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1. Introduction

The first stability problem concerning group homomorphisms was raised from a question of
Ulam [1]. Let (G1, ∗) be a group and let (G2, �, d) be a metric group with the metric d(·, ·). Given
ε > 0, does there exist δ(ε) > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d
(
h
(
x ∗ y), h(x) � h(y)) < δ (1.1)

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d(h(x),H(x)) < ε (1.2)

for all x ∈ G1?
Hyers [2] gave a first affirmative answer to the question of Ulam for Banach spaces.

Aoki [3] and Rassias [4] provided a generalization of the Hyers’ theorem for additive and
linear mappings, respectively, by allowing the Cauchy difference to be unbounded (see also
[5]).
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Theorem 1.1 (Rassias). Let f : E → E′ be a mapping from a normed vector space E into a Banach
space E′ subject to the inequality

∥
∥f

(
x + y

) − f(x) − f
(
y
)∥∥ ≤ ε

(‖x‖p + ∥
∥y

∥
∥p) (1.3)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the limit

L(x) = lim
n→∞

f(2nx)
2n

(1.4)

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

∥
∥f(x) − L(x)

∥
∥ ≤ 2ε

2 − 2p
‖x‖p (1.5)

for all x ∈ E. If p < 0 then inequality (1.3) holds for x, y /= 0 and (1.5) for x /= 0. Also, if for each x ∈ E
the mapping t 
→ f(tx) is continuous in t ∈ R, then L is linear.

In 1994, a generalization of the Rassias’ theorem was obtained by Găvruţa [6], who
replaced the bound ε(‖x‖p + ‖y‖p) by a general control function ϕ(x, y). For the stability
problems of various functional equations and mappings and their Pexiderized versions, we
refer the readers to [7–15]. We also refer readers to the books in [16–19].

Let A be a real or complex algebra. A mapping D : A → A is said to be a (ring)
derivation if

D(a + b) = D(a) +D(b), D(ab) = D(a)b + aD(b) (1.6)

for all a, b ∈ A. If, in addition, D(λa) = λD(a) for all a ∈ A and all λ ∈ F, then D is called a
linear derivation, where F denotes the scalar field of A. Singer and Wermer [20] proved that if
A is a commutative Banach algebra and D : A → A is a continuous linear derivation, then
D(A) ⊆ rad(A). They also conjectured that the same result holds even D is a discontinuous
linear derivation. Thomas [21] proved the conjecture. As a direct consequence, we see that
there are no nonzero linear derivations on a semisimple commutative Banach algebra, which
had been proved by Johnson [22]. On the other hand, it is not the case for ring derivations.
Hatori and Wada [23] determined a representation of ring derivations on a semi-simple
commutative Banach algebra (see also [24]) and they proved that only the zero operator
is a ring derivation on a semi-simple commutative Banach algebra with the maximal ideal
space without isolated points. The stability of derivations between operator algebras was
first obtained by S̆emrl [25]. Badora [26] and Miura et al. [8] proved the Hyers-Ulam-Rassias
stability of ring derivations on Banach algebras. An additive mapping D : A → A is called a
Jordan derivation in case D(a2) = D(a)a + aD(a) is fulfilled for all a ∈ A. Every derivation
is a Jordan derivation. The converse is in general not true (see [27, 28]). The concept of
generalized derivation has been introduced by M. Brešar [29]. Hvala [30] and Lee [31]
introduced a concept of (θ, φ)-derivation (see also [32]). Let θ, φ be automorphisms of A. An
additive mapping F : A → A is called a (θ, φ)-derivation in case F(ab) = F(a)θ(b) + φ(a)F(b)
holds for all pairs a, b ∈ A.An additive mapping F : A → A is called a (θ, φ)-Jordan derivation
in case F(a2) = F(a)θ(a) + φ(a)F(a) holds for all a ∈ A. An additive mapping F : A → A
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is called a generalized (θ, φ)-derivation in case F(ab) = F(a)θ(b) + φ(a)D(b) holds for all pairs
a, b ∈ A, where D : A → A is a (θ, φ)-derivation. An additive mapping F : A → A is
called a generalized (θ, φ)-Jordan derivation in case F(a2) = F(a)θ(a) + φ(a)D(a) holds for all
a ∈ A, where D : A → A is a (θ, φ)-Jordan derivation. It is clear that every generalized
(θ, φ)-derivation is a generalized (θ, φ)-Jordan derivation.

