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Let p(z) be a polynomial of degree n and for any real or complex number a, and let D,p(z) =
np(z) + (a — z)p'(z) denote the polar derivative of the polynomial p(z) with respect to a. In
this paper, we obtain new results concerning the maximum modulus of a polar derivative of a
polynomial with restricted zeros. Our results generalize as well as improve upon some well-known
polynomial inequalities.
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1. Introduction and Statement of Results

If p(z) is a polynomial of degree n, then it is well known that

max|p'(z)| < nmax|p(z)|. (1.1)

The above inequality, which is an immediate consequence of Bernstein’s inequality applied
to the derivative of a trigonometric polynomial, is best possible with equality holding if and
only if p(z) has all its zeros at the origin. If p(z) #0in |z| < 1, then

’ n
< — .
max|p'(z)| < 5 max|p(z)] (1.2)

Inequality (1.2) was conjectured by Erdos and later proved by Lax [1]. If the polynomial p(z)
of degree n has all its zeros in |z| < 1, then it was proved by Turan [2] that
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n
r‘nlaflp(ZI o max|p(z)[. (1.3)

Inequality (1.2) was generalized by Malik [3] who proved that if p(z) #0 in |z] < k, k > 1,
then

max|p'(z)| < 7 max (1.4)
For the class of polynomials having all its zeros in |z| < k, k > 1, Govil [4] proved that
max|p'(2)] 2 17 “om nax|p(z)|- (1.5)

Inequality (1.5) is sharp and equality holds for p(z) = z" + k™. By considering a more general
class of polynomials p(z) = ap + >»_; a,2”, 1 <t < n, not vanishing in |z| < k, k > 1, Gardner
et al. [5] proved that

max|p'(2)] < 75

{max|p(z)| - }, (1.6)

lzI=1

where m = minglp(z)] and so = k" {((t/n)(|ail/ (lao] - m)Kt + 1)/ ((t/n) (ail/ (Jao] -
m))k!* +1)}.

Let D.{p(z)} denote the polar derivative of the polynomial p(z) of degree n with
respect to the point a. Then

Du{p(2)} = np(z) + (a - 2)p'(2). (1.7)

The polynomial D,{p(z)} is of degree at most n — 1 and it generalizes the ordinary derivative
in the sense that

a— oo o

lim [w] =p'(z). (1.8)

As an extension of (1.5), it was shown by Aziz and Rather [6] that if p(z) has all its zeros in
|z| <k, k > 1, then for |a| > k,

5
max|Dop(2)| > n( I maxlp(a). (19)

Inequality (1.9) was later sharpened by Dewan and Upadhye [7], who proved the following
theorem.
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Theorem A. Let p(z) be a polynomial of degree n having all its zeros in |z| < k, k > 1, then for
laf > k,

1 1 /k"-1
> _ -
max|Dop(a)] > el - | o maxlp@) |+ 5 (g )m) @)
where m = minp;—x|p(z)|.

Recently, Dewan et al. [8] extented inequality (1.6) to the polar derivative of a
polynomial and obtained the following result.

Theorem B. If p(z) = ao + >, a»z", 1 < t < n, is a polynomial of degree n having no zeros in
|z| <k, k>1, then for |a| > 1,

max|Dop(2)] < 1 { (el + so)max|p(@)| - (lal - m |, (L.11)

where m = mingk|p(2)| and sy = kK*H{((t/n)(|lal/(laol — m))k™" + 1)/ ((¢/n)(la:l/ (|aol -
m))k* +1)).

In this paper, we will first generalize Theorem A as well as improve upon the bound
obtained in inequality (1.10) by involving some of the coefficients of p(z). More precisely, we
prove the following.

Theorem 1.1. If p(z) = 31, a;z' is a polynomial of degree n > 3 having all its zeros in |z| < k, k >
1, then for |a| > k,

max| Dep(2)|

1 kn -1
2 n(jal = k) [k" Tmalp@] + ey

2|an_1| k-1
+k(k"+1)(n+1)< n "(k"1)>

o 2lan-l ((k"—l)—n(k—1)>_ (k"2 -1) - (n-2)(k-1)
(k™ +1)k? nn-1) (n-2)(n-23)

1 [k"-l—l k3 -1

]l(n —1)a; + 2aay|

T | Th-1  n-3
+ 2 (k-1 |na +aa|+n(|a|+k)m
ki\ n+1 0T e 2k"

(1.12)
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forn >3 and

1 k" -1
o k-1
max|Dap(2)] 2 n(al k>[kn P @+ Sy

2| kn -1
+k(k"+1)(n+1)< n _(k"1)>
2k"5|ay o] / (k= 1)" (1.13)
BNUZESY <n(n—1)>]

k-1

2k2 —— ((k+ 1)|nag + aa1| + (k= 1)|(n - 1)a;y + 2aay|)

(|“| + k)
e

for n =3, where m = min;_k|p(z)|.

