t, s)

∣
∣ds = (−1)mE2m(t) ≤ (−1)mE2m

(
1
2

)

=
(−1)mE2m

22m(2m)!
(2.9)

(E2m(t) is the Euler polynomial of degree 2m, and E2m is the (2m)th Euler number E2m+1 = 0,
m = 0, 1, 2, . . .; E0 = 1, E2 = −1, E4 = 5, E6 = −61)

∫1

0

∣
∣g ′

m(t, s)
∣
∣ds = (−1)m[2E2m(t) + (1 − 2t)E2m−1(t)] ≤ (−1)mE2m−1(0)

= (−1)m+1 2
(

22m − 1
)

(2m)!
B2m.

(2.10)

Theorem 2.3. Let x ∈ C(2m+1)[0, 1]. Then,

x(t) = P2m(t) + R(t), (2.11)

where P2m(t) is the complementary Lidstone interpolating polynomial of degree 2m,

P2m(t) = x(0) +
m∑

i=1

[

x(2i−1)(0)(vi(1) − vi(1 − t)) + x(2i−1)(1)(vi(t) − vi(0))
]

, (2.12)

and R(t) is the residue term

R(t) =
∫1

0
hm(t, s)x(2m+1)(s)ds, (2.13)

here

hm(t, s) =
∫ t

0
gm(τ, s)dτ =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
m∑

i=1

(vi(t) − vi(0))
(1 − s)2m−2i+1

(2m − 2i + 1)!
, t ≤ s,

s2m

(2m)!
+

m∑

i=1

(vi(1 − t) − vi(1))
s2m−2i+1

(2m − 2i + 1)!
, s ≤ t,

(2.14)

Λ′
i(t) = vi(t), i ≥ 0. (2.15)
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Remark 2.4. From (2.4) and (2.15) it is clear that v0(t) = 1; v′
i(t) = Λi−1(t), i ≥ 1;

∫1
0vi(s)ds = 0,

i ≥ 1; v′
i(0) = 0, i ≥ 1; v′

i(1) = 0, i ≥ 2; v′
i(t) =

∫ t

0vi−1(s)ds, i ≥ 1;

v0(t) = 1, v1(t) =
t2

2
− 1
6
, v2(t) =

t4

24
− t2

12
+

7
360

. (2.16)

Proof. In (2.1), we let y(t) = x′(t) and integrate both sides from 0 to t, to obtain

∫ t

0
x′(τ)dτ = x(t) − x(0) =

m−1∑

i=0

[

x(2i+1)(0)
∫ t

0
Λi(1 − τ)dτ + x(2i+1)(1)

∫ t

0
Λi(τ)dτ

]

+
∫ t

0

(∫1

0
gm(τ, s)x(2m+1)(s)ds

)

dτ.

(2.17)

Now, since

∫ t

0
Λi(τ)dτ =

∫ t

0
Λ′′

i+1(τ)dτ = Λ′
i+1(t) −Λ′

i+1(0) = vi+1(t) − vi+1(0), i ≥ 0, (2.18)

and, similarly

∫ t

0
Λi(1 − τ)dτ = Λ′

i+1(1) −Λ′
i+1(1 − t) = vi+1(1) − vi+1(1 − t), i ≥ 0, (2.19)

it follows that

x(t) = x(0) +
m∑

i=1

[

x(2i−1)(0)(vi(1) − vi(1 − t)) + x(2i−1)(1)(vi(t) − vi(0))
]

+
∫ t

0

(∫1

0
gm(τ, s)x(2m+1)(s)ds

)

dτ

= P2m(t) + R(t).

(2.20)

Next since

R(t) =
∫ t

0

(∫1

0
gm(τ, s)x(2m+1)(s)ds

)

dτ =
∫1

0

(∫ t

0
gm(τ, s)dτ

)

x(2m+1)(s)ds (2.21)
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for t ≤ s, from (2.7), we get

hm(t, s) =
∫ t

0
gm(τ, s)dτ =

∫ t

0
g1
m(τ, s)dτ

= −
m−1∑

i=0

(∫ t

0
Λi(τ)dτ

)

(1 − s)2m−2i−1

(2m − 2i − 1)!

= −
m∑

i=1

(vi(t) − vi(0))
(1 − s)2m−2i+1

(2m − 2i + 1)!
, t ≤ s,

(2.22)

and similarly, for s ≤ t, we have

hm(t, s) =
∫ t

0
gm(τ, s)dτ =

∫s

0
g1
m(τ, s)dτ +

∫ t

s

g2
m(τ, s)dτ

= −
m∑

i=1

(vi(s) − vi(0))
(1 − s)2m−2i+1

(2m − 2i + 1)!
+

m∑

i=1

(vi(1 − t) − vi(1 − s))
s2m−2i+1

(2m − 2i + 1)!
.

(2.23)

Finally, since (2.12) is exact for any polynomial of degree up to 2m, we find

(t − s)2m

(2m)!
=

(−s)2m
(2m)!

+
m∑

i=1

[

(−s)2m−2i+1

(2m − 2i + 1)!
(vi(1) − vi(1 − t)) +

(1 − s)2m−2i+1

(2m − 2i + 1)!
(vi(t) − vi(0))

]

,

(2.24)

and hence, for t = s, it follows that

s2m

(2m)!
=

m∑

i=1

[

(s)2m−2i+1

(2m − 2i + 1)!
(vi(1) − vi(1 − s)) − (1 − s)2m−2i+1

(2m − 2i + 1)!
(vi(s) − vi(0))

]

. (2.25)

Combining (2.23) and (2.25), we obtain

hm(t, s) =
∫ t

0
gm(τ, s)dτ =

s2m

(2m)!
+

m∑

i=1

(vi(1 − t) − vi(1))
s2m−2i+1

(2m − 2i + 1)!
, s ≤ t. (2.26)

Theorem 2.5. Let x ∈ C(2m+1)[0, 1]. Then, inequalities (1.5) hold with

C2m+1,0 = (−1)m 4
(

22m+2 − 1
)

(2m + 2)!
B2m+2,

C2m+1,2k−1 =
(−1)m−k+1E2m−2k+2

22m−2k+2(2m − 2k + 2)!
, 1 ≤ k ≤ m,

C2m+1,2k = (−1)m−k 2
(

22m−2k+2 − 1
)

(2m − 2k + 2)!
B2m−2k+2, 1 ≤ k ≤ m

(2.27)
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(C3,0 = 1/12, C3,1 = 1/8, C3,2 = 1/2, C5,0 = 1/120. C5,1 = 5/384, C5,2 = 1/24, C5,3 = 1/8,
C5,4 = 1/2).

Proof. From (2.14) and (2.8) it follows that

0 ≤ (−1)mhm(t, s) = |hm(t, s)|. (2.28)

Now, from (2.11) and (2.13), we find

|x(t) − P2m(t)| ≤ max
0≤t≤1

(∫1

0
|hm(t, s)|ds

)

max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣. (2.29)

However, from (2.9), we have

∫1

0
|hm(t, s)|ds =

∫1

0

∣
∣
∣
∣
∣

∫ t

0
gm(τ, s)dτ

∣
∣
∣
∣
∣
ds =

∫ t

0

(∫1

0

∣
∣gm(τ, s)

∣
∣ds

)

dτ =
∫ t

0
(−1)mE2m(τ)dτ.

