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1. Introduction

Iterative methods for nonexpansive mappings have recently been applied to solve convex
minimization problems. Convex minimization problems have a great impact and influence
in the development of almost all branches of pure and applied sciences. A typical problem is
to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping
on a real Hilbert space H:

O(x) = %(Ax,x) —(x,y) Vx€eF(S), (1.1)

where A is a linear bounded operator, F(S) is the fixed point set of a nonexpansive mapping
S, and y is a given point in H.
Let H be a real Hilbert space and C be a nonempty closed convex subset of H.
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Recall that a mapping S : C — C is called nonexpansive if || Sx — Sy|| < ||x —y|| forall x,y € C.
The set of all fixed points of S is denoted by F(S), that is, F(S) = {x € C : x = S5x}. A
linear bounded operator A is strongly positive if there is a constant y > 0 with the property
(Ax,x) > ¥|x||* forall x € H. A self-mapping f : C — C is a contraction on C if there is a
constant & € (0,1) such that || f(x) — f(y)|| < allx — y|| for all x,y € C. We use Il¢ to denote
the collection of all contractions on C. Note that each f € Ilc has a unique fixed point in C.
A mapping B of C into H is called monotone if (Bx — By,x —y) > 0 for all x,y € C. The
variational inequality problem is to find x € C such that

(Bx,y-x)>0 VyeC. (1.2)

The set of solutions of the variational inequality is denoted by VI(C, B). A mapping B
of C to H is called inverse-strongly monotone if there exists a positive real number f such that

(x -y, Bx-By) > p||Bx-By|* Vx,yeC. (1.3)

For such a case, B is f-inverse-strongly monotone. If B is a f-inverse-strongly monotone
mapping of C to H, then it is obvious that B is (1/f)-Lipschitz continuous.

In 2000, Moudafi [1] introduced the viscosity approximation method for nonexpansive
mapping and proved that if H is a real Hilbert space, the sequence {x,} defined by the
iterative method below, with the initial guess xy € C is chosen arbitrarily:

Xni1 = anf (Xn) + (1 - an)Sxn, n20, (1.4)

where {a,} C (0,1) satisfies certain conditions, converges strongly to a fixed point of S (say
x € C) which is the unique solution of the following variational inequality:

((I-f)%x-%)>0 VxeF(S). (15)

In 2004, Xu [2] extended the results of Moudafi [1] to a Banach space. In 2006, Marino
and Xu [3] introduced a general iterative method for nonexpansive mapping. They defined
the sequence {x,} by the following algorithm:

x0€C, Xpp1=anyf(xn)+ I -a,A)Sx,, n2>0, (1.6)

where {a,} C (0,1) and A is a strongly positive linear bounded operator, and they proved
that if C = H and the sequence {a, | satisfies appropriate conditions, then the sequence {x,}
generated by (1.6) converges strongly to a fixed point of S (say x € H) which is the unique
solution of the following variational inequality:

((A-yf)x,x-x)>0 VxeF(S), (1.7)

which is the optimality condition for minimization problem minyec(1/2)(Ax, x) — h(x),
where h is a potential function for yf (i.e., h'(x) = yf for all x € H).
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For finding a common element of the set of fixed points of nonexpansive mappings
and the set of solution of the variational inequalities, liduka and Takahashi [4] introduced
following iterative process:

x0 € C, Xpi1 = agu+ (1 —a,)SPc(x, — A,Bx,), n>0, (1.8)

where Pc is the projection of H onto C, u € C, {a,} C (0,1) and {A,} C [a,b] for some
a,bwith 0 < a < b < 2. They proved that under certain appropriate conditions imposed
on {a,} and {\,}, the sequence {x,} generated by (1.8) converges strongly to a common
element of the set of fixed points of nonexpansive mapping and the set of solutions of the
variational inequality for an inverse strongly monotone mapping (say x € C) which solves
the variational inequality

