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We consider generalized Morrey spaces Mp,ω(Rn) with a general function ω(x, r) defining the
Morrey-type norm. We find the conditions on the pair (ω1, ω2) which ensures the boundedness of
the maximal operator and Calderón-Zygmund singular integral operators from one generalized
Morrey space Mp,ω1(R

n) to another Mp,ω2(R
n), 1 < p < ∞, and from the space M1,ω1(R

n) to the
weak space WM1,ω2(R

n). We also prove a Sobolev-Adams type Mp,ω1(R
n) → Mq,ω2(R

n)-theorem
for the potential operators Iα. In all the cases the conditions for the boundedness are given it
terms of Zygmund-type integral inequalities on (ω1, ω2), which do not assume any assumption on
monotonicity of ω1, ω2 in r. As applications, we establish the boundedness of some Schrödinger
type operators on generalized Morrey spaces related to certain nonnegative potentials belonging
to the reverse Hölder class. As an another application, we prove the boundedness of various
operators on generalized Morrey spaces which are estimated by Riesz potentials.
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1. Introduction

For x ∈ R
n and r > 0, let B(x, r) denote the open ball centered at x of radius r and �

B(x, r)
denote its complement.

Let f ∈ Lloc
1 (Rn). The maximal operator M, fractional maximal operator Mα, and the

Riesz potential Iα are defined by

Mf(x) = sup
t>0

|B(x, t)|−1
∫
B(x,t)

∣∣f(y)∣∣dy,

Mαf(x) = sup
t>0

|B(x, t)|−1+(α/n)
∫
B(x,t)

∣∣f(y)∣∣dy, 0 ≤ α < n,
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Iαf(x) =
∫
Rn

f
(
y
)
dy∣∣x − y
∣∣n−α , 0 < α < n,

(1.1)

where |B(x, t)| is the Lebesgue measure of the ball B(x, t).
Let T be a singular integral Calderon-Zygmund operator, briefly a Calderon-Zygmund

operator, that is, a linear operator bounded from L2(Rn) in L2(Rn) taking all infinitely
continuously differentiable functions f with compact support to the functions Tf ∈ Lloc

1 (Rn)
represented by

Tf(x) =
∫
Rn

K
(
x, y

)
f
(
y
)
dy a.e. on supp f. (1.2)

Here K(x, y) is a continuous function away from the diagonal which satisfies the standard
estimates; there exist c1 > 0 and 0 < ε ≤ 1 such that

∣∣K(
x, y

)∣∣ ≤ c1
∣∣x − y

∣∣−n (1.3)

for all x, y ∈ R
n, x /=y, and

∣∣K(
x, y

) −K
(
x′, y

)∣∣ + ∣∣K(
y, x

) −K
(
y, x′)∣∣ ≤ c1

(
|x − x′|∣∣x − y

∣∣
)ε ∣∣x − y

∣∣−n, (1.4)

whenever 2|x − x′| ≤ |x − y|. Such operators were introduced in [1].
The operators M ≡ M0, Mα, Iα, and T play an important role in real and harmonic

analysis and applications (see, e.g., [2, 3]).
Generalized Morrey spaces of such a kind were studied in [4–20]. In the present work,

we study the boundedness of maximal operatorM and Calderón-Zygmund singular integral
operators T from one generalized Morrey space Mp,ω1 to another Mp,ω2 , 1 < p < ∞, and from
the space M1,ω1 to the weak space WM1,ω2 . Also we study the boundedness of fractional
maximal operator Mα and Riesz potential operators Mα from Mp,ω1 to Mq,ω2 , 1 < p < q < ∞,
and from the space M1,ω1 to the weak space WM1,ω2 , 1 < q < ∞.

As applications, we establish the boundedness of some Schödinger type operators on
generalized Morrey spaces related to certain nonnegative potentials belonging to the reverse
Hölder class. As an another application, we prove the boundedness of various operators on
generalized Morrey spaces which are estimated by Riesz potentials.

2. Morrey Spaces

In the study of local properties of solutions to of partial differential equations, together with
weighted Lebesgue spaces, Morrey spaces Mp,λ(Rn) play an important role; see [21, 22].
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Introduced by Morrey [23] in 1938, they are defined by the norm

∥∥f∥∥Mp,λ
:= sup

x,r>0
r−λ/p

∥∥f∥∥Lp(B(x,r))
, (2.1)

where 0 ≤ λ < n, 1 ≤ p < ∞.
We also denote by WMp,λ the weak Morrey space of all functions f ∈ WLloc

p (Rn) for
which

∥∥f∥∥WMp,λ
≡ ∥∥f∥∥WMp,λ(Rn) = sup

x∈(Rn),r>0
r−λ/p

∥∥f∥∥WLp(B(x,r))
< ∞, (2.2)

where WLp denotes the weak Lp-space.
Chiarenza and Frasca [24] studied the boundedness of the maximal operator M in

these spaces. Their results can be summarized as follows.

Theorem 2.1. Let 1 ≤ p < ∞ and 0 ≤ λ < n. Then for p > 1 the operator M is bounded in Mp,λ and
for p = 1 M is bounded from M1,λ toWM1,λ.

The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < q < ∞, then Iα
is bounded from Lp(Rn) to Lq(Rn) if and only if α = n(1/p − 1/q) and for p = 1 < q < ∞, Iα
is bounded from L1(Rn) to WLq(Rn) if and only if α = n(1 − 1/q). S. Spanne (published by
Peetre [25]) and Adams [26] studied boundedness of the Riesz potential in Morrey spaces.
Their results can be summarized as follows.