(2.30)

Thus, from (−1)mE2m(τ) ≥ 0, τ ∈ [0, 1], E′
2m+1(τ) = E2m(τ), and E2m+1(0) + E2m+1(1) = 0, we

obtain

∫1

0
|hm(t, s)|ds ≤

∫1

0
(−1)mE′

2m+1(τ)dτ

= (−1)m[E2m+1(1) − E2m+1(0)] = (−1)m+12E2m+1(0)

= (−1)m+2 4
(

22m+2 − 1
)

(2m + 2)!
B2m+2 = C2m+1,0.

(2.31)

Using the above estimate in (2.29), the inequality (1.5) for k = 0 follows.
Next, from (2.11), (2.13) and (2.14), we have

x(j)(t) − P
(j)
2m(t) =

∫1

0
g
(j−1)
m (t, s)x(2m+1)(s)ds, 1 ≤ j ≤ 2m (2.32)
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and hence in view of (2.5) and (2.9) it follows that

∣
∣
∣x(2k−1)(t) − P

(2k−1)
2m (t)

∣
∣
∣ ≤ max

0≤t≤1

(∫1

0

∣
∣
∣g

(2k−2)
m (t, s)

∣
∣
∣ds

)

max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣

= max
0≤t≤1

(∫1

0

∣
∣gm−k+1(t, s)

∣
∣ds

)

max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣

≤ (−1)m−k+1E2m−2k+2
22m−2k+2(2m − 2k + 2)!

max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣

= C2m+1,2k−1max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣, 1 ≤ k ≤ m,

(2.33)

and similarly, by (2.5) and (2.10), we get

∣
∣
∣x(2k)(t) − P

(2k)
2m (t)

∣
∣
∣ ≤ max

0≤t≤1

(∫1

0

∣
∣
∣g

(2k−1)
m (t, s)

∣
∣
∣ds

)

max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣

= max
0≤t≤1

(∫1

0

∣
∣g ′

m−k+1(t, s)
∣
∣ds

)

max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣

≤ (−1)m−k 2
(

22m−2k+2 − 1
)

(2m − 2k + 2)!
B2m−2k+2max

0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣

= C2m+1,2kmax
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣, 1 ≤ k ≤ m.

(2.34)

Remark 2.6. From (2.13), (2.28), and the above considerations it is clear that

R(t) =

(∫1

0
hm(t, s)ds

)

x(2m+1)(ξ) = [E2m+1(t) − E2m+1(0)]x(2m+1)(ξ), 0 < ξ < 1. (2.35)

Remark 2.7. Inequality (1.5) with the constants C2m+1,k given in (2.27) is the best possible,
as equalities hold for the function x(t) = E2m+1(t) − E2m+1(0) (polynomial of degree (2m +
1)) whose complementary Lidstone interpolating polynomial P2m(t) ≡ 0, and only for this
function up to a constant factor.

Remark 2.8. From the identity (see [47, equation (1.2.21)])

∞∑

k=1

1
k2m+2

= (−1)m (2π)2m+2

2(2m + 2)!
B2m+2, (2.36)

we have

∞∑

k=1

1
k2

=
π2

6
≥ (2π)2m+2

2(2m + 2)!
|B2m+2|, (2.37)
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and hence

|B2m+2| ≤
(

π2

3

)

(2m + 2)!

(2π)2m+2
. (2.38)

We also have the estimate (see [47, equation (1.2.41)])

|E2m+2| ≤
(
2
π

)2m+1

(2m + 2)!. (2.39)

Thus, from (2.27), (2.38), and (2.39), we obtain

C2m+1,0 ≤ 4π
3

(
1
π

)2m+1

, C2m+1,2k−1 ≤ π

2

(
1
π

)2m−2k+2
,

C2m+1,2k ≤ 2π
3

(
1
π

)2m−2k+1
, 1 ≤ k ≤ m.

(2.40)

Therefore, it follows that

C2m+1,k ≤ 4π
3

(
1
π

)2m+1−k
, 0 ≤ k ≤ 2m. (2.41)

Combining (1.5) and (2.41), we get

∣
∣
∣x(k)(t) − P

(k)
2m (t)

∣
∣
∣ ≤ 4π

3

(
1
π

)2m+1−k
max
0≤t≤1

∣
∣
∣x(2m+1)(t)

∣
∣
∣, k = 0, 1, . . . , 2m. (2.42)

Hence, if x ∈ C∞[0, 1], for a fixed k as m → ∞, P (k)
2m (t) converges absolutely and uniformly

to x(k)(t) in [0, 1], provided that there exists a constant λ, |λ| < π and an integer n such that
x(2m+1)(t) = O(λ2m+1−k) for all m ≥ n, t ∈ [0, 1].

In particular, the function x(t) = cosλt, t ∈ [0, 1] satisfies the above conditions. Thus,
for each fixed k, expansions

x(2k)(t) = (−1)kλ2k cosλt = (−1)kλ2k
[

1 +
∞∑

i=1

(−1)iλ2i−1 sinλ(vi(t) − vi(0))

]

, (2.43)

x(2k+1)(t) = (−1)k+1λ2k+1 sinλt = (−1)kλ2k
∞∑

i=1

(−1)iλ2i−1 sinλΛi−1(t) (2.44)

converge absolutely and uniformly in [0, 1], provided |λ| < π. For λ = ±π, (2.43) and (2.44),
respectively, reduce to absurdities, cosπt = 1 and sinπt = 0. Thus, the condition |λ| < π is the
best possible.
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Remark 2.9. If x ∈ C(2m+1)[a, b], then

P2m(t)=x(a)+
m∑

i=1

(b−a)2i−1
[

x(2i−1)(a)
(

vi(1)−vi

(
b−t
b−a

))

+x(2i−1)(b)
(

vi

(
t−a
b−a

)

−vi(0)
)]

,

(2.45)

R(t) = (b − a)2m
∫b

a

hm

(
t − a

b − a
,
s − a

b − a

)

x(2m+1)(s)ds. (2.46)

Thus, in view of
∫1
0vi(s)ds = 0, i ≥ 1 we have

∫b

a

P2m(t)dt = (b − a)x(a) +
m∑

i=1

(b − a)2i
[

x(2i−1)(a)vi(1) − x(2i−1)(b)vi(0)
]

. (2.47)

Now, since B′
k(t) = kBk−1(t), Bk(1 − t) = (−1)kBk(t), k = 1, 2, . . . , from (2.6), we find

Λ′
i(t) =

22i

(2i)!
B2i

(
1 + t

2

)

=
22i

(2i)!
B2i

(
1 − t

2

)

, (2.48)

and hence by (2.15) it follows that

vi(0) = Λ′
i(0) =

22i

(2i)!
B2i

(
1
2

)

=
22i

(2i)!
(

21−2i − 1
)

B2i,

vi(1) = Λ′
i(1) =

22i

(2i)!
B2i.