(x-u,x-x)>0 VxeF(S)nVI(C,B). (1.9)
In 2007, Chen et al. [5] introduced the following iterative process: xg € C,
Xn+1 = A f (xy) + (1 — a,) SPc(xp — AyBxy,), n2>0, (1.10)

where {a,} € (0,1) and {A,} C [a,b] for some a,b with 0 < a < b < 2f. They proved
that under certain appropriate conditions imposed on {a,} and {1,}, the sequence {x,}
generated by (1.10) converges strongly to a common element of the set of fixed points of
nonexpansive mapping and the set of solutions of the variational inequality for an inverse
strongly monotone mapping (say x € C) which solves the variational inequality

(I-f)%x-%)>0 VxeF(S)nVI(C,B). (1.11)

In this paper, we modify the iterative methods (1.6) and (1.10) by purposing the
following general iterative method:

xg € C, X1 = Pe(any f (xn) + (I = 2y A)SPc(xy — AyBxy)), n >0, (1.12)

where Pc is the projection of H onto C, f is a contraction, A is a strongly positive linear
bounded operator, B is a p-inverse strongly monotone mapping, {a,} C (0,1) and {1,} C
[a,b] for some a,bwith0 <a <b<2p.

We note that when A = I and y = 1, the iterative scheme (1.12) reduces to the iterative
scheme (1.10).

The purpose of this paper is twofold. First, we show that under some control
conditions the sequence {x,} defined by (1.12) strongly converges to a common element of
the set of fixed points of nonexpansive mapping and the set of solutions of the variational
inequality for the inverse-strongly monotone mapping B in a real Hilbert space which
solves some variational inequalities. Secondly, by using the first results, we obtain a strong
convergence theorem for a common fixed point of nonexpansive mapping and strictly
pseudocontractive mapping. Moreover, we consider the problem of finding a common
element of the set of fixed points of nonexpansive mapping and the set of zeros of inverse-
strongly monotone mapping.
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2. Preliminaries

Let H be real Hilbert space with inner product (-,-), C a nonempty closed convex subset of
H. Recall that the metric (nearest point) projection Pc from a real Hilbert space H to a closed
convex subset C of H is defined as follows: given x € H, Pcx is the only point in C with the
property ||x — Pex|| = inf{||x — y|| : y € C}. In what follows Lemma 2.1 can be found in any
standard functional analysis book.

Lemma 2.1. Let C be a closed convex subset of a real Hilbert space H. Given x € H and y € C, then
(i) y = Pex if and only if the inequality (x —y,y —z) >0 forall z € C,
(ii) Pc is nonexpansive,
(iii) (x — v, Pcx — Pcy) > ||Pcx — Pey||* forall x,y € H,
(iv) (x = Pcx,Pcx—y) >0 forallx € Hand y € C.

Using Lemma 2.1, one can show that the variational inequality (1.2) is equivalent to a
fixed point problem.

Lemma 2.2. The point u € C is a solution of the variational inequality (1.2) if and only if u satisfies
the relation u = Pc(u — ABu) for all A > 0.

We write x,, — x to indicate that the sequence {x,} converges weakly to x and write
X, — x to indicate that {x,} converges strongly to x. It is well known that H satisfies the
Opial’s condition [6], that is, for any sequence {x,} with x, — x, the inequality

lim infi|x, x| < lim inf[|x, - || (2.1)

holds for every y € H with x #y.

A set-valued mapping T : H — 2H is called monotone if for all x,y € H,u € Tx,and
v € Ty imply (x - y,u — v) > 0. A monotone mapping T : H — 2H is maximal if the graph
G(T) of T is not properly contained in the graph of any other monotone mapping. It is known
that a monotone mapping T is maximal if and only if for (x,u) € H x H, (x -y, u—v) > 0 for
every (y,v) € G(T) implies u € Tx. Let B be an inverse-strongly monotone mapping of C to
H and let Ncv be normal cone to C atv € C, thatis, Nco = {w € H : (v—u,w) >0, Yu € C},
and define

Tv =

Bv+ Ncou, ifoveC,
(2.2)

0, ifveC.

Then T is a maximal monotone and 0 € Tv if and only if v € VI(C, B) [7]. In the sequel, the
following lemmas are needed to prove our main results.

Lemma 2.3 (see [8]). Assume {a,} is a sequence of nonnegative real numbers such that an.; <
(1 -vyw)an + 64, n >0, where {y,} C (0,1) and {6,} is a sequence in R such that

(i) 3021 ¥n = oo,

(ii) imsup, ,  6n/Yn <007 37 |64 < co.