Theorem 2.2 (Spanne, but published by Peetre [25]). Let 0 < α < n, 1 < p < n/α, 0 < λ < n−αp.
Set 1/p − 1/q = α/n and λ/p = μ/q. Then there exists a constant C > 0 independent of f such

∥∥Iαf∥∥Mq,μ
≤ C

∥∥f∥∥Mp,λ
(2.3)

for every f ∈ Mp,λ.

Theorem 2.3 (Adams [26]). Let 0 < α < n, 1 < p < n/α, 0 < λ < n − αp, and 1/p − 1/q =
α/(n − λ). Then there exists a constant C > 0 independent of f such

∥∥Iαf∥∥Mq,λ
≤ C

∥∥f∥∥Mp,λ
(2.4)

for every f ∈ Mp,λ.

Recall that, for 0 < α < n,

Mαf(x) ≤ υα/n−1
n Iα

(∣∣f∣∣)(x), (2.5)

hence Theorems 2.2 and 2.3 also imply boundedness of the fractional maximal operator Mα,
where vn is the volume of the unit ball in R

n.
The classical result for Calderon-Zygmund operators states that if 1 < p < ∞ then T

is bounded from Lp(Rn) to Lp(Rn), and if p = 1 then T is bounded from L1(Rn) to WL1(Rn)
(see, e.g., [2]).
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Fazio and Ragusa [27] studied the boundedness of the Calderón-Zygmund singular
integral operators in Morrey spaces, and their results imply the following statement for
Calderón-Zygmund operators T .

Theorem 2.4. Let 1 ≤ p < ∞, 0 < λ < n. Then for 1 < p < ∞ Calderón-Zygmund singular integral
operator T is bounded inMp,λ and for p = 1 T is bounded from M1,λ toWM1,λ.

Note that in the case of the classical Calderón-Zygmund singular integral operators
Theorem 2.4 was proved by Peetre [25]. If λ = 0, the statement of Theorem 2.4 reduces to the
aforementioned result for Lp(Rn).

3. Generalized Morrey Spaces

Everywhere in the sequel the functions ω(x, r), ω1(x, r) and ω2(x, r), used in the body of the
paper are nonnegative measurable function on R

n × (0,∞).
We find it convenient to define the generalized Morrey spaces in the form as follows.

Definition 3.1. Let 1 ≤ p < ∞. The generalized Morrey space Mp,ω(Rn) is defined of all
functions f ∈ Lloc

p (Rn) by the finite norm

∥∥f∥∥Mp,ω
= sup

x∈Rn,r>0

r−n/p

ω(x, r)

∥∥f∥∥Lp(B(x,r))
. (3.1)

According to this definition, we recover the spaceMp,λ(Rn) under the choice ω(x, r) =
r(λ−n)/p:

Mp,λ(Rn) = Mp,ω(Rn)|ω(x,r)=r(λ−n)/p . (3.2)

In [4, 5, 17, 18] there were obtained sufficient conditions on weights ω1 and ω2 for the
boundedness of the singular operator T from Mp,ω1(R

n) to Mp,ω2(R
n). In [18] the following

condition was imposed on w(x, r):

c−1ω(x, r) ≤ ω(x, t) ≤ c ω(x, r), (3.3)

whenever r ≤ t ≤ 2r, where c(≥ 1) does not depend on t, r and x ∈ R
n, jointly with the

condition

∫∞

r

ω(x, t)p
dt

t
≤ C ω(x, r)p, (3.4)

for the maximal or singular operator and the condition

∫∞

r

tαpω(x, t)p
dt

t
≤ C rαpω(x, r)p (3.5)
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for potential and fractional maximal operators, where C(> 0) does not depend on r and x ∈
R

n.
Note that integral conditions of type (3.4) after the paper [28] of 1956 are often referred

to as Bary-Stechkin or Zygmund-Bary-Stechkin conditions; see also [29]. The classes of almost
monotonic functions satisfying such integral conditions were later studied in a number of
papers, see [30–32] and references therein, where the characterization of integral inequalities
of such a kind was given in terms of certain lower and upper indices known asMatuszewska-
Orlicz indices. Note that in the cited papers the integral inequalities were studied as r → 0.
Such inequalities are also of interest when they allow to impose different conditions as r → 0
and r → ∞; such a case was dealt with in [33, 34].

In [18] the following statements were proved.

Theorem 3.2 ([18]). Let 1 ≤ p < ∞ and ω(x, r) satisfy conditions (3.3)-(3.4). Then for p > 1 the
operators M and T are bounded in Mp,ω(Rn) and for p = 1M and T are bounded from M1,ω(Rn) to
WM1,ω(Rn).

Theorem 3.3 ([18]). Let 1 ≤ p < ∞, 0 < α < (n/p), 1/q = 1/p−α/n andω(x, t) satisfy conditions
(3.3) and (3.5). Then for p > 1 the operators Mα and Iα are bounded from Mp,ω(Rn) to Mq,ω(Rn)
and for p = 1Mα and Iα are bounded from M1,ω(Rn) toWMq,ω(Rn).

