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1. Introduction

In the analysis and design of controllers and filters for linear dynamical systems, the Riccati
equation is of great importance in both theory and practice (see [1–5]). Consider the following
linear system (see [4]):

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (1.1)

with the cost

J =
∫∞
0

(
xTQx + uTu

)
dt. (1.2)

Moreover, the optimal control rate u∗ and the optimal cost J∗ of (1.1) and (1.2) are

u∗ = Px, P = BTK,

J∗ = xT
0Kx0,

(1.3)
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where x0 ∈ Rn is the initial state of the systems (1.1) and (1.2), K is the positive definite
solution of the following algebraic Riccati equation (ARE):

ATK +KA −KRK = −Q, (1.4)

with R = BBT and Q are symmetric positive definite matrices. To guarantee the existence
of the positive definite solution to (1.4), we shall make the following assumptions: the pair
(A,R) is stabilizable, and the pair (Q,A) is observable.

In practice, it is hard to solve the (ARE), and there is no general method unless
the system matrices are special and there are some methods and algorithms to solve (1.4),
however, the solution can be time-consuming and computationally difficult, particularly as
the dimensions of the systemmatrices increase. Thus, a number of works have been presented
by researchers to evaluate the bounds and trace bounds for the solution of the (ARE) [6–12].
In addition, from [2, 6], we know that an interpretation of tr(K) is that tr(K)/n is the average
value of the optimal cost J∗ as x0 varies over the surface of a unit sphere. Therefore, consider
its applications, it is important to discuss trace bounds for the product of two matrices.
Most available results are based on the assumption that at least one matrix is symmetric
[7, 8, 11, 12]. However, it is important and difficult to get an estimate of the trace bounds
when any matrix in the product is nonsymmetric in theory and practice. There are some
results in [13–15].

In this paper, we propose new trace bounds for the product of two general matrices.
The new trace bounds improve the recent results. Then, for their application in the algebraic
Riccati equation, we get some upper and lower bounds.

In the following, let Rn×n denote the set of n×n real matrices. Let x = (x1, x2, . . . , xn) be
a real n-element array which is reordered, and its elements are arranged in nonincreasing
order. That is, x[1] ≥ x[2] ≥ · · · ≥ x[n]. Let |x| = (|x1|, |x2|, . . . , |xn|). For A = (aij) ∈
Rn×n, let d(A) = (d1(A), d2(A), . . . , dn(A)), λ(A) = (λ1(A), λ2(A), . . . , λn(A)), σ(A) =
(σ1(A), σ2(A), . . . , σn(A)) denote the diagonal elements, the eigenvalues, the singular values
of A, respectively, Let tr(A), AT denote the trace, the transpose of A, respectively. We define
(A)ii = aii = di(A), A = (A +AT )/2. The notation A > 0 (A ≥ 0) is used to denote that A is a
symmetric positive definite (semidefinite) matrix.

Let α, β be two real n-element arrays. If they satisfy

k∑
i=1

α[i] ≤
k∑
i=1

β[i], k = 1, 2, . . . , n, (1.5)

then it is said that α is controlled weakly by β, which is signed by α≺wβ.
If α≺wβ and

n∑
i=1

α[i] =
n∑
i=1

β[i], (1.6)

then it is said that α is controlled by β, which is signed by α ≺ β.
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Therefore, considering the application of the trace bounds, many scholars pay much
attention to estimate the trace bounds for the product of two matrices.

Marshall and Olkin in [16] have showed that for any A,B ∈ Rn×n, then

−
n∑
i=1

σ[i](A)σ[i](B) ≤ tr(AB) ≤
n∑
i=1

σ[i](A)σ[i](B). (1.7)

Xing et al. in [13] have observed another result. Let A,B ∈ Rn×n be arbitrary matrices
with the following singular value decomposition:

B = Udiag
(
σ1(B), σ2(B), . . . , σn(B)

)
V T , (1.8)

where U,V ∈ Rn×n are orthogonal. Then

λ[n](AS)
n∑
i=1

σ[i](B) ≤ tr(AB) ≤ λ[1](AS)
n∑
i=1

σ[i](B), (1.9)

where S = UVT is orthogonal.
Liu and He in [14] have obtained the following: let A,B ∈ Rn×n be arbitrary matrices

with the following singular value decomposition:

