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1. Introduction

Hardy inequality in R
N reads, for all u ∈ C∞

0 (RN) and N ≥ 3,

∫
RN

|∇u|2dx ≥ (N − 2)2

4

∫
RN

u2

|x|2
dx, (1.1)

and (N − 2)2/4 is the best constant in (1.1) and is never achieved. A similar inequality with
the same best constant holds ifRN is replaced by an arbitrary domainΩ ⊂ R

N andΩ contains
the origin. Moreover, Brezis and Vázquez [1] have improved it by establishing that for u ∈
C∞

0 (Ω),

∫
Ω
|∇u|2dx ≥ (N − 2)2

4

∫
Ω

u2

|x|2
dx + Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω
u2dx, (1.2)
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where ωN and |Ω| denote the volume of the unit ball B1 and Ω, respectively, and Λ(−Δ, 2) is
the first eigenvalue of the Dirichlet Laplacian of the unit disc inR

2. In caseΩ is a ball centered
at zero, the constant Λ(−Δ, 2) in (1.2) is sharp.

Similar improved inequalities have been recently proved if instead of (1.1) one
considers the corresponding Lp Hardy inequalities. In all these cases a correction term is
added on the right-hand side (see, e.g., [2–4]).

On the other hand, the classical Rellich inequality states that, for N ≥ 5,

∫
RN

|Δu|2dx ≥
(
N(N − 4)

4

)2∫
RN

u2

|x|4
dx, u ∈ C∞

0

(
R

N
)
, (1.3)

and (N(N − 4)/4)2 is the best constant in (1.3) and is never achieved (see [5]). And, more
recently, Tertikas and Zographopoulos [6] obtained a stronger version of Rellich’s inequality.
That is, for all u ∈ C∞

0 (RN),

∫
RN

|Δu|2dx ≥ N2

4

∫
RN

|∇u|2
|x|2

dx, N ≥ 5. (1.4)

Both inequalities are valid when R
N is replaced by a bounded domain Ω ⊂ R

N containing
the origin and the corresponding constants are known to be optimal. Recently, Gazzola et al.
[4] have improved (1.3) by establishing that for Ω ⊂ BR(0) and u ∈ C∞

0 (Ω),

∫
Ω
|Δu|2dx ≥

(
N(N − 4)

4

)2∫
Ω

u2

|x|4
dx +

N(N − 4)
2

Λ(−Δ, 2)R−2
∫
Ω

u2

|x|2
dx

+ Λ
(
(−Δ)2, 4

)
R−4

∫
Ω
u2dx,

(1.5)

where

Λ
(
(−Δ)2, 4

)
= inf

u∈W2,2(B(4)
1 )\{0}

∫
B
(4)
1
(Δu)2dx∫

B
(4)
1
u2dx

, (1.6)

and B
(4)
1 is the unit ball in R

4. Our main concern in this note is to improve (1.4). In fact we
have the following theorem.

Theorem 1.1. There holds, forN ≥ 5 and u ∈ C∞
0 (Ω),

∫
Ω
|Δu|2dx ≥ N2

4

∫
Ω

|∇u|2
|x|2

dx + Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

Ω
|∇u|2dx. (1.7)

Inequality (1.7) is optimal in case Ω is a ball centered at zero.

Combining Theorem 1.1 with (1.2), we have the following.
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Corollary 1.2. There holds, for N ≥ 5 and u ∈ C∞
0 (Ω),

∫
Ω
|Δu|2dx ≥ N2

4

∫
Ω

|∇u|2
|x|2

dx +
(N − 2)2

4
Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω

u2

|x|2
dx

+ Λ(−Δ, 2)2
(
ωN

|Ω|
)4/N∫

Ω
u2dx.

(1.8)

Next we consider analogous inequality (1.5). The main result is the following theorem.

Theorem 1.3. Let N ≥ 8 and let Ω ⊂ R
N be such that Ω ⊂ BR(0). Then for every u ∈ C∞

0 (Ω) one
has

∫
Ω
|Δu|2dx ≥ N2

4

∫
Ω

|∇u|2
|x|2

dx +
N(N − 8)

4
Λ(−Δ, 2)R−2

∫
Ω

u2

|x|2
dx

+ Λ
(
(−Δ)2, 4

)
R−4

∫
Ω
u2dx.

(1.9)

Remark 1.4. Since

∫
Ω

|∇u|2
|x|2

dx ≥ (N − 4)2

4

∫
Ω

u2

|x|4
dx + Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω

u2

|x|2
dx, N ≥ 5, (1.10)

inequality (1.5) is implied by (1.9) in case of N ≥ 8.