The aim of the present paper is to establish the stability problem of homomorphisms
and generalized (θ, φ)-derivations by using the fixed point method (see [7, 33–35]).

Let E be a set. A function d : E × E → [0,∞] is called a generalized metric on E if d
satisfies

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x, y ∈ E;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

We recall the following theorem by Margolis and Diaz.

Theorem 1.2 (See [36]). Let (E, d) be a complete generalized metric space and let J : E → E be a
strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ E, either

d
(
Jnx, Jn+1x

)
= ∞ (1.7)

for all nonnegative integers n or there exists a nonnegative integer n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ E : d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

2. Stability of Homomorphisms

Daróczy et al. [37] have studied the functional equation

f
(
px +

(
1 − p

)
y
)
+ f

((
1 − p

)
x + py

)
= f(x) + f

(
y
)
, (2.1)

where 0 < p < 1 is a fixed parameter and f : I → R is unknown, I is a nonvoid open interval
and (2.1) holds for all x, y ∈ I. They characterized the equivalence of (2.1) and Jensen’s
functional equation in terms of the algebraic properties of the parameter p. For p = 1/2 in
(2.1), we get the Jensen’s functional equation. In the present paper, we establish the general
solution and some stability results concerning the functional equation (2.1) in normed spaces
for p = 1/3. This applied to investigate and prove the generalized Hyers-Ulam stability of
homomorphisms and generalized derivations in real Banach algebras. In this section, we
assume that X is a normed algebra and Y is a Banach algebra. For convenience, we use the
following abbreviation for a given mapping f : X → Y,

Df
(
x, y

)
:= f

(
2x + y

)
+ f

(
x + 2y

) − f(3x) − f
(
3y

)
(2.2)

for all x, y ∈ X.
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Lemma 2.1. Let X and Y be linear spaces. A mapping f : X → Y with f(0) = 0 satisfies

f
(
2x + y

)
+ f

(
x + 2y

)
= f(3x) + f

(
3y

)
(2.3)

for all x, y ∈ X, if and only if f is additive.

Proof. Let f satisfy (2.3). Letting y = 0 in (2.3), we get

f(x) + f(2x) = f(3x) (2.4)

for all x ∈ X.Hence

[
f(x) + f(−x)] + [

f(2x) + f(−2x)] = f(3x) + f(−3x) (2.5)

for all x ∈ X. Letting y = −x in (2.3), we get f(x) + f(−x) = f(3x) + f(−3x) for all x ∈ X.
Therefore by (2.5)we have f(2x) + f(−2x) = 0 for all x ∈ X. This means that f is odd. Letting
y = −2x in (2.3) and using the oddness of f , we infer that f(2x) = 2f(x) for all x ∈ X. Hence
by (2.4)we have f(3x) = 3f(x) for all x ∈ X. Therefore it follows from (2.3) that f satisfies

f
(
2x + y

)
+ f

(
x + 2y

)
= 3

[
f(x) + f

(
y
)]

(2.6)

for all x, y ∈ X. Replacing x and y by (2y − x)/3 and (2x − y)/3 in (2.6), respectively, we get

f(x) + f
(
y
)
= f

(
2x − y

)
+ f

(
2y − x

)
(2.7)

for all x, y ∈ X. Replacing y by −y in (2.7) and using the oddness of f , we get

f
(
2x + y

) − f
(
x + 2y

)
= f(x) − f

(
y
)

(2.8)

for all x, y ∈ X. Adding (2.6) to (2.8), we get f(2x + y) = 2f(x) + f(y) for all x, y ∈ X.
Using the identity f(2x) = 2f(x) and replacing x by x/2 in the last identity, we infer that
f(x + y) = f(x) + f(y) for all x, y ∈ X. Hence f is additive. The converse is obvious.