4. The Maximal Operator in the Spaces Mp,ω(Rn)

Theorem 4.1. Let 1 ≤ p < ∞ and f ∈ Lloc
p (Rn). Then for p > 1

∥∥Mf
∥∥
Lp(B(x,t))

≤ Ctn/p
∫∞

t

r−n/p−1
∥∥f∥∥Lp(B(x,r))

dr, (4.1)

and for p = 1

∥∥Mf
∥∥
WL1(B(x,t))

≤ Ctn
∫∞

t

r−n−1
∥∥f∥∥L1(B(x,r))

dr, (4.2)

where C does not depend on f , x ∈ R
n and t > 0.

Proof. Let 1 < p < ∞. We represent f as

f = f1 + f2, f1
(
y
)
= f

(
y
)
χB(x,2t)

(
y
)
, f2

(
y
)
= f

(
y
)
χ �B(x,2t)

(
y
)
, t > 0, (4.3)

and have

∥∥Mf
∥∥
Lp(B(x,t))

≤ ∥∥Mf1
∥∥
Lp(B(x,t))

+
∥∥Mf2

∥∥
Lp(B(x,t))

. (4.4)

By boundedness of the operator M in Lp(Rn), 1 < p < ∞we obtain

∥∥Mf1
∥∥
Lp(B(x,t))

≤ ∥∥Mf1
∥∥
Lp(Rn) ≤ C

∥∥f1∥∥Lp(Rn) = C
∥∥f∥∥Lp(B(x,2t))

, (4.5)
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where C does not depend on f . From (4.5) we have

∥∥Mf1
∥∥
Lp(B(x,t))

≤ Ctn/p
∫∞

2t
r−n/p−1

∥∥f∥∥Lp(B(x,r))
dr

≤ Ctn/p
∫∞

t

r−n/p−1
∥∥f∥∥Lp(B(x,r))

dr

(4.6)

easily obtained from the fact that ‖f‖Lp(B(x,2t)) is nondecreasing in t, so that ‖f‖Lp(B(x,2t)) on the
right-hand side of (4.5) is dominated by the right-hand side of (4.6).

To estimate Mf2, we first prove the following auxiliary inequality:

∫
�
B(x,t)

∣∣x − y
∣∣−n∣∣f(y)∣∣dy ≤ C

∫∞

t

s−(n/p)−1
∥∥f∥∥Lp(B(x,s))

ds, 0 < t < ∞. (4.7)

To this end, we choose β > n/p and proceed as follows:

∫
�
B(x,t)

∣∣x − y
∣∣−n∣∣f(y)∣∣dy ≤ β

∫
�
B(x,t)

∣∣x − y
∣∣−n+β∣∣f(y)∣∣dy

∫∞

|x−y|
s−β−1ds

= β

∫∞

t

s−β−1ds
∫
{y∈Rn:t≤|x−y|≤s}

∣∣x − y
∣∣−n+β∣∣f(y)∣∣dy

≤ C

∫∞

t

s−β−1
∥∥f∥∥Lp(B(x,s))

∥∥∥∣∣x − y
∣∣−n+β∥∥∥

Lp′ (B(x,s))
ds.

(4.8)

For z ∈ B(x, t) we get

Mf2(z) = sup
r>0

|B(z, r)|−1
∫
B(z,r)

∣∣f2(y)∣∣dy

≤ Csup
r≥2t

∫
(�
B(x,2t))∩B(z,r)

∣∣y − z
∣∣−n∣∣f(y)∣∣dy

≤ Csup
r≥2t

∫
(�
B(x,2t))∩B(z,r)

∣∣x − y
∣∣−n∣∣f(y)∣∣dy

≤ C

∫
�
B(x,2t)

∣∣x − y
∣∣−n∣∣f(y)∣∣dy.

(4.9)

Then by (4.7)

Mf2(z) ≤ C

∫∞

2t
s−n/p−1

∥∥f∥∥Lp(B(x,s))
ds

≤ C

∫∞

t

s−n/p−1
∥∥f∥∥Lp(B(x,s))

ds,

(4.10)
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where C does not depend on x, r. Thus, the functionMf2(z), with fixed x and t, is dominated
by the expression not depending on z. Then

∥∥Mf2
∥∥
Lp(B(x,t))

≤ C

∫∞

t

s−n/p−1
∥∥f∥∥Lp(B(x,s))

ds ‖1‖Lp(B(x,t)). (4.11)

Since ‖1‖Lp(B(x,t)) = Ctn/p, we then obtain (4.1) from (4.6) and (4.11).
Let p = 1. It is obvious that for any ball B = B(x, r)

∥∥Mf
∥∥
WL1(B(x,t))

≤ ∥∥Mf1
∥∥
WL1(B(x,t))

+
∥∥Mf2

∥∥
WL1(B(x,t))

. (4.12)

By boundedness of the operator M from L1(Rn) toWL1(Rn)we have

∥∥Mf1
∥∥
WL1(B(x,t))

≤ C
∥∥f∥∥L1(B(x,2t))

, (4.13)

where C does not depend on x, t.
Note that inequality (4.11) also true in the case p = 1. Then by (4.11), we get inequality

(4.2).

Theorem 4.2. Let 1 ≤ p < ∞ and the function ω1(x, r) and ω2(x, r) satisfy the condition

∫∞

t

ω1(x, r)
dr

r
≤ C ω2(x, t), (4.14)

where C does not depend on x and t. Then for p > 1 the maximal operator M is bounded from
Mp,ω1(R

n) toMp,ω2(R
n) and for p = 1M is bounded from M1,ω1(R

n) toWM1,ω2(R
n).