Now it is easy to verify that if k > 1, then (k"-1) /n—(k-1) > 0, [(k""'-1)/ (n-1)—(k"3-
1)/(n-3)] > 0and [(((k"-1)-n(k-1))/n(n-1))=(((k"?-1)-(n-2)(k-1))/ (n-2)(n-3))] > 0
for n > 3. Hence for polynomial of degree n > 3, Theorem 1.1 is a refinement of Theorem A.

Dividing both sides of inequalities (1.12) and (1.13) by |a| and letting |a| — oo, we get
the following result.

Corollary 1.2. If p(z) = 31, a;iz' is a polynomial of degree n > 3 having all its zeros in |z| < k,
k>1, then

n 2 k-1
ﬁﬁa{dp(z)' k”+1|:rlnlai(|p(z)| m(T—(k—1)>|an—1|
2 /(k"-1)—ntk-1) (k"2-1)-(n-2)(k-1)
+P< nn-1 (n-2)(n-23) >|“"‘2|] (114)
2(k™ 1 - ) 2 [km1-1 Kk"3-1
o) e | ThoT T s |

forn >3 and

, n 2 /kr-1
max|p'(z)| 2 5 [rlnla{<lp(2)| +m+ m<7 - (k—1)>lan-1|

(1.15)

2 /(k-1)" k
P(n(n—l))'a"‘zl] K2 ((k+1)|a1|+2(k 1)]az|)

for n =3, where m = minz_k|p(z)|.

These inequalities are sharp and equality holds for the polynomial p(z) = z" + k™.
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If we take k = 1 in the previous Theorem, we get a result, which was proved by Aziz
and Dawood [9].

Next we consider a class of polynomial having no zeros in |z| < k, where k > 1 and
prove the following generalization of Theorem B.

Theorem 1.3. If p(z) = ao + 3, avz’, 1 < p < n, is a polynomial of degree n having no zeros in
|z| <k, k>1,then for0 <r < R< kand |a| > R,

n laf :
rlr}e_11>?<|D,xp(z)|§ R TS0 )expyn Agdt r‘nﬁx|p(z)|

1+s;
R
+<s’O +1- <|%| + 56) exp{nj Atdt}>m:|,

(1.16)

where

= (u/n)(|ay|/ (lao| - m) ) ki gEd g
T (ﬂ/n)('ﬂy'/(|a0| - m))(k/”ltﬂ T kzﬂt)’

s,=(5>”+1 (u/n)(Jau|Rk*/ (Ja| - m)) +1 (1.17)
" \R (u/n)(|au|k#1/(lao) -m)R) +1 |

t

m = min|p(z)|.
|z|=k
Remark 1.4. For R = r = 1 Theorem 1.3 reduces to Theorem B.

Remark 1.5. Dividing the two sides of (1.16) by |a| and letting |¢| — oo, we obtain a result of
Chanam and Dewan [10].

2. Lemmas
For the proofs of these theorems we need the following lemmas.

Lemma 2.1. If p(z) has all its zeros in |z| < 1, then for every |a| > 1,
n
max| Dup(2)| = 3 { (al - Dimax|p(@)| + (lal + 1m | 1)

where m = ming; -1 |p(z)|.

This lemma is due to Aziz and Rather [6].
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Lemma 2.2. If p(z) is a polynomial of degree n, having all its zeros in |z| < k, where k > 1, then

2k"
max|p(z)| > g~ mmax|p(z)|- (22)
Inequality (2.2) is best possible and equality holds for p(z) = z" + k™.
This lemma is according to Aziz [11].

Lemma 2.3. If p(z) is a polynomial of degree n, then for R > 1,

2(R" -1
max|p(z)| < R'max|p(z)| - %IP(O)I
R'-1 R'2- s
e [0
ifn>2,and
2 (R_ 1) ’
rlr}a1>?<|p(z)| <R max|p(z)| - [(R+1)|p0)] + (R-1)|p'(0)]] (2.4)

ifn=2.
This lemma is according to Dewan et al. [12].

Lemma 2.4. If p(z) is a polynomial of degree n > 3 having no zeros in |z| < 1 and m = minyz -1 |p(2)|,
then for R > 1,

R+1 R -1 , 2 [R-1
maxlp(2)| < (55 Jmaxlp(a)] - (55 Jm PO s [T - R- )|
2.5
o[ (B=D=nR-DY [ (RZ-1) - (1-2)®R-1) 29
ol () - (n-2)(n-3)
ifn>3,and
R"+1 R" -1
g}gglp(Z)IS<—2 )ﬁglglp(z)l—<—2 >m
—|P'(0)|ni1|(Rn - (R- 1)] (2.6)
" (R_l)
LA Ty
ifn=3.