B = Udiag
(
σ1(B), σ2(B), . . . , σn(B)

)
V T , (1.10)

where U,V ∈ Rn×n are orthogonal. Then

min
1≤i≤n
(
V TAU

)
ii

n∑
i=1

σ[i](B) ≤ tr(AB) ≤ max
1≤i≤n
(
V TAU

)
ii

n∑
i=1

σ[i](B). (1.11)

F. Zhang and Q. Zhang in [15] have obtained the following: letA,B ∈ Rn×n be arbitrary
matrices with the following singular value decomposition:

B = Udiag
(
σ1(B), σ2(B), . . . , σn(B)

)
V T , (1.12)

where U,V ∈ Rn×n are orthogonal. Then

n∑
i=1

σ[i](B)λ[n−i+1](AS) ≤ tr(AB) ≤
n∑
i=1

σ[i](B)λ[i](AS), (1.13)

where S = UVT is orthogonal. They show that (1.13) has improved (1.9).
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2. Main Results

The following lemmas are used to prove the main results.

Lemma 2.1 (see [16, page 92, H.2.c]). If x[1] ≥ · · · ≥ x[n], y[1] ≥ · · · ≥ y[n] and x ≺ y, then for
any real array u[1] ≥ · · · ≥ u[n],

n∑
i=1

x[i]u[i] ≤
n∑
i=1

y[i]u[i]. (2.1)

Lemma 2.2 (see [16, page 95, H.3.b]). If x[1] ≥ · · · ≥ x[n], y[1] ≥ · · · ≥ y[n] and x≺wy, then for
any real array u[1] ≥ · · · ≥ u[n] ≥ 0,

n∑
i=1

x[i]u[i] ≤
n∑
i=1

y[i]u[i]. (2.2)

Remark 2.3. Note that if x≺wy, then for k = 1, 2, . . . , n, (x[1], . . . , x[k])≺w(y[1], . . . , y[k]). Thus
from Lemma 2.2, we have

k∑
i=1

x[i]u[i] ≤
k∑
i=1

y[i]u[i], k = 1, 2, . . . , n. (2.3)

Lemma 2.4 (see [16, page 218, B.1]). Let A = AT ∈ Rn×n, then

d(A) ≺ λ(A). (2.4)

Lemma 2.5 (see [16, page 240, F.4.a]). Let A ∈ Rn×n, then

λ

(
A +AT

2

)
≺w

∣∣∣∣∣λ
(
A +AT

2

)∣∣∣∣∣≺wσ(A). (2.5)

Lemma 2.6 (see [17]). Let 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2, k = 1, 2, . . . , n, 1/p + 1/q = 1.
Then

n∑
k=1

akbk ≤
(

n∑
k=1

a
p

k

)1/p( n∑
k=1

b
q

k

)1/q

≤ cp,q
n∑

k=1

akbk, (2.6)

where

cp,q =
M

p

1M
q

2 −m
p

1m
q

2[
p
(
M1m2M

q

2 −m1M2m
q

2

)]1/p[
q
(
m1M2M

p

1 −M1m2m
p

1

)]1/q . (2.7)
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Note that if m1 = 0, m2 /= 0 or m2 = 0, m1 /= 0, obviously, (2.6) holds. If m1 = m2 = 0, choose
cp,q = +∞, then (2.6) also holds.

