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1. Introduction

In 1908, Weyl published the well-known Hilbert’s inequality as the following. If
{an}∞n=1, {bn}∞n=1 are real sequences, 0 <

∑∞
n=1 a

2
n < ∞ and 0 <

∑∞
n=1 b

2
n < ∞, then [1]

∞∑

n=1

∞∑

m=1

ambn
m + n

< π

( ∞∑

n=1

a2
n

∞∑

n=1

b2n

)1/2

, (1.1)

where the constant factor π is the best possible. In 1925, Hardy gave an extension of (1.1) by
introducing one pair of conjugate exponents (p, q)(1/p + 1/q = 1) as [2]. If p > 1, an, bn ≥ 0,
0 <

∑∞
n=1 a

p
n < ∞, and 0 <

∑∞
n=1 b

q
n < ∞, then

∞∑

n=1

∞∑

m=1

ambn
m + n

<
π

sin(π/p)

( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q

, (1.2)
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where the constant factor π/ sin(π/p) is the best possible. We named (1.2) Hardy-Hilbert’s
inequality. In 1934, Hardy et al. [3] gave some applications of (1.1)-(1.2) and a basic theorem
with the general kernel (see [3, Theorem 318]).

Theorem A. Suppose that p > 1, 1/p + 1/q = 1, k(x, y) is a homogeneous function of −1-degree,
and k =

∫∞
0 k(u, 1)u

−1/p du is a positive number. If both k(u, 1)u−1/p and k(1, u)u−1/q are strictly
decreasing functions for u > 0, an, bn ≥ 0, 0 < ‖a‖p = (

∑∞
n=1 a

p
n)

1/p < ∞, and 0 < ‖b‖q =
(
∑∞

n=1 b
q
n)

1/q < ∞, then one has the following equivalent inequalities:

∞∑

n=1

∞∑

m=1

k(m,n)ambn < k‖a‖p‖b‖q, (1.3)

∞∑

n=1

( ∞∑

m=1

k(m,n)am

)p

< kp‖a‖pp, (1.4)

where the constant factors k and kp are the best possible.

Note. Hardy did not prove this theorem in [3]. In particular, we find some classical Hilbert-
type inequalities as,

(i) for k(x, y) = 1/(x + y) in (1.3), it reduces (1.2),

(ii) for k(x, y) = 1/max{x, y} in (1.3), it reduces to (see [3, Theorem 341])

∞∑

n=1

∞∑

m=1

ambn
max{m,n} < pq

( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q

, (1.5)

(iii) for k(x, y) = ln(x/y)/(x − y) in (1.3), it reduces to (see [3, Theorem 342])

∞∑

n=1

∞∑

m=1

ln(m/n)ambn
m − n

<

[
π

sin(π/p)

]2
( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q

. (1.6)

Hardy also gave some multiple extensions of (1.3) (see [3, Theorem 322]). About
introducing one pair of nonconjugate exponents (p, q) in (1.1), Hardy et al. [3] gave that
if p, q > 1, 1/p + 1/q ≥ 1, 0 < λ = 2 − (1/p + 1/q) ≤ 1, then

∞∑

n=1

∞∑

m=1

ambn

(m + n)λ
≤ K(p, q)

( ∞∑

n=1

a
p
n

)1/p( ∞∑

n=1

b
q
n

)1/q

. (1.7)

In 1951, Bonsall [4] considered (1.7) in the case of general kernel; in 1991, Mitrinović et al. [5]
summarized the above results.