(2.49)

Using these relations in (2.47), we obtain an approximate quadrature formula

∫b

a

x(t)dt 	 (b − a)x(a) +
m∑

i=1

(b − a)2iB2i
22i

(2i)!

[

x(2i−1)(a) −
(

21−2i − 1
)

x(2i−1)(b)
]

. (2.50)

It is to be remarked that (2.50) is different from the Euler-MacLaurin formula, but the same
as in [49] obtained by using different arguments. To find the error e in (2.50), from (2.28) and
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(2.46)we have

e =
∫b

a

R(t)dt = (b − a)2m+2
∫1

0

(∫1

0
hm(t, s)x(2m+1)(a + s(b − a))ds

)

dt

= (b − a)2m+2

(∫1

0

(∫1

0
hm(t, s)ds

)

dt

)

x(2m+1)(ξ), a < ξ < b

= (b − a)2m+2

(∫1

0
[E2m+1(t) − E2m+1(0)]dt

)

x(2m+1)(ξ)

= (b − a)2m+2(−E2m+1(0))x(2m+1)(ξ)

=
2
(

22m+2 − 1
)

(2m + 2)!
B2m+2(b − a)2m+2x(2m+1)(ξ).

(2.51)

Thus, it immediately follows that

|e| =
∣
∣
∣
∣
∣

∫b

a

x(t)dt − (b − a)x(a) −
m∑

i=1

(b − a)2iB2i
22i

(2i)!

[

x(2i−1)(a) −
(

21−2i − 1
)

x(2i−1)(b)
]
∣
∣
∣
∣
∣

≤ (−1)m 2
(

22m+2 − 1
)

(2m + 2)!
B2m+2(b − a)2m+2max

t∈[a,b]

∣
∣
∣x(2m+1)(t)

∣
∣
∣.

(2.52)

From (2.52) it is clear that (2.50) is exact for any polynomial of degree at most (2m).
Further, in (2.52) equality holds for the function x(t) = E2m+1[(t − a)/(b − a)] − E2m+1(0) and
only for this function up to a constant factor.

We will now present two examples to illustrate the importance of (2.50) and (2.52).

Example 2.10. Consider integrating (t14 + 1) over [0, 1]. Here, a = 0, b = 1, and x(t) = t14 + 1 ∈
C∞[0, 1]. The exact value of the integral is

∫1

0

(

t14 + 1
)

dt = 1
1
15

. (2.53)

In Table 1, we list the approximates of the integral using (2.50)with different values ofm, the
actual errors incurred, and the error bounds deduced from (2.52).

Note that x(15)(t) ≡ 0, hence the error e = 0 when (2m + 1) = 15 or m = 7. Although
the errors for other values of m (< 7) are large, ultimately the approximates tend to the exact
value as m → ∞.

Example 2.11. Consider integrating sin 2t over [0, π/2]. Here, a = 0, b = π/2, and x(t) =
sin 2t ∈ C∞[0, π/2]. The exact value of the integral is

∫π/2

0
sin 2t dt = 1. (2.54)
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Table 1

m Approximate (2.50) Actual error |e| Error bound (2.52)

1 3
1
3

2
4
15

91

2 −39 2
15

40
1
5

1001

3 453
19
45

452
16
45

7293

4 −31787
9

3179
38
45

31031

5 12321
5
9

12320
22
45

62881

6 −19111 4
15

19112
1
3

38227

7 1
1
15

0 0

Table 2

m Approximate (2.50) Actual error |e| Error bound (2.52)
1 0.822467 0.177533 2.029356
2 0.957757 0.042243 2.002894
3 0.989549 0.010451 2.000310
4 0.997394 0.002606 2.000034
5 0.999349 0.000651 2.0000038
6 0.999837 0.000163 2.00000042
7 0.999959 0.000041 2.000000046

In Table 2, we list the approximates of the integral using (2.50)with different values ofm, the
actual errors incurred, and the error bounds deduced from (2.52).

Unlike Example 2.10, here the error decreases as m increases. In both examples, the
approximates tend to the exact value as m → ∞. Of course, for increasing accuracy, instead
of taking large values of m, one must use composite form of formula (2.50).

3. Existence and Uniqueness

The equalities and inequalities established in Section 2 will be used here to provide necessary
and sufficient conditions for the existence and uniqueness of solutions of the complementary
Lidstone boundary value problem (1.1), (1.2).

Theorem 3.1. Suppose thatMk > 0, 0 ≤ k ≤ q are given real numbers and let Q be the maximum of
|f(t, x0, x1, . . . , xq)| on the compact set [0, 1] ×D0, where

D0 =
{(

x0, x1, . . . , xq

)

: |xk| ≤ 2Mk, 0 ≤ k ≤ q
}

. (3.1)
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Further, suppose that

QC2m+1,k ≤ Mk, max
t∈[0,1]

∣
∣
∣P

(k)
2m (t)

∣
∣
∣ = pk ≤ Mk, 0 ≤ k ≤ q, (3.2)

then, the boundary value problem (1.1), (1.2) has a solution in D0.

Proof. The set

B[0, 1] =
{

x(t) ∈ C(q)[0, 1] :
∥
∥
∥x(k)

∥
∥
∥ = max

t∈[0,1]

∣
∣
∣x(k)(t)

∣
∣
∣ ≤ 2Mk, 0 ≤ k ≤ q

}

(3.3)

is a closed convex subset of the Banach spaceC(q)[0, 1].We define an operator T : C(q)[0, 1] →
C(2m)[0, 1] as follows:

(Tx)(t) = P2m(t) +
∫1

0
|hm(t, s)|f(s, x(s))ds. (3.4)

In view of Theorem 2.3 and (2.28) it is clear that any fixed point of (3.4) is a solution of the
boundary value problem (1.1), (1.2). Let x(t) ∈ B[0, 1]. Then, from (1.5), (3.2), and (3.4), we
find

∣
∣
∣(Tx)(k)(t)

∣
∣
∣ ≤ Mk +QC2m+1,k = 2Mk, 0 ≤ k ≤ q. (3.5)

Thus, TB[0, 1] ⊆ B[0, 1]. Inequalities (3.5) imply that the sets {(Tx)(k)(t) : x(t) ∈ B[0, 1]},
0 ≤ k ≤ q are uniformly bounded and equicontinuous in [0, 1].Hence, TB[0, 1] that is compact
follows from the Ascoli-Arzela theorem. The Schauder fixed point theorem is applicable and
a fixed point of T in D0 exists.

Corollary 3.2. Assume that the function f(t, x0, x1, . . . , xq) on [0, 1] × R
q+1 satisfies the following

condition:

∣
∣f
(

t, x0, x1, . . . , xq

)∣
∣ ≤ L +

q
∑

i=0

Li|xi|λi , (3.6)

where L, Li, 0 ≤ i ≤ q are nonnegative constants, and 0 ≤ λi < 1, 0 ≤ i ≤ q, then, the boundary value
problem (1.1), (1.2) has a solution.