Remark 2.7. If p = q = 2, then we obtain Cauchy-Schwartz inequality

n∑
k=1

akbk ≤
(

n∑
k=1

a2
k

)1/2( n∑
k=1

b2k

)1/2

≤ c2
n∑

k=1

akbk, (2.8)

where

c2 =

(√
M1M2

m1m2
+
√

m1m2

M1M2

)
. (2.9)

Remark 2.8. Note that

lim
p→∞
(
a
p

1 + a
p

2 + · · · + a
p
n

)1/p
= max

1≤k≤n
{
ak

}
,

lim
p→∞
q→ 1

cp,q = lim
p→∞
q→ 1

M
p

1M
q

2 −m
p

1m
q

2[
p
(
M1m2M

q

2 −m1M2m
q

2

)]1/p[
q
(
m1M2M

p

1 −M1m2m
p

1

)]1/q

= lim
p→∞
q→ 1

M
p

1

[
M

q

2 − (m1/M1)
pm

q

2

]
M

1/p
1

[
p
(
m2M

q

2−(m1/M1)M2m
q

2

)]1/p
M

q/p

1

[
q
(
m1M2−M1m2(m1/M1)

p)]1/q

= lim
p→∞
q→ 1

M2

M
1/p+p/q−p
1 m1M2

= lim
p→∞
q→ 1

1

M
1/p−1
1 m1

=
M1

m1
.

(2.10)

Let p → ∞, q → 1 in (2.6), then we obtain

m1

n∑
k=1

bk ≤
n∑

k=1

akbk ≤ M1

n∑
k=1

bk. (2.11)

Lemma 2.9. If q ≥ 1, ai ≥ 0 (i = 1, 2, . . . , n), then

(
1
n

n∑
i=1

ai

)q

≤ 1
n

n∑
i=1

a
q

i . (2.12)
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Proof. (1) Note that q = 1, or ai = 0 (i = 1, 2, . . . , n),

(
1
n

n∑
i=1

ai

)q

=
1
n

n∑
i=1

a
q

i . (2.13)

(2) If q > 1, ai > 0, for x > 0, choose f(x) = xq, then f ′(x) = qxq−1 > 0 and f ′′(x) =
q(q − 1)xq−2 > 0. Thus, f(x) is a convex function. As ai > 0 and (1/n)

∑n
i=1ai > 0, from the

property of the convex function, we have

(
1
n

n∑
i=1

ai

)q

= f

(
1
n

n∑
i=1

ai

)
≤ 1

n

n∑
i=1

f(ai) =
1
n

n∑
i=1

a
q

i . (2.14)

(3) If q > 1, without loss of generality, we may assume ai = 0 (i = 1, . . . , r), ai > 0 (i =
r + 1, . . . , n). Then from (2), we have

(
1

n − r

)q
(

n∑
i=1

ai

)q

=

(
1

n − r

n∑
i=1

ai

)q

≤ 1
n − r

n∑
i=1

a
q

i . (2.15)

Since ((n − r)/n)q ≤ (n − r)/n, thus

(
1
n

n∑
i=1

ai

)q

=
(
n − r

n

)q( 1
n − r

)q
(

n∑
i=1

ai

)q

≤ n − r

n

1
n − r

n∑
i=1

a
q

i =
1
n

n∑
i=1

a
q

i . (2.16)

This completes the proof.

Theorem 2.10. Let A,B ∈ Rn×n be arbitrary matrices with the following singular value
decomposition:

B = Udiag(σ1(B), σ2(B), . . . , σn(B))V T , (2.17)

whereU,V ∈ Rn×n are orthogonal. Then

n∑
i=1

σ[i](B)d[n−i+1]
(
V TAU

) ≤ tr(AB) ≤
n∑
i=1

σ[i](B)d[i]
(
V TAU

)
. (2.18)

Proof. By the matrix theory we have

tr(AB) = tr
[
AUdiag

(
σ1(B), σ2(B), . . . , σn(B)

)
V T]

= tr
[
V TAUdiag

(
σ1(B), σ2(B), . . . , σn(B)

)]

=
n∑
i=1

σi(B)
(
V TAU

)
ii.