2. The Proofs

To prove the main results, we first need the following preliminary result.

Lemma 2.1. Let N ≥ 5 and u ∈ C∞
0 (RN). Set r = |x|. If u(x) is a radial function, that is, u(x) =

u(r), then

∫
RN

|Δu|2dx − N2

4

∫
RN

|∇u|2
|x|2

dx =
∫
RN

|∇ur |2dx − (N − 2)2

4

∫
RN

u2
r

|x|2
dx. (2.1)

Proof. Observe that if u(x) = u(r), then

|∇u| = |ur |, Δu =
d2u

dr2
+
N − 1

r
· du
dr

. (2.2)
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Therefore, we have

∫
RN

|Δu|2dx =
∫
RN

∣∣∣∣urr +
N − 1

r
ur

∣∣∣∣
2

dx

=
∫
RN

u2
rrdx + (N − 1)2

∫
RN

u2
r

r2
dx + 2(N − 1)

∫
RN

urrur

r
dx

=
∫
RN

u2
rrdx + (N − 1)2

∫
RN

u2
r

r2
dx + (N − 1)

∫
RN

1
r
· d

(
u2
r

)
dr

dx.

(2.3)

Though integration by parts, when n ≥ 3,

∫
RN

1
r
· d

(
u2
r

)
dr

dx =
∫
SN−1

dσ

∫∞

0
rN−2 · d

(
u2
r

)
dr

dr = −(N − 2)
∫
RN

u2
r

r2
dx, (2.4)

and hence

∫
RN

|Δu|2dx − N2

4

∫
RN

|∇u|2
|x|2

dx =
∫
RN

u2
rrdx − (N − 2)2

4

∫
RN

u2
r

r2
dx

=
∫
RN

|∇ur |2dx − (N − 2)2

4

∫
RN

u2
r

|x|2
dx.

(2.5)

By Lemma 2.1 and inequality (1.2), we have, when restricted to radial functions,

∫
Ω
|Δu|2dx − N2

4

∫
Ω

|∇u|2
|x|2

dx ≥ Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

Ω
|∇u|2dx. (2.6)

Our next step is to prove the following. If u(x) is not a radial function, inequality (2.6) also
holds.

Let u ∈ C∞
0 (Ω). If we extend u as zero outside Ω, we may consider u ∈ C∞

0 (RN).
Decomposing u into spherical harmonics we get

u =
∞∑
k=0

uk :=
∞∑
k=0

fk(r)φk(σ), (2.7)

where φk(σ) are the orthonormal eigenfunctions of the Laplace-Beltrami operator with
responding eigenvalues

ck = k(N + k − 2), k ≥ 0. (2.8)
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The functions fk(r) belong to C∞
0 (Ω), satisfying fk(r) = O(rk) and f ′

k(r) = O(rk−1) as r → 0.
In particular, φ0(σ) = 1 and u0(r) = (1/|∂Br |)

∫
∂Br

u dσ, for any r > 0. Then, for any k ∈ N, we
have

Δuk =
(
Δfk(r) − ck

r2
fk(r)

)
φk(σ). (2.9)

So

∫
RN

|Δuk|2dx =
∫
RN

(
Δfk(r) − ck

r2
fk(r)

)2

dx,

∫
RN

|∇uk|2dx =
∫
RN

(∣∣∇fk(r)
∣∣2 + ck

r2
f2
k(r)

)
dx.

(2.10)

In addition,

∫
RN

|Δu|2dx =
∞∑
k=0

∫
RN

|Δuk|2dx =
∞∑
k=0

∫
RN

(
Δfk(r) − ck

r2
fk(r)

)2

dx,

∫
RN

|∇u|2dx =
∞∑
k=0

∫
RN

|∇uk|2dx =
∞∑
k=0

∫
RN

(∣∣∇fk(r)
∣∣2 + ck

r2
f2
k(r)

)
dx.

(2.11)

Using equality (2.10), we have that (see, e.g., [6, page 452])

∫
RN

|Δuk|2dx =
∫
RN

(
f ′′
k

)2
dx + (N − 1 + 2ck)

∫
RN

r−2(f ′
k)

2
dx

+ ck[ck + 2(N − 4)]
∫
RN

r−4f2
kdx,

∫
RN

|∇uk|2
|x|2

dx =
∫
RN

∣∣∇fk(r)
∣∣2

r2
dx + ck

∫
RN

f2
k(r)

r4
dx.