In 2001, Yang [6] gave an extension of (1.1) as for 0 < λ ≤ 4,

∞∑

n=1

∞∑

m=1

ambn

(m + n)λ
< B

(
λ

2
,
λ

2

)( ∞∑

n=1

n1−λa2
n

∞∑

n=1

n1−λb2n

)1/2

, (1.8)
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where the constant B(λ/2, λ/2, ) is the best possible (B(u, v) is the Beta function). For λ = 1,
(1.8) reduces to (1.1). And Yang [7] also gave an extension of (1.2) as

∞∑

n=1

∞∑

m=1

ambn
mλ + nλ

<
π

λ sin(π/p)

{ ∞∑

n=1

n(p−1)(1−λ)ap
n

}1/p{ ∞∑

n=1

n(q−1)(1−λ)bqn

}1/q

, (1.9)

where the constant factor π/λ sin(π/p) (0 < λ ≤ 2) is the best possible.
In 2004, Yang [8] published the dual form of (1.2) as follows:

∞∑

n=1

∞∑

m=1

ambn
m + n

<
π

sin(π/p)

( ∞∑

n=1

np−2ap
n

)1/p( ∞∑

n=1

nq−2bqn

)1/q

, (1.10)

where π/ sin(π/p) is the best possible. For p = q = 2, both (1.10) and (1.2) reduce to (1.1). It
means that there are more than two different best extensions of (1.1). In 2005, Yang [9] gave
an extension of (1.8)–(1.10)with two pairs of conjugate exponents (p, q), (r, s) (p, r > 1), and
two parameters α, λ > 0 (αλ ≤ min{r, s}) as

∞∑

n=1

∞∑

m=1

ambn
(
mα + nα

)λ < kαλ(r)

{ ∞∑

n=1

np(1−αλ/r)−1ap
n

}1/p{ ∞∑

n=1

nq(1−αλ/s)−1bqn

}1/q

, (1.11)

where the constant factor kαλ(r) = (1/α)B(λ/r, λ/s) is the best possible; Krnić and Pečarić
[10] also considered (1.11) in the general homogeneous kernel, but the best possible property
of the constant factor was not proved by [10].

Note. ForA = B = α = β = 1 in [10, inequality (37)], it reduces to the equivalent result of (3.1)
in this paper.

In 2006-2007, some authors also studied the operator expressing of (1.3) and (1.4).
Suppose that k(x, y)(≥ 0) is a symmetric function with k(y, x) = k(x, y), and k0(p) :=∫∞

0 k(x, y)(x/y)
1/r dy (r = p, q; x > 0) is a positive number independent of x. Define an

operator T : lr → lr (r = p, q) as follows. For am ≥ 0, a = {am}∞m=1 ∈ lp, there exists only
Ta = c = {cn}∞n=1 ∈ lp, satisfying

(Ta)(n) = cn :=
∞∑

m=1

k(m,n)am (n ∈ N). (1.12)

Then the formal inner product of Ta and b are defined as follows:

(Ta, b) =
∞∑

n=1

∞∑

m=1

k(m,n)ambn. (1.13)
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In 2007, Yang [11] proved that if for ε ≥ 0 small enough, k(x, y)(x/y)(1+ε)/r is strictly
decreasing for y > 0, the integral

∫∞
0 k(x, y)(x/y)

(1+ε)/r dy = kε(p) is also a positive number
independent of x > 0, kε(p) = k0(p) + o(1) (ε → 0+), and

∞∑

m=1

1
m1+ε

∫1

0
k(m, t)

(
m

t

)(1+ε)/r

dt = O(1)
(
ε −→ 0+; r = p, q

)
, (1.14)

then ‖T‖p = k0(p); in this case, if am, bn ≥ 0, a = {am}∞m=1 ∈ lp, b = {bn}∞n=1 ∈ lq, ‖a‖p >
0, ‖b‖q > 0, then we have two equivalent inequalities as

(Ta, b) < ‖T‖p‖a‖p‖b‖q; ‖Ta‖p < ‖T‖p‖a‖p, (1.15)

where the constant factor ‖T‖p is the best possible. In particular, for k(x, y) being −1-degree
homogeneous, inequalities (1.15) reduce to (1.3)-(1.4) (in the symmetric kernel). Yang [12]
also considered (1.15) in the real space l2.