(2.19)
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Since σ[1](B) ≥ σ[2](B) ≥ · · · ≥ σ[n](B) ≥ 0, without loss of generality, we may assume σ(B) =
(σ[1](B), σ[2](B), . . . , σ[n](B)). Next, we will prove the left-hand side of (2.18):

n∑
i=1

σ[i](B)d[n−i+1]
(
V TAU

) ≤ n∑
i=1

σ[i](B)di

(
V TAU

)
. (2.20)

If

d
(
V TAU

)
=
(
d[n]
(
V TAU

)
, d[n−1]

(
V TAU

)
, . . . , d[1]

(
V TAU

))
, (2.21)

we obtain the conclusion. Now assume that there exists j < k such that dj(V TAU) >
dk(V TAU), then

σ[j](B)dk

(
V TAU

)
+ σ[k](B)dj

(
V TAU

) − σ[j](B)dj

(
V TAU

) − σ[k](B)dk

(
V TAU

)

=
[
σ[j](B) − σ[k](B)

][
dk

(
V TAU

) − dj

(
V TAU

)] ≤ 0.
(2.22)

We use d̃(V TAU) to denote the vector of d(V TAU) after changing dj(V TAU) and dk(V TAU),
then

n∑
i=1

σ[i](B)d̃i

(
V TAU

) ≤ n∑
i=1

σ[i](B)di

(
V TAU

)
. (2.23)

After limited steps, we obtain the the left-hand side of (2.18). For the right-hand side of (2.18),

n∑
i=1

σ[i](B)di

(
V TAU

) ≤ n∑
i=1

σ[i](B)d[i]
(
V TAU

)
. (2.24)

If

d
(
V TAU

)
=
(
d[1](V TAU

)
, d[2]
(
V TAU

)
, . . . , d[n]

(
V TAU

))
, (2.25)

we obtain the conclusion. Now assume that there exists j > k such that dj(V TAU) <
dk(V TAU), then

σ[j](B)dk

(
V TAU

)
+ σ[k](B)dj

(
V TAU

) − σ[j](B)dj

(
V TAU

) − σ[k](B)dk

(
V TAU

)

=
[
σ[j](B) − σ[k](B)

][
dk

(
V TAU

) − dj

(
V TAU

)] ≥ 0.
(2.26)
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We use d̃(V TAU) to denote the vector of d(V TAU) after changing dj(V TAU) and dk(V TAU),
then

n∑
i=1

σ[i](B)di

(
V TAU

) ≤ n∑
i=1

σ[i](B)d̃i

(
V TAU

)
. (2.27)

After limited steps, we obtain the right-hand side of (2.18). Therefore,

n∑
i=1

σ[i](B)d[n−i+1]
(
V TAU

) ≤ tr(AB) ≤
n∑
i=1

σ[i](B)d[i]
(
V TAU

)
. (2.28)

This completes the proof.

Since tr(AB) = tr(BA), applying (2.18) with B in lieu of A, we immediately have the
following corollary.

Corollary 2.11. Let A,B ∈ Rn×n be arbitrary matrices with the following singular value
decomposition:

A = Pdiag(σ1(A), σ2(A), . . . , σn(A))QT, (2.29)

where P,Q ∈ Rn×n are orthogonal. Then

n∑
i=1

σ[i](A)d[n−i+1]
(
QTBP

) ≤ tr(AB) ≤
n∑
i=1

σ[i](A)d[i](QTBP). (2.30)

Now using (2.18) and (2.30), one finally has the following theorem.

Theorem 2.12. Let A,B ∈ Rn×n be arbitrary matrices with the following singular value
decompositions, respectively:

A = Pdiag
(
σ1(A), σ2(A), . . . , σn(A)

)
QT,

B = Udiag
(
σ1(B), σ2(B), . . . , σn(B)

)
V T ,

(2.31)

where P,Q,U, V ∈ Rn×n are orthogonal. Then

max

{
n∑
i=1

σ[i](A)d[n−i+1]
(
QTBP

)
,

n∑
i=1

σ[i](B)d[n−i+1]
(
V TAU

)}

≤ tr(AB) ≤ min

{
n∑
i=1

σ[i](B)d[i]
(
V TAU

)
,

n∑
i=1

σ[i](A)d[i]
(
QTBP

)}
.

(2.32)
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Remark 2.13. We point out that (2.18) improves (1.11). In fact, it is obvious that

min
1≤i≤n
(
V TAU

)
ii

n∑
i=1

σ[i](B) ≤
n∑
i=1

σ[i](B)d[n−i+1]
(
V TAU

)

≤ tr(AB) ≤
n∑
i=1

σ[i](B)d[i]
(
V TAU

) ≤ max
1≤i≤n
(
V TAU

)
ii

n∑
i=1

σ[i](B).