Theorem 3.3. Suppose that the function f(t, x0, x1, . . . , xq) on [0, 1] × D1 satisfies the following
condition:

∣
∣f
(

t, x0, x1, . . . , xq

)∣
∣ ≤ L +

q
∑

i=0

Li|xi|, (3.7)
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where

D1 =
{
(

x0, x1, . . . , xq

)

: |xk| ≤ pk + C2m+1,k
L + c

1 − θ
, 0 ≤ k ≤ q

}

, (3.8)

c =
q
∑

i=0

Lipi, (3.9)

θ =
q
∑

i=0

C2m+1,iLi < 1, (3.10)

then, the boundary value problem (1.1), (1.2) has a solution in D1.

Theorem 3.4. Suppose that the differential equation (1.1) together with the homogeneous boundary
conditions

x(0) = 0, x(2i−1)(0) = 0, x(2i−1)(1) = 0, 1 ≤ i ≤ m (3.11)

has a nontrivial solution x(t) and the condition (3.7) with L = 0 is satisfied on [0, 1] ×D2, where

D2 =
{(

x0, x1, . . . , xq

)

: |xk| ≤ C2m+1,kM, 0 ≤ k ≤ q
}

(3.12)

and M = maxt∈[0,1]|x(2m+1)(t)|, then, it is necessary that θ ≥ 1.

Remark 3.5. Conditions of Theorem 3.4 ensure that in (3.7) at least one of the Li, 0 ≤ i ≤ q will
not be zero; otherwise the solution x(t) will be a polynomial of degree at most 2m and will
not be a nontrivial solution of (1.1), (1.2). Further, x(t) ≡ 0 is obviously a solution of (1.1),
(1.2), and if θ < 1, then it is also unique.

Theorem 3.6. Suppose that for all (t, x0, x1, . . . , xq), (t, x0, x1, . . . , xq) ∈ [0, 1] ×D1 the function f
satisfies the Lipschitz condition

∣
∣f
(

t, x0, x1, . . . , xq

) − f
(

t, x0, x1, . . . , xq

)∣
∣ ≤

q
∑

i=0

Li|xi − xi|, (3.13)

where L = maxt∈[0,1]|f(t, 0, 0, . . . , 0)|, then, the boundary value problem (1.1), (1.2) has a unique
solution in D1.

Example 3.7. Consider the complementary Lidstone boundary value problem

−x(3)(t) = f
(

t, x, x′, . . . , x(q)
)

, t ∈ (0, 1), (3.14)

x(0) = 1, x′(0) = −1, x′(1) = 1, (3.15)
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where 0 ≤ q ≤ 2 is fixed. Here, m = 1 and the interpolating polynomial satisfying (1.4) is
computed as P2(t) = 1 − t + t2 with

p0 = max
t∈[0,1]

|P2(t)| = P2(0) = 1, p1 = max
t∈[0,1]

∣
∣P ′

2(t)
∣
∣ = P ′

2(1) = 1, p2 = max
t∈[0,1]

∣
∣P ′′

2 (t)
∣
∣ = 2.

(3.16)

We illustrate Theorem 3.1 by the following two cases.

Case 1. Suppose q = 0 and f(t, x) = tx2, then, Theorem 3.1 states that (3.14), (3.15) has a
solution in the set D0 = {x : |x| ≤ 2M0} provided

M0 ≥ p0 = 1, QC3,0 ≤ M0. (3.17)

We will look for a constant M0 that satisfies (3.17). Since

Q = max
(t,x)∈[0,1]×D0

∣
∣f(t, x)

∣
∣ = (2M0)2, (3.18)

the condition QC3,0 ≤ M0 simplifies to 0 ≤ M0 ≤ 3. Coupled with another condition M0 ≥ 1,
we see that 1 ≤ M0 ≤ 3 fulfills (3.17). Therefore, we conclude that the differential equation

−x(3)(t) = tx2, t ∈ (0, 1) (3.19)

with the boundary conditions (3.15) has a solution inD0 = {x : |x| ≤ 2M0}whereM0 ∈ [1, 3].

Case 2. Suppose q = 2 and f(t, x, x′, x′′) = t2x +
√
tx′ + (t/2)x′′, then, Theorem 3.1 states that

(3.14), (3.15) has a solution in the set D0 = {(x, x′, x′′) : |x| ≤ 2M0, |x′| ≤ 2M1, |x′′| ≤ 2M2}
provided

Mk ≥ pk, QC3,k ≤ Mk, k = 0, 1, 2. (3.20)

Here

Q = max
(t,x,x′,x′′)∈[0,1]×D0

∣
∣f
(

t, x, x, x′′)∣∣ = 2M0 + 2M1 +M2, (3.21)

and the conditions QC3,k ≤ Mk, k = 0, 1, 2, reduce to

10M0 − 2M1 −M2 ≥ 0, −2M0 + 6M1 −M2 ≥ 0, −2M0 − 2M1 +M2 ≥ 0. (3.22)

Pick M0 = 1, M1 = 1, M2 = 4 which satisfy (3.22) and also Mk ≥ pk, k = 0, 1, 2. It follows
from Theorem 3.1 that the differential equation

−x(3)(t) = t2x +
√
tx′ +

(
t

2

)

x′′, t ∈ (0, 1) (3.23)
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with the boundary conditions (3.15) has a solution in D0 = {(x, x′, x′′) : |x| ≤ 2, |x′| ≤ 2,
|x′′| ≤ 8}.

Example 3.8. Consider the complementary Lidstone boundary value problem

−x(3)(t) = sin t + (sin t)x + (cos t)x′ +
x′′

4
, t ∈ (0, 1) (3.24)

with the boundary conditions (3.15). Here, m = 1, q = 2 and the interpolating polynomial
P2(t) satisfying (1.4) is given in Example 3.7. To illustrate Theorem 3.3, we note that for t ∈
[0, 1] and any (x0, x1, x2),

∣
∣f(t, x0, x1, x2)

∣
∣ =

∣
∣
∣sin t + (sin t)x0 + (cos t)x1 +

x2

4

∣
∣
∣ ≤ 1 + |x0| + |x1| + |x2|

4
. (3.25)

Thus, condition (3.7) is satisfied with L = 1, L0 = 1, L1 = 1, L2 = 1/4. The constants c and θ
are then computed as

c =
2∑

i=0

Lipi =
5
2
, θ =

2∑

i=0

C3,iLi =
1
3
< 1. (3.26)

By Theorem 3.3, problem (3.24), (3.15) has a solution in

D1 =
{
(

x, x′, x′′) : |x| ≤ 23
16

,
∣
∣x′∣∣ ≤ 53

32
,
∣
∣x′′∣∣ ≤ 37

8

}

. (3.27)

4. Picard’s and Approximate Picard’s Methods

Picard’s method of successive approximations has an important characteristic, namely, it
is constructive; moreover, bounds of the difference between iterates and the solution are
easily available. In this section, we will provide a priori as well as posteriori estimates on
the Lipschitz constants so that Picard’s iterative sequence {xn(t)} converges to the unique
solution x∗(t) of the problem (1.1), (1.2).