Proof. Let 1 < p < ∞ and f ∈ Mp,ω1(R
n). By Theorem 4.1 we obtain

∥∥Mf
∥∥
Mp,ω2

= sup
x∈Rn, t>0

ω−1
2 (x, t)t−n/p

∥∥Mf
∥∥
Lp(B(x,t))

≤ C sup
x∈Rn, t>0

ω−1
2 (x, t)

∫∞

t

r−n/p−1
∥∥f∥∥Lp(B(x,r))

dr.

(4.15)

Hence

∥∥Mf
∥∥
Mp,ω2

≤ C
∥∥f∥∥Mp,ω1

sup
x∈Rn, t>0

1
ω2(x, t)

∫∞

t

ω1(x, r)
dr

r

≤ C
∥∥f∥∥Mp,ω1

(4.16)

by (4.14), which completes the proof for 1 < p < ∞.
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Let p = 1 and f ∈ M1,ω1(R
n). By Theorem 4.1 we obtain

∥∥Mf
∥∥
WM1,ω2

= sup
x∈Rn, t>0

ω−1
2 (x, t)t−n

∥∥Mf
∥∥
WL1(B(x,t))

≤ C sup
x∈Rn, t>0

ω−1
2 (x, t)

∫∞

t

r−n−1
∥∥f∥∥L1(B(x,r))

dr.

(4.17)

Hence

∥∥Mf
∥∥
WM1,ω2

≤ C
∥∥f∥∥M1,ω1 (R

n) sup
x∈Rn, t>0

1
ω2(x, t)

∫∞

t

ω1(x, r)
dr

r

≤ C
∥∥f∥∥M1,ω1

(4.18)

by (4.14), which completes the proof for p = 1.

Remark 4.3. Note that Theorems 4.1 and 4.2 were proved in [4] (see also [5]). Theorem 4.2 do
not impose the pointwise doubling conditions (3.3) and (3.4). In the caseω1(x, r) = ω2(x, r) =
ω(x, r), Theorem 4.2 is containing the results of Theorem 3.2.

5. Riesz Potential Operator in the SpacesMp,ω(Rn)

5.1. Spanne Type Result

Theorem 5.1. Let 1 ≤ p < ∞, 0 < α < n/p, 1/q = 1/p − α/n, and f ∈ Lloc
p (Rn). Then for p > 1

∥∥Iαf∥∥Lq(B(x,t))
≤ Ctn/q

∫∞

t

r−n/q−1
∥∥f∥∥Lp(B(x,r))

dr, (5.1)

and for p = 1

∥∥Iαf∥∥WLq(B(x,t))
≤ Ctn/q

∫∞

t

r−n/q−1
∥∥f∥∥L1(B(x,r))

dr, (5.2)

where C does not depend on f , x ∈ R
n and t > 0.

Proof. As in the proof of Theorem 4.1, we represent function f in form (4.3) and have

Iαf(x) = Iαf1(x) + Iαf2(x). (5.3)

Let 1 < p < ∞, 0 < α < n/p, 1/q = 1/p − α/n. By boundedness of the operator Iα from
Lp(Rn) to Lq(Rn)we obtain

∥∥Iαf1∥∥Lq(B(x,t))
≤ ∥∥Iαf1∥∥Lq(Rn)

≤ C
∥∥f1∥∥Lp(Rn) = C‖f‖Lp(B(x,2t)).

(5.4)
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Then

∥∥Iαf1∥∥Lq(B(x,t))
≤ C

∥∥f∥∥Lp(B(x,2t))
, (5.5)

where the constant C is independent of f .
Taking into account that

∥∥f∥∥Lp(B(x,2t))
≤ Ctn/q

∫∞

2t
r−n/q−1

∥∥f∥∥Lp(B(x,r))
dr, (5.6)

we get

∥∥Iαf1∥∥Lq(B(x,t))
≤ Ctn/q

∫∞

2t
r−n/q−1

∥∥f∥∥Lp(B(x,r))
dr. (5.7)

When |x− z| ≤ t, |z−y| ≥ 2t,we have (1/2)|z−y| ≤ |x−y| ≤ (3/2)|z−y|, and therefore

∥∥Iαf2∥∥Lq(B(x,t))
≤
∥∥∥∥∥
∫

�
B(x,2t)

∣∣z − y
∣∣α−nf(y)dy

∥∥∥∥∥
Lq(B(x,t))

≤ C

∫
�
B(x,2t)

∣∣x − y
∣∣α−n∣∣f(y)∣∣dy∥∥χB(x,t)

∥∥
Lq(Rn).

(5.8)

We choose β > n/q and obtain

∫
�
B(x,2t)

|x − y|α−n∣∣f(y)∣∣dy = β

∫
�
B(x,2t)

∣∣x − y
∣∣α−n+β∣∣f(y)∣∣

(∫∞

|x−y|
s−β−1ds

)
dy

= β

∫∞

2t
s−β−1

(∫
{y∈Rn:2t≤|x−y|≤s}

∣∣x − y
∣∣α−n+β∣∣f(y)∣∣dy

)
ds

≤ C

∫∞

2t
s−β−1

∥∥f∥∥Lp(B(x,s))

∥∥∥|x − y|α−n+β
∥∥∥
Lp′(B(x,s))

ds

≤ C

∫∞

2t
sα−n/p−1

∥∥f∥∥Lp(B(x,s))
ds.