(2.33)

This implies that (2.18) improves (1.11).

Remark 2.14. We point out that (2.18) improves (1.13). Since for i = 1, . . . , n, σi(B) ≥ 0 and
di(V TAU) = di((V TAU + (V TAU)T )/2), from Lemmas 2.1 and 2.4, then (2.18) implies

n∑
i=1

σ[i](B)λ[n−i+1]

(
V TAU +

(
V TAU

)T
2

)

≤
n∑
i=1

σ[i](B)d[n−i+1]

(
V TAU +

(
V TAU

)T
2

)

≤ tr(AB)

≤
n∑
i=1

σ[i](B)d[i]

(
V TAU +

(
V TAU

)T
2

)

≤
n∑
i=1

σ[i](B)λ[i]

(
V TAU +

(
V TAU

)T
2

)
.

(2.34)

In fact, for i = 1, 2, . . . , n, we have

λi

(
V TAU + (V TAU)T

2

)
= λi

[
V T AUV T + (AUVT )T

2
V

]

= λi

(
AUVT + (AUVT )T

2

)

= λi(AS).

(2.35)
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Then (2.34) can be rewritten as

n∑
i=1

σ[i](B)λ[n−i+1](AS) ≤
n∑
i=1

σ[i](B)d[n−i+1]
(
V TAU

)

≤ tr(AB)

≤
n∑
i=1

σ[i](B)d[i]
(
V TAU

)

≤
n∑
i=1

σ[i](B)λ[i](AS).

(2.36)

This implies that (2.18) improves (1.13).

Remark 2.15. We point out that (1.13) improves (1.7). In fact, from Lemma 2.5, we have

λ(AS)≺wσ(AS). (2.37)

Since S is orthogonal, σ(AS) = σ(A). Then (2.37) is rewritten as follows: λ(AS)≺wσ(A). By
using σ[1](B) ≥ σ[2](B) ≥ · · · ≥ σ[n](B) ≥ 0 and Lemma 2.2, we obtain

n∑
i=1

σ[i](B)λ[i](AS) ≤
n∑
i=1

σ[i](B)σ[i](A). (2.38)

Note that λi(−AS) = −λn−i+1(AS), from Lemma 2.2 and (2.38), we have

−
n∑
i=1

σ[i](B)λ[n−i+1](AS) =
n∑
i=1

σ[i](B)λ[i](−AS)

≤
n∑
i=1

σ[i](B)
∣∣λ[i](AS)

∣∣ ≤ n∑
i=1

σ[i](B)σ[i](A).

(2.39)

Thus, we obtain

−
n∑
i=1

σ[i](B)σ[i](A) ≤
n∑
i=1

σ[i](B)λ[n−i+1](AS). (2.40)

Both (2.38) and (2.40) show that (1.13) is tighter than (1.7).
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3. Applications of the Results

Wang et al. in [6] have obtained the following: let K be the positive semidefinite solution of
the ARE (1.4). Then the trace of matrix K has the lower and upper bounds given by

λ[n](A) +
√[

λ[n](A)
]2

+ λ[1](R)tr(Q)
λ[1](R)

≤ tr(K) ≤ λ[1](A) +
√[

λ[1](A)
]2

+ (λ[n](R)/n)tr(Q)
λ[n](R)/n

.

(3.1)

In this section, we obtain the application in the algebraic Riccati equation of our results
including (3.1). Some of our results and (3.1) cannot contain each other.

Theorem 3.1. If 1/p + 1/q = 1 and K is the positive semidefinite solution of the ARE (1.4), then

(1) the trace of matrix K has the lower and upper bounds given by

λ[n](A) +
√[

λ[n](A)
]2

+
[∑n

i=1λ
p

[i](R)
]1/p

tr(Q)
[∑n

i=1λ
p

[i](R)
]1/p

≤ tr(K) ≤
λ[1](A) +

√[
λ[1](A)

]2
+
[(
1/cp,qn2−1/q)[∑n

i=1λ
p

[i](R)
]1/p]

tr(Q)

(
1/cp,qn2−1/q)[∑n

i=1λ
p

[i](R)
]1/p .