Theorem 2.2. Let f : X → Y be a mapping with f(0) = 0 for which there exist functions ϕ, ψ :
X2 → [0,∞) such that

lim
k→∞

1
2k

ψ
(
2kx, y

)
= lim

k→∞
1
2k

ψ
(
x, 2ky

)
= lim

k→∞
1
4k

ψ
(
2kx, 2ky

)
= 0, (2.9)

∥∥Df
(
x, y

)∥∥ ≤ ϕ
(
x, y

)
, (2.10)

∥∥f
(
xy

) − f(x)f
(
y
)∥∥ ≤ ψ

(
x, y

)
(2.11)

for all x, y ∈ X. If there exists a constant 0 < L < 1 such that

ϕ
(
2x, 2y

) ≤ 2Lϕ
(
x, y

)
(2.12)
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for all x, y ∈ X, then there exists a unique (ring) homomorphism H : X → Y satisfying

∥
∥f(x) −H(x)

∥
∥ ≤ 1

2 − 2L
φ(x), (2.13)

H(x)
[
H
(
y
) − f

(
y
)]

=
[
H(x) − f(x)

]
H
(
y
)
= 0 (2.14)

for all x, y ∈ X, where

φ(x) := ϕ
(x
2
, 0
)
+ ϕ

(
−x
2
, 0
)
+ ϕ

(x
2
,−x

2

)
+ ϕ

(
−x
3
,
2x
3

)
. (2.15)

Proof. By the assumption, we have

lim
k→∞

1
2k

ϕ
(
2kx, 2ky

)
= 0 (2.16)

for all x, y ∈ X. Letting y = 0 in (2.10), we get

∥∥f(x) + f(2x) − f(3x)
∥∥ ≤ ϕ(x, 0) (2.17)

for all x ∈ X.Hence

∥∥[f(x) + f(−x)] + [
f(2x) + f(−2x)] − [

f(3x) + f(−3x)]∥∥ ≤ ϕ(x, 0) + ϕ(−x, 0) (2.18)

for all x ∈ X. Letting y = −x in (2.10), we get

∥∥[f(x) + f(−x)] − [
f(3x) + f(−3x)]∥∥ ≤ ϕ(x,−x) (2.19)

for all x ∈ X. Therefore by (2.18) we have

∥∥f(x) + f(−x)∥∥ ≤ ϕ
(x
2
, 0
)
+ ϕ

(
−x
2
, 0
)
+ ϕ

(x
2
,−x

2

)
(2.20)

for all x ∈ X. Letting y = −2x in (2.10), we get

∥∥f(x) − f(−x) − f(2x)
∥∥ ≤ ϕ

(
−x
3
,
2x
3

)
(2.21)

for all x ∈ X. Now, it follows from (2.20) and (2.21) that

∥∥f(2x) − 2f(x)
∥∥ ≤ ϕ

(x
2
, 0
)
+ ϕ

(
−x
2
, 0
)
+ ϕ

(x
2
,−x

2

)
+ ϕ

(
−x
3
,
2x
3

)
(2.22)
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for all x ∈ X. Let E := {g : X → Y, g(0) = 0}. We introduce a generalized metric on E as
follows:

dφ

(
g, h

)
:= inf

{
C ∈ [0,∞] :

∥
∥g(x) − h(x)

∥
∥ ≤ Cφ(x) for all x ∈ X}

. (2.23)

It is easy to show that (E, dφ) is a generalized complete metric space [34].
Now we consider the mapping Λ : E → E defined by

(
Λg

)
(x) =

1
2
g(2x), ∀g ∈ E, x ∈ X. (2.24)

Let g, h ∈ E and let C ∈ [0,∞] be an arbitrary constant with dφ(g, h) ≤ C. From the definition
of dφ, we have

∥∥g(x) − h(x)
∥∥ ≤ Cφ(x) (2.25)

for all x ∈ X. By the assumption and the last inequality, we have

∥∥(Λg
)
(x) − (Λh)(x)

∥∥ =
1
2
∥∥g(2x) − h(2x)

∥∥ ≤ C

2
φ(2x) ≤ CLφ(x) (2.26)

for all x ∈ X. So dφ(Λg,Λh) ≤ Ldφ(g, h) for any g, h ∈ E. It follows from (2.22) that
dφ(Λf, f) ≤ 1/2. Therefore according to Theorem 1.2, the sequence {Λkf} converges to a
fixed point H of Λ, that is,