Then lim,, _, a,, = 0.
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Lemma 2.4 (see [9]). Let C be a closed convex subset of a real Hilbert space H and let T : C — C
be a nonexpansive mapping such that F(T) #@. If a sequence {x,} in C is such that x, — z and
xp—Tx, — 0, then z =Tz.

Lemma 2.5 (see [3]). Assume A is a strongly positive linear bounded operator on a Hilbert space H
with coefficient y > 0and 0 < p < AN, then ||I - pA| <1-py.

3. Main Results

In this section, we prove a strong convergence theorem for nonexpansive mapping and
inverse strongly monotone mapping.

Theorem 3.1. Let H be a real Hilbert space, let C be a closed convex subset of H,and let B: C — H
be a p-inverse strongly monotone mapping, also let A be a strongly positive linear bounded operator
of H into itself with coefficient ¥ > 0 such that ||A|| = 1 and let f : C — C be a contraction with
coefficient a (0 < a < 1). Assume that 0 < y < y/a. Let S be a nonexpansive mapping of C into
itself such that Q = F(S) N VI(C,B) #0. Suppose {x,} is the sequence generated by the following
algorithm: xg € C,

X1 = Pe(any f(xn) + (I — 2y A)SPc(x, — X1y Bxy)) (3.1)

foralln =0,1,2,..., where {a,} C (0,1) and {A,} C (0,2p). If {a,} and {\,} are chosen so that
An € [a, b] for some a,bwith0 <a<b<2p,

C1: %{I})an =0, C2: Zan = oo,
(3.2)
C3: D[ — ta| < oo, Ch: D JAne1 — An| < o0,

n=1 n=1

then {x,} converges strongly to q € Q, where q = Po(yf + 1 — A)(g) which solves the following
variational inequality:

((rf-A)gp-q)<0 VpeQ (3.3)

Proof. First, we show the mapping I — 1,,B is nonexpansive. Indeed, since B is a f-strongly
monotone mapping and 0 < A, < 2f3, we have that for all x,y € C,

11~ 2B)x (1~ LBy |P= [ (x - ) - 10 (Bx - By)

= ||x - y||* - 2Xu(x — y, Bx - By) + A2||Bx - By ||’
(3.4)
< |lx = yl|* + 4n(Au - 28) | Bx - By||®

2
7

<|lx-y
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which implies that the mapping I — A,,B is nonexpansive. Next, we show that the sequence

{x,} is bounded. Put y, = Pc(x, — A,x,) for all n > 0. Let u € , we have

|y = u]| = |Pc(xn = AuBxy) = Po(u - A, Bu)]|
< (xn = AuBxy) = (u = A, Bu) ||

(3.5)
S ”(I - )LnB)xn - (I - )LnB)u”
< lxn — ul].
Then, we have
Ioenst =l = | Pe (@ f () + (I = 3, A)Sy) = Pe(a)|
< |lan(yf (xn) = Au) + (I — anA)(Syn —u) ||
< |y f (xn) = Aul| + (1= anY) |y — u|
< an|lyf(en) =y f@)|| + anlyf () = Aul| + (1= an¥) [|yn - u|
< ayay|x, — ull + an ||y f (u) — Aul| + (1 - ay) ||, — ul| (3.6)
= (1= (F-ya)an)llxn — ul + an||y f (u) — Aul|
- - lly f () - Aul|
=(1-(y-ya)a,)|lx, —ul| + (y —ya)ay———
(1-(-ra)a) (y-va) —
-A
< max{ Il — ul, ||yf£u)_u||}
Y-y«
It follows from induction that
-A
% — 1 Smax{||x0—u||,W—u”}, n>0. 3.7)
Y-y«

Therefore, {x,} is bounded, so are {y,},{Sy.},{Bx,}, and {f(x,)}. Since I — A,B is
nonexpansive and v, = Pc(x, — 1,Bx,), we also have

||]/n+l - ]/n” < ||(xn+1 - )ln+len+1) - (xn - )lann)”
< ||(xn+1 = A1 Bxpir) = (xn — )‘n+1an)|| + Mn - -)Ln+1|||an”
< ||(I - -)‘n+1B)xn+1 - (1 - -’\n+1B)xn” + |)‘n - -)tn+1|||an||