(3.2)

(2) If (A +AT )/2 ≥ 0, then the trace of matrix K has the lower and upper bounds given by

(
1/c′p,qn

1−1/q)[∑n
i=1λ

p

[i](A)
]1/p

+
√[(

1/c′p,qn1−1/q)[∑n
i=1λ

p

[i](A)
]1/p]2 + [∑n

i=1λ
p

[i](R)
]1/p

tr(Q)
[∑n

i=1λ
p

[i](R)
]1/p

≤ tr(K)

≤
[∑n

i=1λ
p

[i](A)
]1/p

+
√[∑n

i=1λ
p

[i](A)
]2/p

+
[(
1/cp,qn2−1/q)[∑n

i=1λ
p

[i](R)
]1/p]

tr(Q)
(
1/cp,qn2−1/q)[∑n

i=1λ
p

[i](R)
]1/p .

(3.3)
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(3) If (A +AT )/2 ≤ 0, then the trace of matrix K has the lower and upper bounds given by

−[∑n
i=1

∣∣λ[n−i+1](A)
∣∣p]1/p +

√[∑n
i=1

∣∣λ[n−i+1](A)
∣∣p]2/p + [(1/cp,qn2−1/q)[∑n

i=1λ
p

[i](R)
]1/p]

tr(Q)
(
1/cp,qn2−1/q)[∑n

i=1λ
p

[i](R)
]1/p

≤ tr(K)

≤
( − 1/c′p,qn

1−1/q)[∑n
i=1

∣∣λ[n−i+1](A)
∣∣p]1/p

[∑n
i=1λ

p

[i](R)
]1/p

+

√[(
1/c′p,qn1−1/q)[∑n

i=1

∣∣λ[i](A)
∣∣p]1/p]2 + [∑n

i=1λ
p

[i](R)
]1/p

tr(Q)
[∑n

i=1λ
p

[i](R)
]1/p ,

(3.4)

where

cp,q =
M

p
rM

q

k
−m

p
rm

q

k[
p
(
MrmkM

q

k
−mrMkm

q

k

)]1/p[
q
(
mrMkM

p
r −Mrmkm

p
r

)]1/q ,

Mr = λ[1](R), mr = λ[n](R), Mk = λ[1](K), mk = λ[n](K),

c′p,q =
M

p

1M
q

k −m
p

1m
q

k[
p
(
M1mkM

q

k −m1Mkm
q

k

)]1/p[
q
(
m1MkM

p

1 −M1mkm
p

1

)]1/q ,

M1 = λ[1](A), m1 = λ[n](A).

(3.5)

Proof. (1) Take the trace in both sides of the matrix ARE (1.4) to get

tr
(
ATK

)
+ tr(KA) − tr(KRK) = −tr(Q). (3.6)

Since K is symmetric positive definite matrix, λ(K) = σ(K), tr(K) =
∑n

i=1σ[i](K), and from
Lemma 2.9, we have

tr(K)
n1−1/q ≤ [tr(Kq)]1/q ≤ tr(K), (3.7)

n∑
i=1

σ[i](KK) =
n∑
i=1

σ2
[i](K) ≤

[
n∑
i=1

σ[i](K)

]2
=
[
tr(K)

]2
. (3.8)
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By the Cauchy-Schwartz inequality (2.8), it can be shown that

n∑
i=1

σ[i](KK) =
n∑
i=1

σ2
[i](K) ≥

[∑n
i=1σ[i](K)

]2
n

=

[
tr(K)

]
n

2

. (3.9)

Note that

K2 = Udiag(λ21(K), λ22(K), . . . , λ2n(K))UT, (3.10)

K,Q,R > 0, λ[i](UTRU) = λ[i](R) (i = 1, . . . , n), then by (2.34), use (2.6), considering (3.7)
and (3.9), we have

tr(KRK) = tr
(
K2R
) ≥ n∑

i=1

λ[i](R)σ[i]
(
K2)

≥ 1
cp,q

[
n∑
i=1

λ
p

[i](R)

]1/p[ n∑
i=1

σ
q

[i]

(
K2)
]1/q

≥ 1
cp,qn2−1/q

[
n∑
i=1

λ
p

[i](R)

]1/p[
tr(K)

]2
.