H : X −→ Y, H(x) = lim
k→∞

(
Λkf

)
(x) = lim

k→∞
1
2k

f
(
2kx

)
(2.27)

and H(2x) = 2H(x) for all x ∈ X. Also H is the unique fixed point of Λ in the set Eφ = {g ∈
E : dφ(f, g) < ∞} and

dφ

(
H, f

) ≤ 1
1 − L

dφ

(
Λf, f

) ≤ 1
2 − 2L

, (2.28)

that is, inequality (2.13) holds true for all x ∈ X. It follows from the definition of H, (2.10),
and (2.16) that DH(x, y) = 0 for all x, y ∈ X. Since H(0) = 0, by Lemma 2.1 the mapping H
is additive. So it follows from the definition of H, (2.9), and (2.11) that

∥∥H
(
xy

) −H(x)H
(
y
)∥∥ = lim

k→∞
1
4k

∥∥∥f
(
4kxy

)
− f

(
2kx

)
f
(
2ky

)∥∥∥

≤ lim
k→∞

1
4k

ψ
(
2kx, 2ky

)
= 0

(2.29)
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for all x, y ∈ X. SoH is homomorphism. Similarly, we have from (2.9) and (2.11) that

H
(
xy

)
= H(x)f

(
y
)
, H

(
xy

)
= f(x)H

(
y
)

(2.30)

for all x, y ∈ X. Since H is homomorphism, we get (2.14) from (2.30).
Finally it remains to prove the uniqueness of H. Let H1 : X → Y another

homomorphism satisfying (2.13). Since dφ(f,H1) ≤ 1/(2 − 2L) and H1 is additive, we get
H1 ∈ Eφ and (ΛH1)(x) = (1/2)H1(2x) = H1(x) for all x ∈ X, that is, H1 is a fixed point of Λ.
Since H is the unique fixed point of Λ in Eφ, we get H1 = H.

We need the following lemma in the proof of the next theorem.

Lemma 2.3 (See [38]). Let X and Y be linear spaces and f : X → Y be an additive mapping such
that f(μx) = μf(x) for all x ∈ X and all μ ∈ T

1 := {μ ∈ C : |μ| = 1}. Then the mapping f is
C-linear.

Lemma 2.4. Let X and Y be linear spaces. A mapping f : X → Y satisfies

f
(
2μx + μy

)
+ f

(
μx + 2μy

)
= μ

[
f(3x) + f

(
3y

)]
(2.31)

for all x, y ∈ X and all μ ∈ T
1, if and only if f is C-linear.

Proof. Let f satisfy (2.31). Letting x = y = 0 in (2.31), we get f(0) = 0. By Lemma 2.1, the
mapping f is additive. Letting y = 0 in (2.31) and using the additivity of f, we get that
f(μx) = μf(x) for all x ∈ X and all μ ∈ T

1. So by Lemma 2.4, the mapping f is C-linear. The
converse is obvious.

The following theorem is an alternative result of Theorem 2.2 with similar proof.

Theorem 2.5. Let f : X → Y be a mapping for which there exist functions ϕ, ψ : X2 → [0,∞)
such that

lim
k→∞

2kψ
(

1
2k

x, y

)
= lim

k→∞
2kψ

(
x,

1
2k

y

)
= lim

k→∞
4kψ

(
1
2k

x,
1
2k

y

)
= 0,

∥∥f
(
2μx + μy

)
+ f

(
μx + 2μy

) − μ
[
f(3x) + f

(
3y

)]∥∥ ≤ ϕ
(
x, y

)
,

∥∥f
(
xy

) − f(x)f
(
y
)∥∥ ≤ ψ

(
x, y

)

(2.32)

for all x, y ∈ X and all μ ∈ T
1. If there exists a constant 0 < L < 1 such that

2ϕ
(
1
2
x,

1
2
y

)
≤ Lϕ

(
x, y

)
(2.33)
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for all x, y ∈ X, then there exists a unique homomorphismH : X → Y satisfying

∥
∥f(x) −H(x)

∥
∥ ≤ L

2 − 2L
φ(x),

H(x)
[
H
(
y
) − f

(
y
)]

=
[
H(x) − f(x)

]
H
(
y
)
= 0

(2.34)

for all x, y ∈ X, where φ(x) is defined as in Theorem 2.2.

Proof. It follows from the assumptions that ϕ(0, 0) = 0, and so f(0) = 0. The rest of the proof
is similar to the proof of Theorem 2.2 and we omit the details.