< ||xn+1 - xn” + Mn - -)Ln+1|”an||-
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So we obtain

et = all = [[(Pe(@ny f (o) + (1 = anA)Sy)) = (P 7 f () + (1 = i1 A)Sya)) |
< || = anA) (Syn — Syn-1) — (an — An1) ASYna
+yan (f (xn) = f(xn-1)) +y (@0 = an-1) f (0n-1) ||

< (T=an)[|yn = yna || + lan - anal | ASyna |

+ Y| xn = Xn-1 |l + yletn = anal]| f (1) |
< (1= @) [0 = ot Wt = Al B 1] + o — tn s [| Ay

+ yaa,||x, — Xpall + ylan = anal || f (en) ||
< (1= any)llxn = Xp-all + a1 = Lal1Bxna || + @y — a1 ||| ASyna ||

+ yaay|xn = Xl + ylotn — ana|[| f (en) |

= (1 - (?_ Y“)“n)”xn = Xp1|| + LA o1 = Ay + May, — aya],
(3.9)

where L = sup{||Bx,1|| : n € N}, M = max{sup, l|ASy,-1ll, sup, Yl f(xs-1)ll}. Since
> oy —an] < wand 32, [Ay1 — Ay| < o0, by Lemma 2.3, we have ||x,41 — x,|| — 0. For
u € Qand u = Pc(u — A,Bu), we have
s = ull” = [P (@uy f (xn) + (T = @A) Syn) = Pe(w)||?
< Nl (vf Gea) = Aw) + (I = @y A) (Syn = ) ||*
< (anlly f (xen) = Aul| + I = an AJ|| Syn — ul])*
< (anllyf G = Aul + (1= @) [l = l])?
< an|y f () = Au]* + (1= ) |y —
+ 20, (1 = a¥) [y f (xn) = Aua[ ||y — ]|
< |y (n) = Aul| + (1~ ) [T = 1uB)26s — (T = A Byu”
+ 20, (1 = a¥) ||y f (xn) = Aua| ||y = |
< ayllyf(xn) = Au|)” + (1 - a¥) (len = u]* + An (Xn —2B) | B, Bullz)
+ 20, (1 = ataY) ||y f (n) = Au| ||y — 1]
< anlyf () = Au® + llx = ull® + (1 - @u¥) a(b - 26) | Bx, - Bul/

+ 20t (1= ) || f (on) = Au|[|yn = ]|
(3.10)
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So, we obtain
= (1= any)a(b - 2p)||Bxy - Bul*
< an [l f Gen) = Aul|* + (10 = ull + 1 =l (10 = wll = 1 = ) + €5 (3.11)

2
< aulyf(xen) = Au||” + € + 1% = Xt | (1200 — wll + |xne1 — ul]),

where €, = 2a, (1 — a,y) |y f (xn) — Aul|||yn — u||. Since a, — 0 and ||x,1 — x,]| — 0, we obtain
that ||Bx, — Bu|| — 0asn — oo. Further, by Lemma 2.1(iii), we have

”yn - u”2 = ||Pc(xn — XyBxy) — Pc(u — -lnBu)”2
< ((xn — MyBxy) = (u— AyBu), y, — u)

1
= 5 (1w = 1) = (= 1 Bu) P + ||y — ]|

e = 4uBox) — (u = 1, Bu) = (3~ )|

(3.12)
1 2 2 2
< 5 (e =l + [l = ul]* = | (¥ = y) = Aa(Bxa ~ Bu) )
1
= 5 (e = wlP + [lya = 2| = || = ]|
1
+ E(Z)Ln(xn — Yn, Bxy, — Bu) — A2||Bx, — Bu||2>.
So, we obtain that
Ny = 2||” < Nloen = el|® = || %0 = v ||* + 200 (X0 = Y, Bx — But) — 12| Bx,, — Bu||. (3.13)

So, we have

%na1 = ul® = || Pe(atny f (xu) + (I = 2, A)Syu) — Pe()||?
< Jlatn (y f (xa) = Au) + (I = n A) (Syw - u) |
< (@allyf Gen) = Aul| + I = ap All[|Syn - u]])®
< (@ullyf Gan) — Aull® + (1 @) |y~ ul])
< aullyf () = Aull* + (1= @) |lyn = ell” + 200 (1 = @) |7 () = Aue]| |y =
< aullyf () = Aull* + (1= @) I = ) = (1= ) || =
+2(1 = an¥) A (X0 = Y, By — Bu) — (1 - a,7) A\3||Bx,, — Bu)?