(3.11)

From (2.34), note that λ[i](UTAU) = λ[i](A) and λ[i](UTATU) = λ[i](AT ) (i = 1, . . . , n), then
we obtain

tr(AK) ≤
n∑
i=1

λ[i](A)σ[i](K) ≤ λ[1](A)
n∑
i=1

σ[i](K),

tr(ATK) ≤
n∑
i=1

λ[i](AT )σ[i](K) ≤ λ[1](AT )
n∑
i=1

σ[i](K).

(3.12)

It is easy to see that

tr(ATK) + tr(KA) ≤ [λ[1](AT)tr(K) + λ[1](A)tr(K)
]
tr(K)

= 2λ[1]
(AT +A

2

)
tr(K) = 2λ[1](A)tr(K).

(3.13)

Combine (3.11) and (3.13), we obtain

1
cp,qn2−1/q

[
n∑
i=1

λ
p

[i](R)

]1/p[
tr(K)

]2 − 2tr(K)λ[n](A) − tr(Q) ≤ 0. (3.14)

Solving (3.14) for tr(K) yields the right-hand side of the inequality (3.2). Similarly, we can
obtain the left-hand side of the inequality (3.2).
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(2) Note that when (A + AT )/2 ≥ 0, λ[i](UTAU) = λ[i](A) and λ[i](UTATU) =
λ[i](AT ) (i = 1, . . . , n), by (2.34), (2.6) and (3.7), we have

tr
(
ATK

) ≤
[

n∑
i=1

λ
p

[i]

(
AT)
]1/p

tr(K),

tr(KA) ≤
[

n∑
i=1

λ
p

[i](A)

]1/p
tr(K).

(3.15)

Thus,

tr
(
ATK

)
+ tr(KA) ≤

[[
n∑
i=1

λ
p

[i]

(
AT)
]1/p

+

[
n∑
i=1

λ
p

[i](A)

]]
tr(K)

≤ 2

[
n∑
i=1

λ
p

[i]

(
AT +A

2

)]1/p
tr(K)

= 2

[
n∑
i=1

λ
p

[i](A)

]1/p
tr(K).

(3.16)

From (3.11) and (3.16), with similar argument to (1), we can obtain (3.3) easily.
(3) Note that when (A + AT )/2 ≤ 0, by (3.3), we obtain (3.4) immediately. This

completes the proof.

Remark 3.2. From Remark 2.7 and Theorem 3.1, let p = 2, q = 2 in (3.2), then we obtain

λ[n](A) +
√[

λ[n](A)
]2

+
[∑n

i=1λ
2
[i](R)

]1/2tr(Q)
[∑n

i=1λ
2
[i](R)

]1/2

≤ tr(K) ≤
λ[1](A) +

√[
λ[1](A)

]2
+
[(
1/c1n3/2

)[∑n
i=1λ

2
[i](R)

]1/2]tr(Q)
(
1/c1n3/2

)[∑n
i=1λ

2
[i](R)

]1/2 ,

(3.17)

where c1 = (
√
MrMk/mrmk +

√
mrmk/MrMk).

Remark 3.3. From Remark 2.7 and Theorem 3.1, let p → ∞, q → 1 in (3.2), then we obtain
(3.1) immediately.

4. Numerical Examples

In this section, firstly, we will give two examples to illustrate that our new trace bounds
are better than the recent results. Then, to illustrate the application in the algebraic Riccati
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equation of our results will have different superiority if we choose different p and q, we will
give two examples when p = 2, q = 2, and p → ∞, q → 1.

Example 4.1 (see [13]). Now let

A =

⎛
⎜⎜⎜⎝

0.9140 0.6989 0.6062

0.2309 0.0169 0.04501

0.3471 0.5585 0.0304

⎞
⎟⎟⎟⎠,

B =

⎛
⎜⎜⎜⎝

0.9892 0.1140 0.1233

0.0410 0.3096 0.5125

0.0476 0.7097 0.0962

⎞
⎟⎟⎟⎠.