(5.9)

Therefore

∥∥Iαf2∥∥Lq(B(x,t))
≤ Ctn/q

∫∞

2t
s−n/q−1

∥∥f∥∥Lp(B(x,s))
ds, (5.10)

which together with (5.7) yields (5.1).
Let p = 1. It is obvious that for any ball B = B(x, r)

∥∥Iαf∥∥WL1(B(x,t))
≤ ∥∥Iαf1∥∥WL1(B(x,t))

+
∥∥Iαf2∥∥WL1(B(x,t))

. (5.11)
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By boundedness of the operator Iα from L1(Rn) toWLq(Rn) we have

∥∥Iαf1∥∥WL1(B(x,t))
≤ C

∥∥f∥∥Lq(B(x,2t))
, (5.12)

where C does not depend on x, t.
Note that inequality (5.10) also true in the case p = 1. Then by (5.10), we get inequality

(5.2).

Theorem 5.2. Let 1 ≤ p < ∞, 0 < α < n/p, 1/q = 1/p − α/n and the functions ω1(x, r) and
ω2(x, r) fulfill the condition

∫∞

r

tαω1(x, t)
dt

t
≤ C ω2(x, r), (5.13)

where C does not depend on x and r. Then for p > 1 the operators Mα and Iα are bounded from
Mp,ω1(R

n) toMq,ω2(R
n) and for p = 1 Mα and Iα are bounded from M1,ω1(R

n) toWMq,ω2(R
n).

Proof. Let 1 < p < ∞ and f ∈ Mp,ω(Rn). By Theorem 5.1 we obtain

∥∥Iαf∥∥Mq,ω2
≤ C sup

x∈Rn, t>0

1
ω2(x, t)

∫∞

t

r−n/q−1
∥∥f∥∥Lp(B(x,r))

dr

≤ C
∥∥f∥∥Mp,ω1

sup
x∈Rn, t>0

1
ω2(x, t)

∫∞

t

rαω1(x, r)
dr

r

(5.14)

by (5.13), which completes the proof for 1 < p < ∞.
Let p = 1 and f ∈ M1,ω1(R

n). By Theorem 5.1 we obtain

∥∥Iαf∥∥WMq,ω2
= sup

x∈Rn, t>0
ω−1

2 (x, t)t−n/q
∥∥Iαf∥∥WLq(B(x,t))

≤ C sup
x∈Rn, t>0

ω−1
2 (x, t)

∫∞

t

r−(n/q)−1
∥∥f∥∥L1(B(x,r))

dr.

(5.15)

Hence

∥∥Iαf∥∥WMq,ω2
≤ C

∥∥f∥∥M1,ω1 (R
n) sup
x∈Rn, t>0

1
ω2(x, t)

∫∞

t

rαω1(x, r)
dr

r

≤ C
∥∥f∥∥M1,ω1

(5.16)

by (5.13), which completes the proof for p = 1.

Remark 5.3. Note that Theorems 5.1 and 5.2 were proved in [4] (see also [5]). Theorem 5.2 do
not impose the pointwise doubling condition, (3.3) and (3.5). In the caseω1(x, r) = ω2(x, r) =
ω(x, r), Theorem 5.2 is containing the results of Theorem 3.3.
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5.2. Adams Type Result

Theorem 5.4. Let 1 ≤ p < ∞, 0 < α < n/p, and f ∈ Lloc
p (Rn). Then

∣∣Iαf(x)∣∣ ≤ Ctα Mf(x) + C

∫∞

t

rα−n/p−1
∥∥f∥∥Lp(B(x,r))

dr, (5.17)

where C does not depend on f , x, and t.

Proof. As in the proof of Theorem 4.1, we represent function f in form (4.3) and have

Iαf(x) = Iαf1(x) + Iαf2(x). (5.18)

For Iαf1(x), following Hedberg’s trick (see for instance [2], page 354), we obtain |Iαf1(x)| ≤
C1t

αMf(x). For Iαf2(x) we have

∣∣Iαf2(x)∣∣ ≤
∫

�
B(x,2t)

∣∣x − y
∣∣α−n∣∣f(y)∣∣dy

≤ C

∫
�
B(x,2t)

∣∣f(y)∣∣dy
∫∞

|x−y|
rα−n−1dr

≤ C

∫∞

2t

(∫
2t<|x−y|<r

∣∣f(y)∣∣dy
)
rα−n−1dr

≤ C

∫∞

t

rα−n/p−1
∥∥f∥∥Lp(B(x,r))

dr,

(5.19)

which proves (5.17).

Theorem 5.5. Let 1 ≤ p < ∞, 0 < α < n/p and letω(x, t) satisfy condition (4.14) and the conditions

tαω(x, t) +
∫∞

t

rα ω(x, r)
dr

r
≤ Cω(x, t)p/q, (5.20)

where q ≥ p and C does not depend on x ∈ R
n and t > 0. Suppose also that for almost every x ∈ R

n,
the function w(x, r) fulfills the condition

there exist an a = a(x) > 0 such that ω(x, ·) : [0,∞] −→ [a,∞) is surjective. (5.21)

Then for p > 1 the operatorsMα and Iα are bounded fromMp,ω(Rn) toMq,ωp/q(Rn) and for p = 1 the
operatorsMα and Iα are bounded from M1,ω(Rn) toWMq,ω1/q(Rn).