Definition 4.1. A function x(t) ∈ C(2m+1)[0, 1] is called an approximate solution of (1.1), (1.2) if
there exist nonnegative constants δ and ε such that

max
t∈[0,1]

∣
∣
∣(−1)mx(2m+1)(t) − f(t, x(t))

∣
∣
∣ ≤ δ, (4.1)

max
t∈[0,1]

∣
∣
∣
∣
P
(k)
2m (t) − P

(k)
2m(t)

∣
∣
∣
∣
≤ εC2m+1,k, 0 ≤ k ≤ q, (4.2)
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where P2m(t) and P 2m(t) are polynomials of degree 2m satisfying (1.2), and

P(0) = x(0), P
(2i−1)

(0) = x(2i−1)(0), P
(2i−1)

(1) = x(2i−1)(1), 0 ≤ i ≤ m, (4.3)

respectively.
Inequality (4.1)means that there exists a continuous function η(t) such that

(−1)mx(2m+1)(t) = f(t, x(t)) + η(t),

max
t∈[0,1]

∣
∣η(t)

∣
∣ ≤ δ.

(4.4)

Thus, from Theorem 2.3 the approximate solution x(t) can be expressed as

x(t) = P 2m(t) +
∫1

0
|hm(t, s)|

[

f(s, x(s)) + η(s)
]

ds. (4.5)

In what follows, we will consider the Banach space B = C(q)[0, 1] and for x ∈ C(q)[0, 1],

‖x‖ = max
0≤k≤q

{
C2m+1,0

C2m+1,k
max
t∈[0,1]

∣
∣
∣x(k)(t)

∣
∣
∣

}

. (4.6)

Theorem 4.2. With respect to the boundary value problem (1.1), (1.2) one assumes that there exists
an approximate solution x(t), and

(i) the function f(t, x0, x1, . . . , xq) satisfies the Lipschitz condition (3.13) on [0, 1]×D3,where

D3 =
{
(

x0, x1, . . . , xq

)

:
∣
∣
∣xk − x(k)(t)

∣
∣
∣ ≤ N

C2m+1,k

C2m+1,0
, 0 ≤ k ≤ q, N > 0

}

, (4.7)

(ii) N0 = (1 − θ)−1(ε + δ)C2m+1,0 ≤ N.

Then, the following hold:

(1) there exists a solution x∗(t) of (1.1), (1.2) in S(x,N0) = {x ∈ B : ‖x − x‖ ≤ N0},
(2) x∗(t) is the unique solution of (1.1), (1.2) in S(x,N),

(3) the Picard iterative sequence {xn(t)}, defined by

xn+1(t) = P2m(t) +
∫1

0
|hm(t, s)|f(s, xn(s))ds, n = 0, 1, . . . , (4.8)

where x0(t) = x(t) converges to x∗(t) with ‖x∗ − xn‖ ≤ θnN0, and

‖x∗ − xn‖ ≤ θ(1 − θ)−1‖xn − xn−1‖, (4.9)

(4) for any x0(t) = x(t) ∈ S(x,N0), x∗(t) = limn→∞xn(t).
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In Theorem 4.2 conclusion (3) ensures that the sequence {xn(t)} obtained from (4.8)
converges to the solution x∗(t) of the boundary value problem (1.1), (1.2). However, in
practical evaluation this sequence is approximated by the computed sequence, say, {zn(t)}. To
find zn+1(t), the function f is approximated by fn. Therefore, the computed sequence {zn(t)}
satisfies the recurrence relation

zn+1(t) = P2m(t) +
∫1

0
|hm(t, s)|fn(s, zn(s))ds, n = 0, 1, . . . , (4.10)

where z0(t) = x0(t) = x(t).
With respect to fn we will assume the following condition.

Condition C1. For zn(t) obtained from (4.10), the following inequality holds:

∣
∣f(t, zn(t)) − fn(t, zn(t))

∣
∣ ≤ μ

∣
∣f(t, zn(t))

∣
∣, n = 0, 1, . . ., (4.11)

where μ is a nonnegative constant.

Inequality (4.11) corresponds to the relative error in approximating the function f by
fn for the (n + 1)th iteration.

Theorem 4.3. With respect to the boundary value problem (1.1), (1.2) one assumes that there exists
an approximate solution x(t), and Condition C1 is satisfied. Further, one assumes that

(i) condition (i) of Theorem 4.2,

(ii) θ1 = (1 + μ)θ < 1,

(iii) N1 = (1 − θ1)
−1(ε + δ + μF)C2m+1,0 ≤ N, where F = maxt∈[0,1]|F(t, x(t))|,

then,

(1) all the conclusions (1)–(4) of Theorem 4.2 hold,

(2) the sequence {zn(t)} obtained from (4.10) remains in S(x,N1),

(3) the sequence {zn(t)} converges to x∗(t), the solution of (1.1), (1.2) if and only if
limn→∞an = 0, where

an =

∥
∥
∥
∥
∥
zn+1(t) − P2m(t) −

∫1

0
|hm(t, s)|f(s, zn(s))ds

∥
∥
∥
∥
∥
, (4.12)

and the following error estimate holds

‖x∗ − zn+1‖ ≤ (1 − θ)−1
[

θ‖zn+1 − zn‖ + μC2m+1,0max
t∈[0,1]

∣
∣f(t, zn(t))

∣
∣

]

. (4.13)

In our next result we will assume the following.
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Condition C2. For zn(t) obtained from (4.10), the following inequality is satisfied:

∣
∣f(t, zn(t)) − fn(t, zn(t))

∣
∣ ≤ ν, n = 0, 1, . . . , (4.14)

where ν is a nonnegative constant.

Inequality (4.14) corresponds to the absolute error in approximating the function f by
fn for the (n + 1)th iteration.

Theorem 4.4. With respect to the boundary value problem (1.1), (1.2) one assumes that there exists
an approximate solution x(t), and Condition C2 is satisfied. Further, one assumes that

(i) condition (i) of Theorem 4.2,

(ii) N2 = (1 − θ)−1(ε + δ + ν)C2m+1,0 ≤ N,

then,

(1) all the conclusions (1)–(4) of Theorem 4.2 hold,

(2) the sequence {zn(t)} obtained from (4.10) remains in S(x,N2),

(3) the sequence {zn(t)} converges to x∗(t), the solution of (1.1), (1.2) if and only if
limn→∞an = 0, and the following error estimate holds:

‖x∗ − zn+1‖ ≤ (1 − θ)−1[θ‖zn+1 − zn‖ + νC2m+1,0]. (4.15)

Example 4.5. Consider the complementary Lidstone boundary value problem

−x(3)(t) = 1 + x + x′ +
x′′

4
, t ∈ (0, 1) (4.16)

with the boundary conditions (3.15). Pick P2(t) = 1 − t + t2 to be an approximate solution of
(4.16), (3.15), that is, let x(t) = P2(t). Then, from (4.2) we get ε = 0. Further, from (4.1) we
have

max
t∈[0,1]

∣
∣
∣−x(3)(t) − f

(

t, x(t), x′(t), x′′(t)
)
∣
∣
∣

= max
t∈[0,1]

∣
∣f
(

t, x(t), x′(t), x′′(t)
)∣
∣

= max
t∈[0,1]

∣
∣
∣
∣
∣
1 + x(t) + x′(t) +

x′′(t)
4

∣
∣
∣
∣
∣

= max
t∈[0,1]

∣
∣
∣
∣

3
2
+ t + t2

∣
∣
∣
∣
=

7
2
≡ δ.