+ 200, (1= ) Iy f Gen) = Aullyn - u]
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< anllyf Gen) = Aull” + ll = ull = (1 = @) lln = gl
+2(1 = @nY) An{Xn = Yn, Bx, — Bu) — (1 - a,y) \3||Bx, — Bul*
+ 2 (1= any) [ f (o) = Aul|[|yn = ul],

(3.14)
which implies
(1= @) | = yul|* < @ally f(xn) = Aul]® + (U120 = ull + i = )10 = el
+2(1 = an¥) An{Xn = Y, Bxy — Bu) — (1 - a,y) A2 Bx,, - Bul*
+ 20, (1= an¥) Iy f Gen) = Auef|lyn = u]|-
(3.15)

Since a, — 0, ||xp41 — x4l — 0, and ||Bx, — Bu|| — 0, we obtain ||x, — y,|| = 0Oasn — oo.
Next, we have

||xn+1 - S]/n” = ”PC(“an(xn) +(I - anA)Syn) - PC(Sy") ”
< ||any f(xn) + (I - 2, A)Syn — Sya|| (3.16)
= au||y f (2n) + ASya]|-

Since a, — 0and {f(xn)}, {ASy,} are bounded, we have ||x,41 —Syn|| — 0asn — co. Since
”xn - Syn” < ”xn - xn+1|| + ”xn+1 - Syn”/ (317)
it implies that ||x, — Sy,|| — 0asn — oo. Since

”xn - an” < ”xn - Syn” + ”Syn - an”

(3.18)
< [|xn = Syall + lyn = xall,
we obtain that ||x,, — Sx,|| — 0asn — oo . Moreover, from
1y = Syl < Ny = 2xull + [|20 = Syl (3.19)

it follows that ||y, — Sy,|| — 0Oasn — co.
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Observe that Po(yf + (I — A)) is a contraction. Indeed, by Lemma 2.5, we have that
II - Al £1-7yandsince 0 <y <¥y/a, we have

[Pa(yf+ I = A)x-Pa(yf+T-A))y[ < [[(rf +T-A)x-(yf+T-A)y|
<yllfG) = FWI + 1T = Allf|x - v
<yallx-yll+ A-7)|lx -yl
= (1= (7 -ya)llx -yl

(3.20)

Then Banach’s contraction mapping principle guarantees that Po(y f + (I — A)) has a unique
fixed point, say g € H. That is, g = Pa(yf + (I — A))(g). By Lemma 2.1(i), we obtain that
((rf -A)q,p—-q) <0forall p € Q. Choose a subsequence {y,, } of {y,} such that

limsup((yf — A)q, Syn = q) = lim ((yf — A)q, Sym. - q)- (3.21)

n— oo

As {yn, } is bounded, there exists a subsequence {ynkj } of {yn, } which converges weakly to
p. We may assume without loss of generality that y,, — p. Since ||y, — Sy,|| — 0, we obtain
Syn, — p. Since ||x, — Sx,|| = O, [|x, — yn|| — 0 and by Lemma 2.4, we have p € F(S). Next,
we show that p € VI(C, B). Let

Tv =

Bv+ Ncou, ifveC,
(3.22)

0, if végC,
where N¢ov is normal cone to C at v € C, thatis, Nco = {w € H : (v—-u,w) >0, Yu € C}.
Then T is a maximal monotone. Let (v, w) € G(T'). Since w — Bv € Ncv and y,, € C, we have

(v —yn, w—Bv) >0.On the other hand, by Lemma 2.1(iv) and from y,, = Pc(x, — A,Bx,), we
have