Corollary 2.6. Let p, q, δ, ε be non-negative real numbers with 0 < p, q < 1. Suppose that f : X →
Y is a mapping such that

∥∥f
(
2μx + μy

)
+ f

(
μx + 2μy

) − μ
[
f(3x) + f

(
3y

)]∥∥ ≤ δ + ε
(‖x‖p + ‖y‖p),

∥∥f
(
xy

) − f(x)f
(
y
)∥∥ ≤ δ + ε

(‖x‖q + ∥∥y
∥∥q) (2.35)

for all x, y ∈ X and all μ ∈ T
1. Then there exists a unique homomorphismH : X → Y satisfying

∥∥f(x) −H(x)
∥∥ ≤ 4δ

2 − 2p
+
2p + 4 × 3p + 4p

6p(2 − 2p)
ε‖x‖p,

H(x)
[
H
(
y
) − f

(
y
)]

=
[
H(x) − f(x)

]
H
(
y
)
= 0

(2.36)

for all x, y ∈ X.

Proof. The proof follows from Theorem 2.2 by taking

ϕ
(
x, y

)
:= δ + ε

(‖x‖p + ∥∥y
∥∥p)

, ψ
(
x, y

)
:= δ + ε

(‖x‖q + ∥∥y
∥∥q) (2.37)

for all x, y ∈ X. Then we can choose L = 2p−1 and we get the desired results.

Corollary 2.7. Let p, q, ε be non-negative real numbers with p > 1 and q > 2. Suppose that f : X →
Y is a mapping such that

∥∥f
(
2μx + μy

)
+ f

(
μx + 2μy

) − μ
[
f(3x) + f

(
3y

)]∥∥ ≤ ε
(‖x‖p + ∥∥y

∥∥p)
,

∥∥f
(
xy

) − f(x)f
(
y
)∥∥ ≤ ε

(‖x‖q + ∥∥y
∥∥q) (2.38)

for all x, y ∈ X and all μ ∈ T
1. Then there exists a unique homomorphismH : X → Y satisfying

∥∥f(x) −H(x)
∥∥ ≤ 2p + 4 × 3p + 4p

6p(2p − 2)
ε‖x‖p,

H(x)
[
H
(
y
) − f

(
y
)]

=
[
H(x) − f(x)

]
H
(
y
)
= 0

(2.39)

for all x, y ∈ X.



Journal of Inequalities and Applications 9

Proof. The proof follows from Theorem 2.5 by taking

ϕ
(
x, y

)
:= ε

(‖x‖p + ∥
∥y

∥
∥p)

, ψ
(
x, y

)
:= ε

(‖x‖q + ∥
∥y

∥
∥q) (2.40)

for all x, y ∈ X. Then we can choose L = 21−p and we get the desired results.

3. Stability of Generalized (θ, φ)-Derivations

In this section, we assume that Y is a Banach algebra, and θ, φ are automorphisms of Y. For
convenience, we use the following abbreviation for given mappings f, g : Y → Y :

D
θ,φ

f,g

(
x, y

)
:= f

(
xy

) − f(x)θ
(
y
) − φ(x)g

(
y
)
,

J
θ,φ

f,g (x) := f
(
x2
)
− f(x)θ(x) − φ(x)g(x)

(3.1)

for all x, y ∈ Y. Now we prove the generalized Hyers-Ulam stability of generalized (θ, φ)-
derivations and generalized (θ, φ)-Jordan derivations in Banach algebras.

Theorem 3.1. Let f, g : Y → Y be mappings with f(0) = g(0) = 0 for which there exists a function
ϕ : Y2 → [0,∞) such that

∥∥Df
(
x, y

)∥∥ ≤ ϕ
(
x, y

)
, (3.2)

∥∥∥J
θ,φ

f,g (x)
∥∥∥ ≤ ϕ(x, x), (3.3)

∥∥Dg
(
x, y

)∥∥ ≤ ϕ
(
x, y

)
, (3.4)

∥∥∥J
θ,φ
g,g (x)

∥∥∥ ≤ ϕ(x, x) (3.5)

for all x, y ∈ Y. If there exists a constants 0 < L < 1 such

4ϕ
(
x, y

) ≤ Lϕ
(
2x, 2y

)
(3.6)

for all x, y ∈ Y, then there exist a unique (θ, φ)-Jordan derivation G : Y → Y and a unique
generalized (θ, φ)-Jordan derivation F : Y → Y satisfying