(4.17)
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To illustrate Theorem 4.2, we note that the Lipschitz condition (3.13) is satisfied globally with
L0 = 1, L1 = 1, L2 = 1/4, and the constants θ and N0 are computed directly as

θ =
2∑

i=0

C3,iLi =
1
3
, N0 = (1 − θ)−1(ε + δ)C3,0 =

21
4

≤ N. (4.18)

By Theorem 4.2, it follows that

(1) there exists a solution x∗(t) of (4.16), (3.15) in S(P2,N0),

(2) x∗(t) is the unique solution of (4.16), (3.15) in S(P2,N),

(3) the Picard iterative sequence {xn(t)} defined by

−x(3)
n+1(t) = 1 + xn(t) + x′

n(t) +
x′′
n(t)
4

, n = 0, 1, . . . ,

xn+1(0) = 1, x′
n+1(0) = −1, x′

n+1(1) = 1,
(4.19)

where x0(t) = P2(t) converges to x∗(t)with

‖x∗ − xn‖ ≤
(
1
3

)n 21
4
, ‖x∗ − xn‖ ≤ 1

2
‖xn − xn−1‖. (4.20)

Suppose that we require the accuracy ‖x∗ − xn‖ ≤ 10−5, then from above we just set

(
1
3

)n 21
4

≤ 10−5 (4.21)

to get n ≥ 12. Thus, x12(t)will fulfill the required accuracy.
Finally, we will illustrate how to obtain x1(t) from (4.19). First, we integrate

−x(3)
1 (t) = 1 + x0(t) + x′

0(t) +
x′′
0(t)
4

=
3
2
+ t + t2 (4.22)

from 0 to t to get

−x′′
1(t) + x′′

1(0) =
3t
2

+
t2

2
+
t3

3
. (4.23)

Next, integrating (4.23) from 0 to t as well as from t to 1, respectively, gives

−x′
1(t) + x′

1(0) + tx′′
1(0) =

3t2

4
+
t3

6
+

t4

12
, (4.24)

−x′
1(1) + x′

1(t) + (1 − t)x′′
1(0) = 1 − 3t2

4
− t3

6
− t4

12
. (4.25)
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Adding (4.24) and (4.25) yields x′′
1(0) = 3. Now, integrate (4.24) (or (4.25)) from 0 to t gives

x1(t) = 1 − t +
3t2

2
− t3

4
− t4

24
− t5

60
. (4.26)

A similar method can be used to obtain xn(t), n ≥ 2.

5. Quasilinearization and Approximate Quasilinearization

Newton’s method when applied to differential equations has been labeled as quasilineariza-
tion. This quasilinear iterative scheme for (1.1), (1.2) is defined as

(−1)mx(2m+1)
n+1 (t) = f(t, xn(t)) + β(t)

q
∑

i=0

(

x
(i)
n+1(t) − x

(i)
n (t)

) ∂

∂x
(i)
n (t)

f(t, xn(t)), (5.1)

xn+1(0) = α0, x
(2i−1)
n+1 (0) = αi, x

(2i−1)
n+1 (1) = βi, 0 ≤ i ≤ m, n = 0, 1, . . . , (5.2)

where x0(t) = x(t) is an approximate solution of (1.1), (1.2).
In the following results once again we will consider the Banach space C(q)[0, 1] and for

x ∈ C(q)[0, 1] the norm ‖x‖ is as in (4.6).

Theorem 5.1. With respect to the boundary value problem (1.1), (1.2) one assumes that there exists
an approximate solution x(t), and

(i) the function f(t, x0, x1, . . . , xq) is continuously differentiable with respect to all xi, 0 ≤ i ≤
q on [0, 1] ×D3,

(ii) there exist nonnegative constants Li, 0 ≤ i ≤ q such that for all (t, x0, x1, . . . , xq) ∈ [0, 1]×
D3,

∣
∣
∣
∣

∂

∂xi
f
(

t, x0, x1, . . . , xq

)
∣
∣
∣
∣
≤ Li, (5.3)

(iii) the function β(t) is continuous on [0, 1], β = maxt∈[0,1]|β(t)|, and θβ = (1 + 2β)θ < 1,

(iv) N3 = (1 − θβ)
−1(ε + δ)C2m+1,0 ≤ N.

Then, the following hold:

(1) the sequence {xn(t)} generated by the iterative scheme (5.1), (5.2) remains in S(x,N3),

(2) the sequence {xn(t)} converges to the unique solution x∗(t) of the boundary value problem
(1.1), (1.2),

(3) a bound on the error is given by

‖xn − x∗‖ ≤
((

1 + β
)

θ

1 − βθ

)n
(

1 − θβ
)−1(ε + δ)C2m+1,0. (5.4)
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Theorem 5.2. Let in Theorem 5.1 the function β(t) ≡ 1. Further, let f(t, x0, x1, . . . , xq) be twice
continuously differentiable with respect to all xi, 0 ≤ i ≤ q on [0, 1] ×D3, and

∣
∣
∣
∣
∣

∂2

∂xi∂xj
f
(

t, x0, x1, . . . , xq

)

∣
∣
∣
∣
∣
≤ LiLjK, 0 ≤ i, j ≤ q. (5.5)

Then,

‖xn+1 − xn‖ ≤ α‖xn − xn−1‖2 ≤ 1
α
(α‖x1 − x0‖)2

n ≤ 1
α

{

1
2
K(ε + δ)

(
θ

1 − θ

)2
}2n

, (5.6)

where α = Kθ2/[2(1 − θ)C2m+1,0]. Thus, the convergence is quadratic if

1
2
K(ε + δ)

(
θ

1 − θ

)2

< 1. (5.7)

Conclusion (3) of Theorem 5.1 ensures that the sequence {xn(t)} generated from the
scheme (5.1), (5.2) converges linearly to the unique solution x∗(t) of the boundary value
problem (1.1), (1.2). Theorem 5.2 provides sufficient conditions for its quadratic convergence.
However, in practical evaluation this sequence is approximated by the computed sequence,
say, {zn(t)}which satisfies the recurrence relation

(−1)mz(2m+1)
n+1 (t) = fn(t, zn(t)) + β(t)

q
∑

i=0

(

z
(i)
n+1(t) − z

(i)
n (t)

) ∂

∂z
(i)
n (t)

fn(t, zn(t)),

zn+1(0) = α0, z
(2i−1)
n+1 (0) = αi, z

(2i−1)
n+1 (1) = βi, 0 ≤ i ≤ m, n = 0, 1, . . . ,

(5.8)

where z0(t) = x0(t) = x(t).
With respect to fn we will assume the following condition.