Proof. In view of the well-known pointwise estimateMαf(x) ≤ C(Iα|f |)(x), it suffices to treat
only the case of the operator Iα.
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Let 1 ≤ p < ∞ and f ∈ Mp,ω(Rn). By Theorem 5.4 we get

∣∣Iαf(x)∣∣ ≤ Crα Mf(x) + C
∥∥f∥∥Mp,ω

∫∞

r

tαω(x, t)
dt

t
. (5.22)

From (5.20)we have rαω(x, r ) ≤ Cω(x, r)p/q. Making also use of condition (5.20), we obtain

∣∣Iαf(x)∣∣ ≤ Cω(x, r)p/q−1 Mf(x) + Cω(x, r)p/q
∥∥f∥∥Mp,ω

. (5.23)

Since ω(x, r) is surjective, we can choose r > 0 so that ω(x, r) = Mf(x) ‖f‖−1Mp,ω(Rn), assuming
that f is not identical 0. Hence, for every x ∈ R

n, we have

∣∣Iαf(x)∣∣ ≤ C
(
Mf(x)

)p/q ∥∥f∥∥1−p/q
Mp,ω

. (5.24)

Hence the statement of the theorem follows in view of the boundedness of the maximal
operator M inMp,ω(Rn) provided by Theorem 4.2 in virtue of condition (4.14)

∥∥Iαf∥∥M
q,ωp/q

= sup
x∈Rn, t>0

ω(x, t)−p/qt−n/q
∥∥Iαf∥∥Lq(B(x,t))

≤ C
∥∥f∥∥1−p/q

Mp,ω
sup

x∈Rn, t>0
ω(x, t)−p/qt−n/q

∥∥Mf
∥∥p/q

Lp(B(x,t))

≤ C
∥∥f∥∥Mp,ω

,

(5.25)

if 1 < p < q < ∞ and

∥∥Iαf∥∥WM
q,ω1/q

= sup
x∈Rn, t>0

ω(x, t)−1/qt−n/q
∥∥Iαf∥∥WLq(B(x,t))

≤ C
∥∥f∥∥1−(1/q)

M1,ω
sup

x∈Rn, t>0
ω(x, t)−1/qt−n/q

∥∥Mf
∥∥1/q
WL1(B(x,t))

≤ C
∥∥f∥∥M1,ω

,

(5.26)

if p = 1 < q < ∞.

6. Singular Operators in the Spaces Mp,ω(Rn)

Theorem 6.1. Let 1 ≤ p < ∞ and f ∈ Lloc
p (Rn). Then for p > 1

∥∥Tf∥∥Lp(B(x,t))
≤ Ctn/p

∫∞

t

r−n/p−1
∥∥f∥∥Lp(B(x,r))

dr, (6.1)
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and for p = 1

∥∥Tf∥∥WL1(B(x,t))
≤ Ctn

∫∞

t

r−n−1
∥∥f∥∥L1(B(x,r))

dr, (6.2)

where C does not depend on f , x ∈ R
n and t > 0.

Proof. Let 1 < p < ∞. We represent function f as in (4.3) and have

∥∥Tf∥∥Lp(B(x,t))
≤ ∥∥Tf1∥∥Lp(B(x,t))

+
∥∥Tf2∥∥Lp(B(x,t))

. (6.3)

By boundedness of the operator T in Lp(Rn), 1 < p < ∞ we obtain ‖Tf1‖Lp(B(x,t)) ≤
‖Tf1‖Lp(Rn) ≤ C‖f1‖Lp(Rn), so that

∥∥Tf1∥∥Lp(B(x,t))
≤ C

∥∥f∥∥Lp(B(x,2t))
. (6.4)

Taking into account the inequality

∥∥f∥∥Lp(B(x,t))
≤ Ctn/p

∫∞

2t
r−n/p−1

∥∥f∥∥Lp(B(x,r))
dr, (6.5)

we get

∥∥Tf1∥∥Lp(B(x,t))
≤ Ctn/p

∫∞

2t
r−n/p−1

∥∥f∥∥Lp(B(x,r))
dr. (6.6)

To estimate ‖Tf2‖Lp(B(x,t)), we observe that

∣∣Tf2(z)∣∣ ≤ C

∫
�
B(x,2t)

∣∣f(y)∣∣dy∣∣y − z
∣∣n , (6.7)

where z ∈ B(x, t) and the inequalities |x − z| ≤ t, |z − y| ≥ 2t imply (1/2)|z − y| ≤ |x − y| ≤
(3/2)|z − y|, and therefore

∥∥Tf2∥∥Lp(B(x,t))
≤ C

∫
�B(x,2t)

∣∣x − y
∣∣−n∣∣f(y)∣∣dy∥∥χB(x,t)

∥∥
Lp(Rn). (6.8)

Hence by inequality (4.7), we get

∥∥Tf2∥∥Lp(B(x,t))
≤ Ctn/p

∫∞

2t
r−n/p−1

∥∥f∥∥Lp(B(x,r))
dr. (6.9)

From (6.6) and (6.9) we arrive at (6.1).
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Let p = 1. It is obvious that for any ball B(x, r)

∥∥Tf∥∥WL1(B(x,t))
≤ ∥∥Tf1∥∥WL1(B(x,t))

+
∥∥Tf2∥∥WL1(B(x,t))

. (6.10)

By boundedness of the operator T from L1(Rn) toWL1(Rn) we have

∥∥Tf1∥∥WL1(B(x,t))
≤ C

∥∥f∥∥L1(B(x,2t))
, (6.11)

where C does not depend on x, t.
Note that inequality (6.9) also true in the case p = 1. Then by (4.11), we get inequality

(6.2).