<‘U ~Yn Yn— (Xn - )‘ann)> >0, (3.23)
and hence (v — ¥, (Y — X4) /Ay + Bxy,) > 0. Therefore, we have

<U - ynk/w> 2 <U - y”k’Bv>

—y"k)t_ e | ank>
n

= <v - Yn,, Bv - Bx,, — @>
n

2 <”U _ynk’Bv> - <U ~ Ynis

— X,
_ <ZJ _ ynk,BU _ Bynk> + <U - ynk/B]/nk — ank> - <U ~ Ynyr ynk)tn Nk >

e — Xn
2 <U _ynkayle - ank> - <U ~ Ynyes %>
(3.24)
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This implies (v — p,w) > 0 as k — oo. Since T is maximal monotone, we have p € T~10
and hence p € VI(C, B). We obtain that p € Q. It follows from the variational inequality

((rf-A)q,p-q) <0forall p € Q that

limsup((yf - A)q,Syn = q) = lim ((vf = A)4, Sy =) = ((vf - A)q,p - 4) <0.

n—oo

Finally, we prove x, — gq. By using (3.5) and together with Schwarz inequality, we

have
s~ =
<
<

<

<

IN

IN

IN

<

1Pc (atuy f () + (I = @0 A)Sy) = Pe () ||

llow (v £ Gen) = Ag) + (I = 2nA) Sy~ ) |

1 = @n ) (Syn = @) |I* + @Iy f () - Aql|”

+ 20, ((I = 2w A) (Syn — q), Y f (xn) = Aq)

(1= an?)’[lyn = 4ll”* + axlly f (xa) = Aq])®

+ 200 (SYn — 4, Y f (xn) — Aq) = 2, (A(Syn = q), Y f (xn) — Aq)
(1= )’ [lxn — 4l + @3 lly f (xa) = Aq]®

+ 20, (Syn = q,vf (xn) = v£()) + 20u(Syn — 9,7f (9) — Aq)
=20, (A(Syn = q), Y f (xn) - Aq)

(1= an)’[lxn =4Il + a3 lly f (xa) = Aq])®

+ 20 || Sy = gl [y f Cen) = v £ (@) | + 200(Syn - 4,7 () - Aq)
= 20,,(A(Syn = q), v f (xn) = Aq)

(1= @)’ lxa = qll” + azlly f (xn) - Aql”

+ 2yaay || yn = qll | %0 = qll + 204 (Syn — q,7f (9) - Aq)
~20,(A(Syn = 9), Y f (xn) = Aq)

(1= )’ [lxn — 4l + @3 lly f (xa) = Aq]®

+2yaa,|x, - q||° +2a,(Syn - 4,f(q) - Aq)

~20,(A(Syn = ),y f (xn) = Aq)

(1= a)® +2yaa,) %0 - g

+ 0, (2(Syn = 4,7 f () = Aq) + an|yf (x2) - Aq]]”

+20,|| A(Syn = @) |||y f (xn) = Aq])
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= (1-2(7 - ya)an) [l xa ~ 4]
+ 0, (2(Syn - a,7f(9) - AQ) + aulyf (xa) - Aq|?

20, [| A(Syn = @) | Iy (i) = Aqll + ||, — 4]|*).

(3.26)
Since {x,}, { f(x,)} and {Sy,} are bounded, we can take a constant # > 0 such that
12 |[yf(xn) = Aqll” + 2al| A(Syn = ) Il f () = Aql| + @Y’ [| 0 - q|* (3.27)
for all n > 0. It then follows that
0t~ ql < (=27 - ya)n) [0 gl* + aufi (3.28)

where f, = 2(Sy, - q,yf(q) = Aq) + na,. By limsup, _, _((yf — A)q,Sy» - q) < 0, we get
limsup, , f. < 0. By applying Lemma 2.3 to (3.28), we can conclude that x, — g. This
completes the proof O

Taking A = I and y = 1 in Theorem 3.1, we get the results of Chen et al. [5]

Corollary 3.2 (see [5, Proposition 3.1]). Let H be a real Hilbert space, let C be a closed convex
subset of H, and let B : C — H be a p-inverse strongly monotone mapping. Let f : C — C be
a contraction with coefficient a (0 < a < 1) and let S be a nonexpansive mapping of C into itself
such that Q = F(S)NVI(C, B) #0. Suppose {x,} is a sequence generated by the following algorithm:
xo € C,