(2.12)

Therefore, we have that, by (2.12),

∫
RN

|Δuk|2dx − N2

4

∫
RN

|∇uk|2
|x|2

dx

=
∫
RN

(
f ′′
k

)2
dx − (N − 2)2

4

∫
RN

(
f ′
k

)2
r2

dx

+ ck

⎡
⎣2

∫
RN

(
f ′
k

)2
r2

dx +

(
ck − N2 − 8N + 32

4

)∫
RN

(
fk
)2

r4
dx

⎤
⎦.

(2.13)
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Lemma 2.2. There holds, for N ≥ 4 and k ≥ 1,

2
∫
Ω

(
f ′
k

)2
r2

dx +

(
ck − N2 − 8N + 32

4

)∫
Ω

(
fk
)2

r4
dx ≥ 2Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω

(
fk
)2

r2
dx.

(2.14)

Proof. Set gk = fk/r. Then gk satisfies gk(r) = O(rk−1) and g ′
k
(r) = O(rk−2) as r → 0.

Moreover, since fk(r) belong to C∞
0 (Ω), we have that

∫
Ω

(
g ′
k

)2
dx =

∫
Ω

(
f ′
k

)2
r2

dx − 2
∫
Ω

f ′
kfk

r3
dx +

∫
Ω

f2
k

r4
dx

=
∫
Ω

(
f ′
k

)2
r2

dx + (N − 3)
∫
Ω

f2
k

r4
dx

=
∫
Ω

(
f ′
k

)2
r2

dx + (N − 3)
∫
Ω

g2
k

r2
dx.

(2.15)

Here we use the fact when N ≥ 4 and k ≥ 1,

2
∫
Ω

f ′
k
fk

r3
dx =

∫
SN−1

dσ

∫∞

0
rN−4 · d

(
f2
k

)
dr

dr = −(N − 4)
∫
Ω

f2
k

r4
dx. (2.16)

Using inequalities (1.2) and (2.15), we have that, for N ≥ 4 and k ≥ 1,

2
∫
Ω

(f ′
k
)2

r2
dx +

(
ck − N2 − 8N + 32

4

)∫
Ω

(
fk
)2

r4
dx

= 2
∫
Ω

(
g ′
k

)2
dx +

(
ck − N2 + 8

4

)∫
Ω

g2
k

r2
dx

≥ (N − 2)2

2

∫
Ω

g2
k

r2
dx + 2Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω
g2
kdx +

(
ck − N2 + 8

4

)∫
Ω

g2
k

r2
dx

=
N2 − 8N + 4ck

4

∫
Ω

g2
k

r2
dx + 2Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω
g2
kdx

≥ N2 − 8N + 4c1
4

∫
Ω

g2
k

r2
dx + 2Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω
g2
kdx
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=
N2 − 4N − 4

4

∫
Ω

g2
k

r2
dx + 2Λ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω
g2
kdx

≥ 2Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

Ω
g2
kdx

= 2Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

Ω

(
fk
)2

r2
dx.

(2.17)

An immediate consequence of the inequalities (2.13) and Lemma 2.2 is the following
result. For k ≥ 1,

∫
RN

|Δuk|2dx − N2

4

∫
RN

|∇uk|2
|x|2

dx

≥
∫
RN

(f ′′
k)

2
dx − (N − 2)2

4

∫
RN

(f ′
k
)2

r2
dx + 2ckΛ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω

(fk)
2

r2
dx.

(2.18)

Using inequalities (2.18) and Lemma 2.1, we have that, since fk(r) ∈ C∞
0 (Ω), for k ≥ 1,

∫
RN

|Δuk|2dx − N2

4

∫
RN

|∇uk|2
|x|2

dx

≥ Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

RN

(
f ′
k

)
dx + 2ckΛ(−Δ, 2)

(
ωN

|Ω|
)2/N∫

Ω

(fk)
2

r2
dx

≥ Λ(−Δ, 2)
(
ωN

|Ω|
)2/N

(∫
RN

(
f ′
k

)
dx + ck

∫
Ω

(fk)
2

r2
dx

)

= Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

RN

|∇uk|2dx.

(2.19)

Inequality (2.19) implies that, if u(x) is not a radial function, then

∫
Ω
|Δu|2dx − N2

4

∫
Ω

|∇u|2
|x|2

dx ≥ Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

Ω
|∇u|2 dx. (2.20)

Proof of Theorem 1.1. Using inequality (2.6) and (2.20), we have that, for N ≥ 5 and u ∈
C∞

0 (Ω),

∫
Ω
|Δu|2dx ≥ N2

4

∫
Ω

|∇u|2
|x|2

dx + Λ(−Δ, 2)
(
ωN

|Ω|
)2/N∫

Ω
|∇u|2dx. (2.21)
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In case Ω is a ball centered at zero, a simple scaling allows to consider the case Ω = B1. Set

H = inf
u∈C∞

0 (B1)\{0}

∫
B1
|Δu|2dx − (

N2/4
)∫

B1

(
|∇u|2/|x|2

)
dx∫

B1
|∇u|2dx

. (2.22)

Using Lemma 2.1 and inequality (1.2), we have that H ≤ Hradial = Λ(−Δ, 2). On the other
hand, we have, by inequality (2.21),H ≥ Λ(−Δ, 2). ThusH = Λ(−Δ, 2). The proof is complete.