In this paper, by using the way of weight coefficient and the theory of operators, we
define a new Hilbert-type operator and obtain its norm. As applications, an extended basic
theorem on Hilbert-type inequalities with the decreasing homogeneous kernel of −λ-degree
is established; some particular cases are considered.

2. On a New Hilbert-Type Operator and the Norm

If kλ(x, y) is a measurable function, satisfying for λ, u, x, y > 0, kλ(ux, uy) = u−λkλ(x, y), then
we call kλ(x, y) the homogeneous function of −λ-degree.

For kλ(x, y) ≥ 0, setting x = uy, we find kλ(x, y)(1/x1−λ/r) = (1/y1+λ/s)kλ(u, 1)uλ/r−1.
Hence, the following two words are equivalent: (a) kλ(u, 1)uλ/r−1 is decreasing in (0,∞)
and strictly decreasing in a subinterval of (0,∞); (b) for any y > 0, kλ(x, y)(1/x1−λ/r) is
decreasing in x ∈ (0,∞) and strictly decreasing in a subinterval of (0,∞). The following two
words are also equivalent: (a)′ kλ(1, u)uλ/s−1 is decreasing in (0,∞) and strictly decreasing in
a subinterval of (0,∞); (b)′ for any x > 0, kλ(x, y)(1/y1−λ/s) is decreasing in y ∈ (0,∞) and
strictly decreasing in a subinterval of (0,∞).

Lemma 2.1. If f(x)(≥ 0) is decreasing in (0,∞) and strictly decreasing in a subinterval of (0,∞),
and I0 :=

∫∞
0 f(x)dx < ∞, then

I1 :=
∫∞

1
f(x)dx ≤

∞∑

n=1

f(n) < I0. (2.1)

Proof. By the assumption, we find
∫n+1
n f(x)dx ≤ f(n) ≤ ∫n

n−1f(x)dx (n ∈ N), and there exists
(n0 − 1, n0] ⊂ (0,∞), such that f(n0) <

∫n0

n0−1f(x)dx.Hence,

I1 =
∞∑

n=1

∫n+1

n

f(x)dx ≤
∞∑

n=1

f(n) <
∞∑

n=1

∫n

n−1
f(x)dx = I0. (2.2)
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Lemma 2.2. If r > 1, 1/r + 1/s = 1, λ > 0, kλ(x, y)(≥ 0) is a homogeneous function of −λ-degree,
and kλ(r) :=

∫∞
0 kλ(u, 1)u

λ/r−1 du is a positive number, then (i)
∫∞
0 kλ(1, u)u

λ/s−1 du = kλ(r); (ii)
for x, y ∈ (0,∞), setting the weight functions as

ωλ(r, y) :=
∫∞

0
kλ(x, y)

yλ/s

x1−λ/r dx, �λ(s, x) :=
∫∞

0
kλ(x, y)

xλ/r

y1−λ/s dy, (2.3)

then ωλ(r, y) = �λ(s, x) = kλ(r).

Proof. (i) Setting v = 1/u, by the assumption, we obtain
∫∞
0 kλ(1, u)u

λ/s−1 du =
∫∞
0 kλ(v,

1)vλ/r−1 dv = kλ(r). (ii) Setting x = yu and y = xu in the integrals ωλ(r, y) and �λ(s, x),
respectively, in view of (i), we still find that ωλ(r, y) = �λ(s, x) = kλ(r).

For p > 1, 1/p + 1/q = 1, we set φ(x) = xp(1−λ/r)−1, ψ(x) = xq(1−λ/s)−1, and ψ1−p(x) =
xpλ/s−1, x ∈ (0,∞). Define the real space as lp

φ
:= {a = {an}∞n=1; ‖a‖p,φ := {∑∞

n=1 φ(n)|an|p}1/p <

∞}, and then we may also define the spaces lqψ and l
p

ψ1−p .