Condition C3. fn(t, x0, x1, . . . , xq) is continuously differentiable with respect to all xi, 0 ≤ i ≤ q
on [0, 1] ×D3 with

∣
∣
∣
∣

∂

∂xi
fn
(

t, x0, x1, . . . , xq

)
∣
∣
∣
∣
≤ Li (5.9)

and Condition C1 is satisfied.

Theorem 5.3. With respect to the boundary value problem (1.1), (1.2) one assumes that there exists
an approximate solution x(t), and the Condition C3 is satisfied. Further, one assumes

(i) conditions (i) and (ii) of Theorem 5.1,

(ii) θβ,μ = (1 + 2β + μ)θ < 1,

(iii) N4 = (1 − θβ,μ)
−1(ε + δ + μF)C2m+1,0 ≤ N,
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then,

(1) all conclusions (1)–(3) of Theorem 5.1 hold,

(2) the sequence {zn(t)} generated by the iterative scheme (5.8), remains in S(x,N4),

(3) the sequence {zn(t)} converges to x∗(t), the unique solution of (1.1), (1.2) if and only if
limn→∞an = 0, and the following error estimate holds:

‖x∗ − zn+1‖ ≤ (1 − θ)−1
[
(

1 + β
)

θ‖zn+1 − zn‖ + μC2m+1,0max
t∈[0,1]

∣
∣f(t, zn(t))

∣
∣

]

. (5.10)

Theorem 5.4. Let the conditions of Theorem 5.3 be satisfied. Further, let fn = f0 for all n = 1, 2, . . .
and f0(t, x0, x1, . . . , xq) be twice continuously differentiable with respect to all xi, 0 ≤ i ≤ q on
[0, 1] ×D3, and

∣
∣
∣
∣
∣

∂2

∂xi∂xj
f0
(

t, x0, x1, . . . , xq

)

∣
∣
∣
∣
∣
≤ LiLjK, 0 ≤ i, j ≤ q. (5.11)

Then,

‖zn+1 − zn‖ ≤ α‖zn − zn−1‖2 ≤ 1
α
(α‖z1 − z0‖)2

n ≤ 1
α

[

1
2
K(ε + δ + μF)

(
θ

1 − θ

)2
]2n

, (5.12)

where α is the same as in Theorem 5.2.

Example 5.5. Consider the complementary Lidstone boundary value problem

−x(3)(t) = t + x2, t ∈ (0, 1) (5.13)

again with the boundary conditions (3.15). First, we will illustrate Theorem 5.1. Pick x(t) = 0
and β(t) = 1 (so β = 1). Clearly, f(t, x) = t + x2 is continuously differentiable with respect to x
for all (t, x). For x ∈ D3 = {x : |x| ≤ N},we have

∣
∣
∣
∣

∂

∂x
f(t, x)

∣
∣
∣
∣
= |2x| ≤ 2N ≡ L0. (5.14)

Thus,

θ = C3,0L0 =
N

6
, θβ =

(

1 + 2β
)

θ =
N

2
. (5.15)

Let N < 2 so that θβ < 1. Next, from (4.1) we have maxt∈[0,1]|f(t, 0)| = 1 ≡ δ. Also, from (4.2)
we find

max
t∈[0,1]

∣
∣
∣P2(t) − P 2(t)

∣
∣
∣ = max

t∈[0,1]
|P2(t)| = 1 ≤ εC3,0 =

ε

12
, (5.16)
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and so we take ε = 12. Now,

N3 =
(

1 − θβ
)−1(ε + δ)C3,0 =

13
6N

≤ N (5.17)

yields N ≥
√

13/6 	 1.633. Coupled withN < 2 (so that θβ < 1), we should impose

√

13
6

≤ N < 2. (5.18)

The corresponding range of N3 will then be

13
12

< N3 ≤
√

13
6
. (5.19)

The conditions of Theorem 5.1 are satisfied and so

(1) the sequence {xn(t)} generated by

−x(3)
n+1(t) = t + x2

n(t) + 2[xn+1(t) − xn(t)]xn(t), n = 0, 1, . . . ,

xn+1(0) = 1, x′
n+1(0) = −1, x′

n+1(1) = 1,
(5.20)

where x0(t) = 0 remains in S(0,N3), that is, maxt∈[0,1]|xn(t)| ≤ N3,

(2) the sequence {xn(t)} converges to the unique solution x∗(t) of (5.13), (3.15)with

max
t∈[0,1]

|x∗(t) − xn(t)| ≤
(

2N
6 −N

)n 13
6(2 −N)

. (5.21)

Next, we will illustrate Theorem 5.2. For x ∈ D3 = {x : |x| ≤ N},we have

∣
∣
∣
∣
∣

∂2

∂x2
f(t, x)

∣
∣
∣
∣
∣
= 2 ≤ L2

0K = (2N)2K. (5.22)

Hence, we may take K = 1/(2N2). From Theorem 5.2, we have

max
t∈[0,1]

|xn+1(t) − xn(t)| ≤ 1
α

[

1
2
K(ε + δ)

(
θ

1 − θ

)2
]2n

= 2(6 −N)

[

13

4(6 −N)2

]2n

. (5.23)

The convergence is quadratic if

1
2
K(ε + δ)

(
θ

1 − θ

)2

< 1 (5.24)
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which is the same as

13
4

< (6 −N)2 (5.25)

and is satisfied if N > 7.803 or N < 4.197. Combining with (5.18), we conclude that the
convergence of the scheme (5.20) is quadratic if

√

13
6

≤ N < 2. (5.26)

6. Monotone Convergence

It is well recognized that the method of upper and lower solutions, together with uniformly
monotone convergent technique offers effective tools in proving and constructing multiple
solutions of nonlinear problems. The upper and lower solutions generate an interval in
a suitable partially ordered space, and serve as upper and lower bounds for solutions
which can be improved by uniformly monotone convergent iterative procedures. Obviously,
from the computational point of view monotone convergence has superiority over ordinary
convergence. We will discuss this fruitful technique for the boundary value problem (1.1),
(1.2) with q = 1.

Definition 6.1. A function μ(t) ∈ C(2m+1)[0, 1] is said to be a lower solution of (1.1), (1.2) with
q = 1 provided

(−1)mμ(2m+1)(t) ≤ f
(

t, μ(t), μ′(t)
)

, t ∈ [0, 1],

[

μ(0) − α0
] ≤ 0, (−1)i−1

[

μ(2i−1)(0) − αi

]

≤ 0, (−1)i−1
[

μ(2i−1)(1) − βi
]

≤ 0, 1 ≤ i ≤ m.