Theorem 6.2. Let 1 ≤ p < ∞ and ω1(x, t) and ω2(x, r) fulfill condition (4.14). Then for p > 1
the singular integral operator T is bounded from the spaceMp,ω1(R

n) to the spaceMp,ω2(R
n) and for

p = 1 T is bounded from M1,ω1(R
n) toWM1,ω2(R

n).

Proof. Let 1 < p < ∞ and f ∈ Mp,ω1(R
n). By Theorem 6.1 we obtain

∥∥Tf∥∥Mp,ω2
= sup

x∈Rn, t>0
ω−1

2 (x, t)t−n/p
∥∥Tf∥∥Lp(B(x,t))

≤ C sup
x∈Rn, t>0

ω−1
2 (x, t)

∫∞

t

r−n/p−1
∥∥f∥∥Lp(B(x,r))

dr.

(6.12)

Hence

∥∥Tf∥∥Mp,ω2
≤ C

∥∥f∥∥Mp,ω1
sup

x∈Rn, t>0

1
ω2(x, t)

∫∞

t

ω1(x, r)
dr

r

≤ C
∥∥f∥∥Mp,ω1

(6.13)

by (4.14), which completes the proof for 1 < p < ∞.
Let p = 1 and f ∈ M1,ω1(R

n). By Theorem 6.1 we obtain

∥∥Tf∥∥WM1,ω2
= sup

x∈Rn, t>0
ω−1

2 (x, t)t−n
∥∥Tf∥∥WL1(B(x,t))

≤ C sup
x∈Rn, t>0

ω−1
2 (x, t)

∫∞

t

r−n−1
∥∥f∥∥L1(B(x,r))

dr.

(6.14)
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Hence

∥∥Tf∥∥WM1,ω2
≤ C

∥∥f∥∥M1,ω1 (R
n) sup
x∈Rn, t>0

1
ω2(x, t)

∫∞

t

ω1(x, r)
dr

r

≤ C
∥∥f∥∥M1,ω1

(6.15)

by (4.14), which completes the proof for p = 1.

Remark 6.3. Note that Theorems 6.1 and 6.2 were proved in [4] (see also [5]). Theorem 6.2
does not impose the pointwise doubling conditions (3.3) and (3.4). In the case ω1(x, r) =
ω2(x, r) = ω(x, r), Theorem 6.2 is containing the results of Theorem 3.2.

7. The Generalized Morrey Estimates for
the Operators V γ(−Δ + V )−β and V γ∇(−Δ + V )−β

In this section we consider the Schrödinger operator −Δ + V on R
n, where the nonnegative

potential V belongs to the reverse Hölder class B∞(Rn) for some q1 ≥ n. The generalized
MorreyMp,ω(Rn) estimates for the operators V γ(−Δ+V )−β and V γ∇(−Δ+V )−β are obtained.

The investigation of Schrödinger operators on the Euclidean space R
n with nonnega-

tive potentials which belong to the reverse Hölder class has attracted attention of a number
of authors (cf. [35–37]). Shen [36] studied the Schrödinger operator −Δ + V , assuming the
nonnegative potential V belongs to the reverse Hölder class Bq(Rn) for q ≥ n/2 and he
proved the Lp boundedness of the operators (−Δ + V )iγ , ∇2(−Δ + V )−1, ∇(−Δ + V )−1/2, and
∇(−Δ + V )−1. Kurata and Sugano generalized Shens results to uniformly elliptic operators
in [38]. Sugano [39] also extended some results of Shen to the operator V γ(−Δ + V )−β,
0 ≤ γ ≤ β ≤ 1, and V γ∇(−Δ + V )−β, 0 ≤ γ ≤ 1/2 ≤ β ≤ 1 and β − γ ≥ 1/2. Later, Lu [40]
and Li [41] investigated the Schrödinger operators in a more general setting.

We investigate the generalized Morrey Mp,ω1 -Mq,ω2 boundedness of the operators

T1 = V γ(−Δ + V )−β, 0 ≤ γ ≤ β ≤ 1,

T2 = V γ∇(−Δ + V )−β, 0 ≤ γ ≤ 1
2
≤ β ≤ 1, β − γ ≥ 1

2
.

(7.1)

Note that the operators V (−Δ + V )−1 and V 1/2∇(−Δ + V )−1 in [41] are the special case of T1
and T2, respectively.

It is worth pointing out that we need to establish pointwise estimates for T1, T2 and
their adjoint operators by using the estimates of fundamental solution for the Schrödinger
operator onR

n in [41]. Andwe prove the generalizedMorrey estimates by usingMp,ω1−Mq,ω2

boundedness of the fractional maximal operators.
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Let V ≥ 0. We say V ∈ B∞, if there exists a constant C > 0 such that

‖V ‖L∞(B) ≤
C

|B|
∫
B

V (x)dx (7.2)

holds for every ball B in R
n (see [41]).

The following are two pointwise estimates for T1 and T2 which are proven in [37,
Lemma3.2] with the potential V ∈ B∞.