Lemma 2.3. As the assumption of Lemma 2.2, for am ≥ 0, a = {am}∞m=1 ∈ l
p

φ, setting

cn =
∑∞

m=1 kλ(m,n)am, if kλ(u, 1)uλ/r−1 and kλ(1, u)uλ/s−1 are decreasing in (0,∞) and strictly
decreasing in a subinterval of (0,∞), then c = {cn}∞n=1 ∈ l

p

ψ1−p .

Proof. By Hölder’s inequality [13] and Lemmas 2.1-2.2, we obtain

c
p
n =

{ ∞∑

m=1

kλ(m,n)

[
m(1−λ/r)/q

n(1−λ/s)/p am

][
n(1−λ/s)/p

m(1−λ/r)/q

]}p

≤
[ ∞∑

m=1

kλ(m,n)
m(1−λ/r)p/q

n1−λ/s a
p
m

][ ∞∑

m=1

kλ(m,n)
n(1−λ/s)q/p

m1−λ/r

]p−1

≤ ω
p−1
λ

(r, n)n1−pλ/s
∞∑

m=1

kλ(m,n)
m(1−λ/r)p/q

n1−λ/s a
p
m

= k
p−1
λ

(r)n1−pλ/s
∞∑

m=1

kλ(m,n)
m(1−λ/r)p/q

n1−λ/s a
p
m,

‖c‖p,ψ1−p =

{ ∞∑

n=1

npλ/s−1cpn

}1/p

=

{ ∞∑

n=1

npλ/s−1
[ ∞∑

m=1

kλ(m,n)am

]p}1/p

≤ k
1/q
λ

(r)

{ ∞∑

n=1

∞∑

m=1

kλ(m,n)
m(1−λ/r)p/q

n1−λ/s a
p
m

}1/p

= k
1/q
λ (r)

{ ∞∑

m=1

[ ∞∑

n=1

kλ(m,n)
mλ/r

n1−λ/s

]

mp(1−λ/r)−1ap
m

}1/p

< k
1/q
λ

(r)

{ ∞∑

m=1

�λ(s,m)mp(1−λ/r)−1ap
m

}1/p

= kλ(r)‖a‖p,φ < ∞.

(2.4)

Therefore, c = {cn}∞n=1 ∈ l
p

ψ1−p .
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For am ≥ 0, a = {am}∞m=1 ∈ l
p

φ, define a Hilbert-type operator T : lpφ → l
p

ψ1−p as Ta = c,

satisfying c = {cn}∞n=1,

(Ta)(n) := cn =
∞∑

m=1

kλ(m,n)am (n ∈ N). (2.5)

In view of Lemma 2.3, c ∈ l
p

ψ1−p and then T exists. If there exists M > 0, such that for any

a ∈ l
p

φ
, ‖Ta‖p,ψ1−p ≤ M‖a‖p,φ, then T is bounded and ‖T‖ = sup‖a‖p,φ=1‖Ta‖p,ψ1−p ≤ M. Hence

by (2.4), we find ‖T‖ ≤ kλ(r) and T is bounded.

Theorem 2.4. As the assumption of Lemma 2.3, it follows ‖T‖ = kλ(r).

Proof. For am, bn ≥ 0, a = {am}∞m=1 ∈ l
p

φ
, b = {bn}∞n=1 ∈ l

q
ψ, ‖a‖p,φ > 0, ‖b‖q,ψ > 0, by Hölder’s

inequality [12], we find

(Ta, b) =
∞∑

n=1

[

nλ/s−1/p
∞∑

m=1

kλ(m,n)am

]
[
n−λ/s+1/pbn

]

≤
{ ∞∑

n=1

npλ/s−1
[ ∞∑

m=1

kλ(m,n)am

]p}1/p

‖b‖q,ψ .
(2.6)

Then by (2.4), we obtain

(Ta, b) < kλ(r)‖a‖p,φ‖b‖q,ψ . (2.7)

For 0 < ε < min{pλ/r, qλ/s}, setting ã = {ãn}∞n=1, b̃ = {b̃n}∞n=1 as ãn = nλ/r−ε/p−1, b̃n =
nλ/s−ε/q−1, for n ∈ N, if there exists a constant 0 < k ≤ kλ(r), such that (2.7) is still valid when
we replace kλ(r) by k, then by Lemma 2.1,