∥∥f(x) − F(x)
∥∥ ≤ L

4 − 2L
φ(x),

∥∥g(x) −G(x)
∥∥ ≤ L

4 − 2L
φ(x)

(3.7)

for all x ∈ Y, where φ(x) is defined as in Theorem 2.2.
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Proof. It follows from the assumptions that

lim
n→∞

4nϕ
( x

2n
,
y

2n
)
= 0 (3.8)

for all x, y ∈ Y. By the proof of Theorem 2.5, there exist unique additive mappings F,G : Y →
Y satisfying (3.7) and

F(x) = lim
k→∞

2kf
(

1
2k

x

)
, G(x) = lim

k→∞
2kg

(
1
2k

x

)
(3.9)

for all x ∈ Y. It follows from the definitions of F,G (3.3), and (3.8) that

∥∥∥J
θ,φ

F,G(x)
∥∥∥ = lim

n→∞
4n
∥∥∥J

θ,φ

f,g

( x

2n
)∥∥∥ ≤ lim

n→∞
4nϕ

( x

2n
,
x

2n
)
= 0,

∥∥∥J
θ,φ

G,G(x)
∥∥∥ = lim

n→∞
4n
∥∥∥J

θ,φ
g,g

( x

2n
)∥∥∥ ≤ lim

n→∞
4nϕ

( x

2n
,
x

2n
)
= 0

(3.10)

for all x ∈ Y.Hence

F
(
x2
)
= F(x)θ(x) + φ(x)G(x), G

(
x2
)
= G(x)θ(x) + φ(x)G(x) (3.11)

for all x ∈ Y. Hence G is a (θ, φ)-Jordan derivation and F is a generalized (θ, φ)-Jordan
derivation.

Remark 3.2. Applying Theorem 3.1 for the case ϕ(x, y) := ε(‖x‖p + ‖y‖p) (ε ≥ 0 and p > 2),
there exist a unique (θ, φ)-Jordan derivation G : Y → Y and a unique generalized (θ, φ)-
Jordan derivation F : Y → Y satisfying

∥∥f(x) − F(x)
∥∥ ≤ 2p + 4 × 3p + 4p

6p(2p − 2)
ε‖x‖p,

∥∥g(x) −G(x)
∥∥ ≤ 2p + 4 × 3p + 4p

6p(2p − 2)
ε‖x‖p

(3.12)

for all x ∈ Y.

The following theorem is an alternative result of Theorem 3.1 with similar proof.

Theorem 3.3. Let f, g : Y → Y be mappings with f(0) = g(0) = 0 for which there exists a function
ϕ : Y2 → [0,∞) satisfying (3.2)–(3.5). If there exists a constant 0 < L < 1 such

ϕ
(
2x, 2y

) ≤ 2Lϕ
(
x, y

)
(3.13)
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for all x, y ∈ Y, then there exist a unique (θ, φ)-Jordan derivation G : Y → Y and a unique
generalized (θ, φ)-Jordan derivation F : Y → Y satisfying

∥
∥f(x) − F(x)

∥
∥ ≤ 1

2 − 2L
φ(x),

∥
∥g(x) −G(x)

∥
∥ ≤ 1

2 − 2L
φ(x)

(3.14)

for all x ∈ Y, where φ(x) is defined as in Theorem 2.2.

Remark 3.4. Applying Theorem 3.3 for the case ϕ(x, y) := δ + ε(‖x‖p + ‖y‖p) (δ, ε ≥ 0 and 0 <
p < 1), there exist a unique (θ, φ)-Jordan derivation G : Y → Y and a unique generalized
(θ, φ)-Jordan derivation F : Y → Y satisfying

∥∥f(x) − F(x)
∥∥ ≤ 4δ

2 − 2p
+
2p + 4 × 3p + 4p

6p(2 − 2p)
ε‖x‖p,

∥∥g(x) −G(x)
∥∥ ≤ 4δ

2 − 2p
+
2p + 4 × 3p + 4p

6p(2 − 2p)
ε‖x‖p

(3.15)

for all x ∈ Y.
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