(4.1)

Neither A nor B is symmetric. In this case, the results of [6–12] are not valid.
Using (1.9) we obtain

0.78 ≤ tr(AB) ≤ 1.97. (4.2)

Using (1.11) yields

0.8611 ≤ tr(AB) ≤ 1.9090. (4.3)

By (2.18), we obtain

1.0268 ≤ tr(AB) ≤ 1.7524, (4.4)

where both lower and upper bounds are better than those of (4.2) and (4.3).

Example 4.2. Let

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0.0624 0.8844 0.2782 0.0389

0.7163 0.6565 0.2923 0.5980

0.5502 0.2660 0.5486 0.3376

0.1134 0.5739 0.3999 0.2792

⎞
⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

1.7205 0.6542 1.3030 0.8813

0.6542 0.0631 0.6191 0.2696

1.3030 0.6191 0.4715 0.7551

0.8813 0.2696 0.7551 0.4584

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(4.5)

Neither A nor B is symmetric. In this case, the results of [6–12] are not valid.
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Using (1.7) yields

−6.1424 ≤ tr(AB) ≤ 6.1424. (4.6)

From (1.9)we have

−1.5007 ≤ tr(AB) ≤ 5.0110. (4.7)

Using (1.11) yields

−3.1058 ≤ tr(AB) ≤ 6.0736. (4.8)

By (1.13), we obtain

−0.7267 ≤ tr(AB) ≤ 4.3399. (4.9)

The bound in (2.18) yields

−0.5375 ≤ tr(AB) ≤ 4.2659. (4.10)

Obviously, (4.10) is tighter than (4.6), (4.7), (4.8) and (4.9).

Example 4.3. Consider the systems (1.1), (1.2) with

A =

⎛
⎜⎜⎜⎝

−5 −2 4

2 3 −1
1 0 −3

⎞
⎟⎟⎟⎠, BBT =

⎛
⎜⎜⎜⎝

8 2 3

2 7 4

3 4 9

⎞
⎟⎟⎟⎠, Q =

⎛
⎜⎜⎜⎝

538 440 266

440 441 321

266 321 296

⎞
⎟⎟⎟⎠. (4.11)

Moreover, the corresponding ARE (1.4) with R = BBT , (A,R) is stabilizable and (Q,A) is
observable.

Using (3.17) yields

8.5498 ≤ tr(K) ≤ 47.9041. (4.12)

Using (3.1) we obtain

9.0132 ≤ tr(K) ≤ 19.0099, (4.13)

where both lower and upper bounds are better than those of (4.12).
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Example 4.4. Consider the systems (1.1), (1.2)with

A =

⎛
⎜⎜⎜⎝

−6.0 1.5 2.0

0.0 −2.0 −3.0
2.5 4.0 −1.5

⎞
⎟⎟⎟⎠, BBT =

⎛
⎜⎜⎜⎝

4.0 1.0 2.0

1.0 2.0 0.5

2.0 0.5 2.5

⎞
⎟⎟⎟⎠, Q =

⎛
⎜⎜⎜⎝

17.5 7.45 3.465

7.45 9.7 7.845

3.465 7.845 9.905

⎞
⎟⎟⎟⎠.

(4.14)

Moreover, the corresponding ARE (1.4) with R = BBT , (A,R) is stabilizable and (Q,A) is
observable.

Using (3.1) we obtain

1.6039 ≤ tr(K) ≤ 5.6548. (4.15)

Using (3.17) yields

1.6771 ≤ tr(K) ≤ 5.5757, (4.16)

where both lower and upper bounds are better than those of (4.15).

5. Conclusion

In this paper, we have proposed lower and upper bounds for the trace of the product of two
arbitrary real matrices. We have showed that our bounds for the trace are the tightest among
the parallel trace bounds in nonsymmetric case. Then, we have obtained the application in
the algebraic Riccati equation of our results. Finally, numerical examples have illustrated that
our bounds are better than the recent results.
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