(6.1)

Similarly, a function ν(t) ∈ C(2m+1)[0, 1] is said to be an upper solution of (1.1), (1.2)with q = 1
if

(−1)mν(2m+1)(t) ≥ f(t, ν(t), ν′(t)), t ∈ [0, 1],

[ν(0) − α0] ≥ 0, (−1)i−1
[

ν(2i−1)(0) − αi

]

≥ 0, (−1)i−1
[

ν(2i−1)(1) − βi
]

≥ 0, 1 ≤ i ≤ m.

(6.2)

Lemma 6.2. Let μ(t) and ν(t) be lower and upper solutions of (1.1), (1.2)with q = 1, and let P2m,μ(t)
and P2m,ν(t) be the polynomials of degree 2m satisfying

P2m,μ(0) = μ(0), P
(2i−1)
2m,μ (0) = μ(2i−1)(0), P

(2i−1)
2m,μ (1) = μ(2i−1)(1), 1 ≤ i ≤ m, (6.3)
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and

P2m,ν(0) = μ(0), P
(2i−1)
2m,ν (0) = ν(2i−1)(0), P

(2i−1)
2m,ν (1) = ν(2i−1)(1), 1 ≤ i ≤ m, (6.4)

respectively. Then, for all t ∈ [0, 1], P (k)
2m,μ(t) ≤ P

(k)
2m (t) ≤ P

(k)
2m,ν(t), k = 0, 1.

Proof. From (2.5), (2.6), and (2.8) it is clear that (−1)iΛi(t) ≥ 0, (−1)iΛi(1− t) ≥ 0, i ≥ 0 and this
in turn from (2.18) and (2.19) implies that (−1)i(vi+1(t)−vi+1(0)) ≥ 0, (−1)i(vi+1(1)−vi+1(1−t)) ≥
0, (−1)iv′

i+1(t) = (−1)iΛi(t) ≥ 0, (−1)iv′
i+1(1 − t) = (−1)iΛi(1 − t) ≥ 0, i ≥ 0. Now, since

P2m,μ(t) = μ(0) +
m∑

i=1

[

μ(2i−1)(0)(vi(1) − vi(1 − t)) + μ(2i−1)(1)(vi(t) − vi(0))
]

,

P ′
2m,μ(t) =

m∑

i=1

[

μ(2i−1)(0)Λi−1(1 − t) + μ(2i−1)(1)Λi−1(t)
]

,

(6.5)

it follows that

P2m,μ(t) = μ(0) +
m∑

i=1

[

(−1)i−1μ(2i−1)(0)(−1)i−1(vi(1) − vi(1 − t))

+ (−1)i−1μ(2i−1)(1)(−1)i−1(vi(t) − vi(0))
]

≤ α0 +
m∑

i=1

[

(−1)i−1αi(−1)i−1(vi(1) − vi(1 − t)) + (−1)i−1βi(−1)i−1(vi(t) − vi(0))
]

= P2m(t).

(6.6)

Similarly, we have P ′
2m,μ(t) ≤ P ′

2m(t). The proof of P
(k)
2m (t) ≤ P

(k)
2m,ν(t), k = 0, 1 is similar.

In the following result for x(t) ∈ C1[0, 1] we will consider the norm ‖x‖ =
max{maxt∈[0,1]|x(t)|,maxt∈[0,1]|x′(t)|} and introduce a partial ordering � as follows. For x, y ∈
C1[0, 1] we say that x � y if and only if x(t) ≤ y(t) and x′(t) ≤ y′(t) for all t ∈ [0, 1].

Theorem 6.3. With respect to the boundary value problem (1.1), (1.2) with q = 1 one assumes
that f(t, x0, y0) is nondecreasing in x0 and y0. Further, let there exist lower and upper solutions
μ0(t), ν0(t) such that μ0 � ν0. Then, the sequences {μn(t)}, {νn(t)} where μn(t) and νn(t) are defined
by the iterative schemes

μn+1(t) = P2m(t) +
∫1

0

∣
∣gm(t, s)

∣
∣f
(

s, μn(s), μ′
n(s)

)

ds, n = 0, 1, . . . ,

νn+1(t) = P2m(t) +
∫1

0

∣
∣gm(t, s)

∣
∣f
(

s, νn(s), ν′n(s)
)

ds, n = 0, 1, . . .

(6.7)
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are well defined, and {μn(t)} converges to an element μ(t) ∈ C1[0, 1], {νn(t)} converges to an element
ν(t) ∈ C1[0, 1] (with the convergence being in the norm of C1[0, 1]). Further, μ0 � μ1 � · · · � μn �
· · · � μ � ν � · · · � νn � · · · � ν1 � ν0, μ(t), ν(t) are solutions of (1.1), (1.2) with q = 1, and each
solution z(t) of this problem which is such that z ∈ [μ0, ν0] satisfies μ � z � ν.

Example 6.4. Consider the complementary Lidstone boundary value problem

−x(3)(t) = 1 + x + x′, t ∈ (0, 1),

x(0) = 1, x′(0) = −1, x′(1) = −1.
(6.8)

Here,m = 1, q = 1 and the function f(t, x0, y0) = 1 + x0 + y0 is nondecreasing in x0 and y0.We
find that (6.8) has a lower solution

μ0(t) = 1 − t (6.9)

and an upper solution

ν0(t) = 1 + 8t2 − 17
3
t3 (6.10)

such that

μ0(t) ≤ ν0(t), μ′
0(t) ≤ v′

0(t), t ∈ [0, 1]. (6.11)

Hence, μ0 � ν0 and the conditions of Theorem 6.3 are satisfied. The iterative schemes

−μ(3)
n+1(t) = 1 + μn + μ′

n, n = 0, 1, . . . ,

μn+1(0) = 1, μ′
n+1(0) = −1, μ′

n+1(1) = −1,
(6.12)

−ν(3)n+1(t) = 1 + νn + ν′n, n = 0, 1, . . . ,

νn+1(0) = 1, ν′n+1(0) = −1, ν′n+1(1) = −1
(6.13)

will converge respectively to some μ ∈ C1[0, 1] and ν ∈ C1[0, 1]. Moreover,

μ0 � μ1 � · · · � μn � · · · � μ � ν � · · · � νn � · · · � ν1 � ν0, (6.14)
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and μ(t), ν(t) are solutions of (6.8). Any solution z(t) of (6.8) which is such that z ∈ [μ0, ν0]
fulfills μ � z � ν. As an illustration, by direct computation (as in Example 4.5), we find

μ1(t) = 1 − t +
t2

6
− t3

6
+

t4

24
,

μ2(t) = 1 − t − 29t2

160
+
t3

6
− t4

36
− t5

180
+

t7

5040
,

. . . ,

ν1(t) = 1 − t − 79t2

60
+
t3

3
+
2t4

3
− 3t5

20
− 17t6

360
,

ν2(t) = 1 − t − 83t2

40320
+
t3

6
− 109t4

720
− 19t5

3600
+

t6

40
− t7

2520
− 13t8

10080
− 17t9

181440
.

. . . .

(6.15)
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