This result is according to Dewan et al. [13].
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Lemma 2.5. If p(z) = ao + 35_, a»z”, 1 < p < nis a polynomial of degree n such that p(z) #0 in
|z| <k, k>0, thenfor0<r < R<k,

(1/m)(lay|/ (laol —m)) ke +
il 4+ kit 4 (p/m) (|ag|/ (Jaol — m)) (kF1e# + k24t)

R (u/n)(|au|/ (|ao| — m))kr1e—t + o
+ [1—eXp{ f L g el 4 (#/n)(la#|/(|a0| m))(kﬂnt#_'_kzﬂt) m,

R
1\22}{(|p(z)| Sexp{nfr }max|p(z)|

(2.7)

where m = miny;—|p(z)|.

Lemma 2.5 is according to Chanam and Dewan [10].

3. Proof of the Theorems

Proof of Theorem 1.1. By hypothesis that the polynomial p(z) has all its zeros in |z| < k, where
k > 1, therefore all the zeros of the polynomial G(z) = p(kz) lie in |z] < 1. Applying

Lemma 2.1 to the polynomial G(z) and noting that |a|/k > 1, we get

nl/lal || :
rlrzllnga/kG(Z)l 25 [(7 - 1>m|a;<lG(Z)l + ( et 1>r|3g11|G(Z)I], (3.1)
that is,
nl/lal -k la| + k
Ifz}ii‘lD"p(z)l 25 [<T>I|§1|§I§|P(Z)| + < 2 >m] (3.2)

The polynomial p(z) is of degree n > 3 and so D,p(z) is the polynomial of degree n—1, where
n—1> 2, hence applying Lemma 2.3 to the polynomial D,p(z), we get for k > 1

2(km1 -1
max|Dup(z)| < k" 'max|D,p(z)| - g

|nag + aa;|
|zI=k |z[=1 n+1

(3.3)

- kn—l -1 - kn—3_
n-1 n-3

1:||(n— 1)a; + 2aa;)|.
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Combining (3.2) and (3.3), we get for k > 1

n la| — k |a|+k>]
r‘r;g?lDap(Z)lzzK o )rlggglp(zm( o )™

2(k" 1 -1)
+ mmao +aa| (3.4)

1 [k -1 k3 -1
() (225 o

Since the polynomial p(z) has all zeros in |z| < k, k > 1, the polynomial g(z) = z"p(1/z)
has no zero in |z| < 1/k, hence the polynomial g(z/k) has all its zeros in |z| > 1, therefore on
applying Lemma 2.4 to the polynomial q(z/k), we get
(i)
Nk

= (F)manfa(E)]- (7 )
q k)|~ 2 |z=1 q k 2 |z|=1

max
|z|=k>1
2|an| [k"-1
S (m+Dk| n (k- 1)] (3.5)
_ 2|an| ((k” -1)-n(k - 1)) ~ (k"2-1)-(n-2)(k-1)
k2 nn-1) (n-2)(n-23) '
Since maxz-1|q(z/k)| = (1/k")maxp-k|p(z)| (and similarly for the minima), (3.5) is

equivalent to

max|p(z)| > ( 2K" >max|p(z)| + <kn _1>m
|z|=k “\k"+1/ 221 k" +1

4k Yana| (K" -1
T D) | n _(k_l)] (3.6)

4k 2an| [/ (k" = 1) = n(k - 1) (k"2 =1) - (n-2)(k - 1)
T T ( n(n-1) )‘ (n-2)(n-3) '

Combining (3.4) and (3.6) we get the desired result. This completes the proof of inequality
(1.12). The proof of the Theorem in the case n = 3 follows along the same lines as the
proof of (1.12) but instead of inequalities (2.3) and (2.5), we use inequalities (2.4) and (2.6),
respectively. O

Proof of Theorem 1.3. By hypothesis that the polynomial p(z) = a¢ + 3}_,av2", 1 < pu < n,
has no zero in |z| < k, where k > 1, therefore the polynomial F(z) = p(Rz) has no zero in
|z| < k/R, where k/R > 1. Since |a/R| > 1, using Theorem B we have

_ n_[(lal, o
max|Da/r[F(2)]] = max|De[p(2)]] < 1 = { <§ * So>r‘gggglp(z)| - (f - 1>m} (3.7)
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where m = min;_x/r|F(z)| = min;¢|p(z)| and

o _ (KN (/n)(|a| RK“/ (Jaol - m)) +1
S°_<R> {<#/n><|aﬂ|kﬂ+1/(|ao|—m)R)+1 ‘ (3.8)

Using Lemma 2.5 in the previous inequality, we get

D,
max|Dap(z))|

2 e R

“1+s,|\R 4kt (u/n) (|ag| / (Jaol—m)) (kP +k2#E)

+<sg+1—<%|+sg>

xexp{ IR (#/Tl)(|a#|/(|a0| m))k/“'ltl‘ 1y g }>m]

w4 k4 (u/n) (|au]/ (laol — m)) (ki1 + k2t)

This completes the proof of the theorem. O
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