ε(Tã, b̃) < εk‖ã‖p,φ‖b̃‖q,ψ = εk

(

1 +
∞∑

n=2

1
n1+ε

)

< εk

(

1 +
∫∞

1

1
y1+ε

dy

)

= k(ε + 1), (2.8)

ε
(
Tã, b̃

)
= ε

∞∑

n=1

[ ∞∑

m=1

kλ(m,n)mλ/r−1m−ε/p
]

nλ/s−ε/q−1

≥ ε
∞∑

n=1

[∫∞

1
kλ(x, n)xλ/r−ε/p−1 dx

]

nλ/s−ε/q−1

= ε

∫∞

1

[ ∞∑

n=1

kλ(x, n)nλ/s−ε/q−1
]

xλ/r−ε/p−1 dx

≥ ε

∫∞

1

[∫∞

1
kλ(x, y)yλ/s−ε/q−1xλ/r−ε/p−1 dy

]

dx.

(2.9)
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In view of (2.8) and (2.9), setting u = x/y, by Fubini’s theorem [13], it follows

k(ε + 1) > ε

∫∞

1
x−1−ε

(∫x

0
kλ(u, 1)uλ/r+ε/q−1 du

)

dx

=
∫1

0
kλ(u, 1)uλ/r+ε/q−1 du + ε

∫∞

1
x−1−ε

(∫x

1
kλ(u, 1)uλ/r+ε/q−1 du

)

dx

=
∫1

0
kλ(u, 1)uλ/r+ε/q−1 du + ε

∫∞

1

(∫∞

u

x−1−ε dx
)

kλ(u, 1)uλ/r+ε/q−1 du

=
∫1

0
kλ(u, 1)uλ/r+ε/q−1 du +

∫∞

1
kλ(u, 1)uλ/r−ε/p−1 du.

(2.10)

Setting ε → 0+ in the above inequality, by Fatou’s lemma [14], we find

k ≥ lim
ε→ 0+

[∫1

0
kλ(u, 1)uλ/r+ε/q−1 du +

∫∞

1
kλ(u, 1)uλ/r−ε/p−1 du

]

≥
∫1

0
lim
ε→ 0+

kλ(u, 1)uλ/r+ε/q−1 du +
∫∞

1
lim
ε→ 0+

kλ(u, 1)uλ/r−ε/p−1 du

=
∫1

0
kλ(u, 1)uλ/r−1 du +

∫∞

1
kλ(u, 1)uλ/r−1 du = kλ(r).

(2.11)

Hence k = kλ(r) is the best value of (2.7). We conform that kλ(r) is the best value of (2.4).
Otherwise, we can get a contradiction by (2.6) that the constant factor in (2.7) is not the best
possible. It follows that ‖T‖ = kλ(r).

3. An Extended Basic Theorem on Hilbert-Type Inequalities

Still setting φ(x) = xp(1−λ/r)−1, ψ(x) = xq(1−λ/s)−1, ψ1−p(x) = xpλ/s−1, x ∈ (0,∞), and l
p

φ = {a =

{an}∞n=1; ‖a‖p,φ := {∑∞
n=1 φ(n)|an|p}1/p < ∞}, we have the following theorem.