Xn+1 = anf(xn) + (1 - a,)SPc(xy — Ay Bxy,) (3.29)

foralln =0,1,2,..., where {a,} C (0,1) and {A,} C (0,2p). If {a,} and {\,,} are chosen so that
An € [a,b] for some a,bwith0 < a<b<2p,

C1: ;lzlgba" =0, C2: Zan = oo,

(3.30)
C3: Zlaml —ay| < oo, Cd: ZM"H — Al < o0,

n=1 n=1

then {x,} converges strongly to q € Q, which is the unique solution in the Q to the following
variational inequality:

(f-Dgp-q)<0 VpeQ (3.31)

Taking A =1,y =1and f = u € C is a constant in Theorem 3.1, we get the results of
liduka and Takahashi [4].
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Corollary 3.3 (see [5, Theorem 3.1]). Let H be a real Hilbert space, let C be a closed convex subset
of H,and let B : C — H be a p-inverse strongly monotone mapping. Let f : C — C be a contraction
with coefficient a (0 < a < 1) and let S be a nonexpansive mapping of C into itself such that Q =
F(S)NVI(C,B) #0. Suppose {x,} is a sequence generated by the following algorithm: xo,u € C,

Xpi1 = oyt + (1 = a,) SPc(xy — Ly Bxy) (3.32)

foralln =0,1,2,..., where {a,} C (0,1) and {A,} C (0,2p). If {a,} and {\,,} are chosen so that
An € [a,b] for some a,bwith0 < a <b<2p,

C1: 7lll_r%(xn =0, C2: Zan = oo,
(3.33)
C3: Do —anl <o,  Ch DJAwir — Aul < o0,

n=1 n=1

then {x,} converges strongly to q € Q, which is the unique solution in the Q to the following
variational inequality:

(u-q,p-q)<0 VYpeQ. (3.34)

4. Applications

In this section, we apply the iterative scheme (1.12) for finding a common fixed point of
nonexpansive mapping and strictly pseudocontractive mapping and also apply Theorem 3.1
for finding a common fixed point of nonexpansive mapping and inverse strongly monotone
mapping. Recall that a mapping T : C — C is called strictly pseudocontractive if there exists k
with 0 < k <1 such that

|Tx - Ty|]* < ||lx-y|* + k| (I - T)x - (I -T)y||> Vx,yeC. (4.1)

If k = 0, then T is nonexpansive. Put B = I-T, where T : C — Cis a strictly pseudocontractive
mapping with k. Then B is ((1 — k) /2)-inverse-strongly monotone. Actually, we have, for all
x,yeC,

11 = Byx = (1= Byy||* < [|x - y||* + k|| Bx - By||- (4.2)
On the other hand, since H is a real Hilbert space, we have
|(I-B)x - (I-B)y||* = ||x-y|’+ ||Bx - By||* - 2(x - y, Bx - By). (4.3)
Hence, we have

1-k
(x-y,Bx-By) > T”Bx—By”Z. (44)
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Using Theorem 3.1, we firse prove a strongly convergence theorem for finding a common
fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping.

Theorem 4.1. Let H be a real Hilbert space, let C be a closed convex subset of H, and let A be a
strongly positive linear bounded operator of H into itself with coefficient y > 0 such that ||Al| = 1,
solet f: C — C bea contraction with coefficient & (0 < a < 1). Assume that 0 < y < y/a. Let
S be a nonexpansive mapping of C into itself and let T be a strictly pseudocontractive mapping of C
into itself with B such that F(S) N F(T) #@. Suppose {x,} is a sequence generated by the following
algorithm:

x0 € C, Xn+l = PC(“an(xn) + (I —anA)S((1 = An)xn — J\nTxn)) (4.5)

foralln=0,1,2,..., where {a,} C [0,1) and {\,} C [0,1-p). If {a,} and {\,} are chosen so that
Ay € [a,b] for some a,bwith0 <a<b<1-p,