Proof of Theorem 1.3. A scaling argument shows that we may assume R = 1 and Ω =
B1 = B.

Step 1. Assume u is radial, r = |x| and v(r) = |x|(N−4)/2u(r), then (see [6, Lemma 2.3])

∫
B

|Δu|2dx − N2

4

∫
B

|∇u|2
|x|2

dx =
∫
B

|Δv|2
|x|N−4dx +

(
N(N − 8)

4
−N(N − 4)

)∫
B

v2
r

|x|N−2dx,

(2.23)

and (see [6, (6.4)])

∫
B

|Δv|2
|x|N−4dx =

∫
B

v2
rr

|x|N−4dx + (N − 1)(N − 3)
∫
B

v2
r

|x|N−2dx. (2.24)

Therefore

∫
B

|Δu|2dx − N2

4

∫
B

|∇u|2
|x|2

dx =
∫
B

v2
rr

|x|N−4dx + 3
∫
B

v2
r

|x|N−2dx +
N(N − 8)

4

∫
B

v2
r

|x|N−2dx.

(2.25)

Since v is radial,

∫
B

v2
r

|x|N−2dx ≥ Λ(−Δ, 2)
∫
B

v2

|x|N−2dx;

∫
B

v2
rr

|x|N−4dx + 3
∫
B

v2
r

|x|N−2dx =
ΣN

Σ4

∫
B(4)

v2
rrdx + 3

ΣN

Σ4

∫
B(4)

v2
r

|x|2
dx

=
ΣN

Σ4

∫
B(4)

|Δrad,4v|2dx

≥ ΣN

Σ4
Λ
(
(−Δ)2, 4

)∫
B(4)

v2dx

= Λ
(
(−Δ)2, 4

)∫
B

v2

|x|N−4dx,

(2.26)
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where Σk denote the surface area of the unit sphere in R
k, B(4) is the unit ball in R

4, and

Δrad,4 =
∂2

∂r2
+
3
r

∂

∂r
(2.27)

is the radial Laplacian in R
4.

Therefore, for N ≥ 8,

∫
B

|Δu|2dx − N2

4

∫
B

|∇u|2
|x|2

dx

≥ Λ(−Δ, 2)
∫
B

v2

|x|N−2dx +
N(N − 8)

4
Λ
(
(−Δ)2, 4

)∫
B

v2

|x|N−4dx

= Λ(−Δ, 2)
∫
B

u2

|x|2
dx +

N(N − 8)
4

Λ
(
(−Δ)2, 4

)∫
B

u2dx.

(2.28)

Step 2. For u ∈ C∞
0 (B), set

u =
∞∑
k=0

uk :=
∞∑
k=0

fk(r)φk(σ). (2.29)

We get, by (2.18),

∫
B

|Δuk|2dx − N2

4

∫
B

|∇uk|2
|x|2

dx ≥
∫
B

(
f ′′
k

)2
dx − (N − 2)2

4

∫
B

(
f ′
k

)2
r2

dx

=
∫
B

∣∣Δfk
∣∣2dx − N2

4

∫
B

∣∣∇fk
∣∣2

|x|2
dx.

(2.30)

In getting the last equality, we used Lemma 2.1.
Using inequality (1.9) for radial functions from step 1,

∫
B

|Δuk|2dx − N2

4

∫
B

|∇uk|2
|x|2

dx

≥ Λ(−Δ, 2)
∫
B

f2
k

|x|2
dx +

N(N − 8)
4

Λ
(
(−Δ)2, 4

)∫
B

f2
kdx

= Λ(−Δ, 2)
∫
B

u2
k

|x|2
dx +

N(N − 8)
4

Λ
(
(−Δ)2, 4

)∫
B

u2
kdx,

(2.31)
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one obtains, by (2.11),

∫
B

|Δu|2dx − N2

4

∫
B

|∇u|2
|x|2

dx ≥ Λ(−Δ, 2)
∫
B

u2

|x|2
dx +

N(N − 8)
4

Λ
(
(−Δ)2, 4

)∫
B

u2dx (2.32)

which demonstrates inequality (1.9).
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