Theorem 3.1. Suppose that p, r > 1, 1/p + 1/q = 1, 1/r + 1/s = 1, λ > 0, kλ(x, y)(≥ 0)
is a homogeneous function of −λ-degree, kλ(r) =

∫∞
0 kλ(u, 1)u

λ/r−1 du is a positive number, both
kλ(u, 1)uλ/r−1 and kλ(1, u)uλ/s−1 are decreasing in (0,∞) and strictly decreasing in a subinterval of
(0,∞). If an, bn ≥ 0, a = {an}∞n=1 ∈ l

p

φ
, b = {bn}∞n=1 ∈ l

q
ψ , ‖a‖p,φ > 0, ‖b‖q,ψ > 0, then one has the

equivalent inequalities as

(Ta, b) =
∞∑

n=1

∞∑

m=1

kλ(m,n)ambn < kλ(r)‖a‖p,φ‖b‖q,ψ , (3.1)

‖Ta‖p
p,ψ1−p =

∞∑

n=1

npλ/s−1
( ∞∑

m=1

kλ(m,n)am

)p

< k
p

λ
(r)‖a‖p

p,φ
, (3.2)

where the constant factors kλ(r) and k
p

λ
(r) are the best possible.
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Proof. In view of (2.7) and (2.4), we have (3.1) and (3.2). Based on Theorem 2.4, it follows that
the constant factors in (3.1) and (3.2) are the best possible.

If (3.2) is valid, then by (2.6), we have (3.1). Suppose that (3.1) is valid. By (2.4),
‖Ta‖p

p,ψ1−p < ∞. If ‖Ta‖p
p,ψ1−p = 0, then (3.2) is naturally valid; if ‖Ta‖p

p,ψ1−p > 0, setting

bn = npλ/s−1(
∑∞

m=1 kλ(m,n)am)
p−1, then 0 < ‖b‖qq,ψ = ‖Ta‖p

p,ψ1−p < ∞. By (3.1), we obtain

‖b‖qq,ψ = ‖Ta‖p
p,ψ1−p = (Ta, b) < kλ(r)‖a‖p,φ‖b‖q,ψ

‖b‖q−1q,ψ = ‖Ta‖p,ψ1−p < kλ(r)‖a‖p,φ,
(3.3)

and we have (3.2). Hence (3.1) and (3.2) are equivalent.

Remark 3.2. (a) For λ = 1, s = p, r = q, (3.1) and (3.2) reduce, respectively, to (1.6) and (1.7).
Hence, Theorem 3.1 is an extension of Theorem A.

(b) Replacing the condition “kλ(u, 1)uλ/r−1 and kλ(1, u)uλ/s−1 are decreasing in (0,∞)
and strictly decreasing in a subinterval of (0,∞)” by “for 0 < λ ≤ min{r, s}, kλ(u, 1)
and kλ(1, u) are decreasing in (0,∞) and strictly decreasing in a subinterval of (0,∞),” the
theorem is still valid. Then in particular,

(i) for kαλ(x, y) = 1/(xα + yα)λ (α, λ > 0, αλ ≤ min{r, s}) in (3.1), we find

kαλ(r) =
∫∞

0

uαλ/r−1
(
uα + 1

)λ du =
1
α

∫∞

0

vλ/r−1

(v + 1)λ
dv =

1
α
B

(
λ

r
,
λ

s

)

, (3.4)

and then it deduces to (1.11);

(ii) for kλ(x, y) = (1/max{xλ, yλ}) (0 < λ ≤ min{r, s}) in (3.1), we find

kλ(r) =
∫∞

0

1
max{uλ, 1}u

λ/r−1 du =
rs

λ
, (3.5)

and then it deduces to the best extension of (1.5) as

∞∑

n=1

∞∑

m=1

ambn

(max{m,n})λ
<

rs

λ
‖a‖p,φ‖b‖q,ψ ; (3.6)

(iii) for kλ(x, y) = (ln(x/y)/(xλ − yλ)) (0 < λ ≤ min{r, s}) in (3.1), we find [3]

kλ(r) =
∫∞

0

lnu
uλ − 1

uλ/r−1 du =
[

π

λ sin(π/r)

]2
, (3.7)

and (lnu/(uλ − 1))′ < 0, and then it deduces to the best extension of (1.6) as

∞∑

n=1

∞∑

m=1

ln(m/n)ambn
mλ − nλ

<

[
π

λ sin(π/r)

]2
‖a‖p,φ‖b‖q,ψ . (3.8)
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