C1: %erban =0, C2: ;an = o0,
(4.6)
C3: Dllan —anl <o,  Cd: Ddyir — Al < o0,
n=1 n=1
then {x,} converges strongly to g € F(S) N F(T), such that
((rf-A)ap-q9)<0 VYp€eF(S)NF(T). (4.7)

Proof. Put B = 1 — T, then B is ((1 — k)/2)-inverse-strongly monotone and F(T) = VI(C, B)
and Pc(x, —1,Bx,) = (1-A,)x, +1,Tx,. So by Theorem 3.1, we obtain the desired result. [

Taking A = I and y = 1 in Theorem 4.1, we get the results of Chen et al. [5]

Corollary 4.2 (see [5, Theorem 4.1]). Let H be a real Hilbert space and let C be a closed convex
subset of H. Let f : C — C be a contraction with coefficient a (0 < a < 1), let S be a nonexpansive
mapping of C into itself, and let T be a strictly pseudocontractive mapping of C into itself with f such
that F(S) N F(T) #@. Suppose {x,} is a sequence generated by the following algorithm:

xX0€C, Xp41= anf(xn) + (1 =ay)S((1 = An)xy = LuTxy) (4.8)

foralln=0,1,2,..., where {a,} C [0,1) and {\,} C [0,1-p). If {a,} and {\,} are chosen so that
Ay € [a,b] forsome a,bwith0<a<b<1-p,

C1: rlzlg})a" =0, C2: Z“" = oo,
(4.9)
C3: Do —anl <o,  Ch DAwir — Aul < o0,

n=1 n=1
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then {x,} converges strongly to g € F(S) N F(T), such that
((f-I)g,p—q) <0 VYpeF(S)NF(T). (4.10)

Theorem 4.3. Let H be a real Hilbert space, A a strongly positive linear bounded operator of H into
itself with coefficient ¥ > 0 such that ||Al| = 1 and let f : H — H be a contraction with coefficient
a (0 < a <1). Assume that 0 < y < y/a. Let S be a nonexpansive mapping of H into itself and B
a B-inverse strongly monotone mapping of H into itself such that F(S) N B710#@. Suppose {x,} is a
sequence generated by the following algorithm:

x0 € H,  xyp1 = anyf(xy) + (I —a,A)S(x, — LyBxy,) (4.11)

foralln =0,1,2,..., where {a,} C [0,1) and {A,} C [0,2p). If {a,} and {\,} are chosen so that
An € [a,b] for some a,bwith0 < a<b<2p,

C1: ,Pgba" =0, C2: ;an = o0,
(4.12)
C3: Dllan —anl <o,  Cd: Ddwir — Al < o0,
n=1 n=1
then {x,} converges strongly to g € F(S) N B0, such that
((yf-A)gpr-q)<0 VYpeF(S)nB™0. (4.13)

Proof. We have B™10 = VI(H, B). So putting Py = I, by Theorem 3.1, we obtain the desired
result. O

Taking A = I and y = 1 in Theorem 4.3, we get the results of Chen et al. [5]

Corollary 4.4 (see [2, Theorem 4.2]). Let H be a real Hilbert space. Let f be a contractive mapping
of H into itself with coefficient a (0 < a < 1) and S a nonexpansive mapping of H into itself and B
a B-inverse strongly monotone mapping of H into itself such that F(S) N B0 # 0. Suppose {x,} is a
sequence generated by the following algorithm:

x0€ H, xy1 =anf(xy) + (1 —a,)S(xy, — AyBxy,) (4.14)

foralln =0,1,2,..., where {a,} C [0,1) and {A,} C [0,2p). If {a,} and {\,} are chosen so that
An € [a,b] for some a,bwith0 < a<b<2p,

C1: rlzlg})a" =0, C2: Z“" = oo,
(4.15)
C3: Do —anl <o,  Ch DAwir — Aul < o0,

n=1 n=1
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then {x,} converges strongly to g € F(S) N B~10, such that
((f-Dq,p-4q)<0 ¥YpeF(S)nBo. (4.16)

Remark 4.5. By taking A = I,y = 1,and f = u € C in Theorems 4.1 and 4.3, we can obtain
Theorems 4.1 and 4.2 in [4], respectively.
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