Theorem B. Suppose V ∈ B∞ and 0 ≤ γ ≤ β ≤ 1. Then there exists a constant C > 0 such that

∣∣T1f(x)∣∣ ≤ CMαf(x), f ∈ C∞
0 (Rn), (7.3)

where α = 2(β − γ).

Theorem C. Suppose V ∈ B∞, 0 ≤ γ ≤ 1/2 ≤ β ≤ 1 and β − γ ≥ 1/2. Then there exists a constant
C > 0 such that

∣∣T2f(x)∣∣ ≤ CMαf(x), f ∈ C∞
0 (Rn), (7.4)

where α = 2(β − γ) − 1.

The previous theorems will yield the generalized Morrey estimates for T1 and T2.

Corollary 7.1. Assume that V ∈ B∞, and 0 ≤ γ ≤ β ≤ 1. Let 1 ≤ p ≤ q < ∞, 2(β−γ) = n(1/p−1/q),
and condition (5.13) be satisfied for α = 2(β − γ). Then for p > 1 the operator T1 is bounded from
Mp,ω1(R

n) toMq,ω2(R
n) and for p = 1 T1 is bounded from M1,ω1(R

n) toWMq,ω2(R
n).

Corollary 7.2. Assume that V ∈ B∞, 0 ≤ γ ≤ 1/2 ≤ β ≤ 1, and β − γ ≥ 1/2. Let 1 ≤ p ≤ q < ∞,
2(β− γ)− 1 = n(1/p− 1/q), and condition (5.13) be satisfied for α = 2(β− γ)− 1. Then for p > 1 the
operator T2 is bounded fromMp,ω1(R

n) toMq,ω2(R
n) and for p = 1 T2 is bounded fromM1,ω1(R

n) to
WMq,ω2(R

n).

8. Some Applications

The theorems of Section 2 can be applied to various operators which are estimated from above
by Riesz potentials. We give some examples.

Suppose that L is a linear operator on L2 which generates an analytic semigroup e−tL

with the kernel pt(x, y) satisfying a Gaussian upper bound, that is,

∣∣pt(x, y)∣∣ ≤ c1
tn/2

e−c2(|x−y|
2
/t) (8.1)

for x, y ∈ R
n and all t > 0, where c1, c2 > 0 are independent of x, y, and t.
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For 0 < α < n, the fractional powers L−α/2 of the operator L are defined by

L−α/2f(x) =
1

Γ(α/2)

∫∞

0
e−tLf(x)

dt

t−α/2+1
. (8.2)

Note that if L = −Δ is the Laplacian on R
n, then L−α/2 is the Riesz potential Iα. See, for

example, [2, Chapter 5].

Theorem 8.1. Let 0 < α < n, 1 ≤ p < q < ∞, α/n = 1/p − 1/q and conditions (5.13), (8.1)
are satisfied. Then for p > 1 the operator L−α/2 is bounded from Mp,ω1(R

n) to Mq,ω2(R
n) and for

p = 1L−α/2 is bounded fromM1,ω1(R
n) toWMq,ω2(R

n).

Proof. Since the semigroup e−tL has the kernel pt(x, y) which satisfies condition (8.1), it
follows that

∣∣∣L−α/2f(x)
∣∣∣ ≤ CIα

∣∣f∣∣(x) (8.3)

for all x ∈ R
n, where C > 0 is independent of x (see [42]). Hence by Theorem 5.2 we have

∥∥L−α/2f
∥∥
Mq,ω2

≤ C
∥∥Iα∣∣f∣∣∥∥Mq,ω2

≤ C
∥∥f∥∥Mp,ω1

, if p > 1,∥∥L−α/2f
∥∥
WMq,ω2

≤ C
∥∥Iα∣∣f∣∣∥∥WMq,ω2

≤ C
∥∥f∥∥M1,ω1

, if p = 1,
(8.4)

where the constant C > 0 is independent of f .

Property (8.1) is satisfied for large classes of differential operators. We mention two of
them.

(a) Consider a magnetic potential −→a , that is, a real-valued vector potential −→a =
(a1, a2, . . . , an), and an electric potential V . We assume that for any k = 1, 2, . . . , n, ak ∈ Lloc

2
and 0 ≤ V ∈ Lloc

1 . The operator L, which is given by

L = −(∇ − i−→a)2 + V (x), (8.5)

is called the magnetic Schrödinger operator.
By the well-known diamagnetic inequality (see [43], Theorem2.3) we have the

following pointwise estimate. For any t > 0 and f ∈ L2,

∣∣∣e−tLf
∣∣∣ ≤ e−tΔ

∣∣f∣∣, (8.6)

which implies that the semigroup e−tL has the kernel pt(x, y) which satisfies upper bound
(8.1).

(b) Let A = ((aij(x))1≤i,j≤n be an n × n matrix with complex-valued entries aij ∈ L∞
satisfying

Re
n∑

i,j=1

aij(x)ζiζj ≥ λ|ζ|2 (8.7)
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for all x ∈ R
n, ζ = (ζ1, ζ2, . . . , ζn) ∈ C

n and some λ > 0. Consider the divergence form operator

Lf ≡ −div
(
A∇f

)
, (8.8)

which is interpreted in the usual weak sense via the appropriate sesquilinear form.
It is known that the Gaussian bound (8.1) for the kernel of e−tL holds whenA has real-

valued entries (see, e.g., [44]), or when n = 1, 2 in the case of complex-valued entries (see [45,
Chapter 1]).

Finally we note that under the appropriate assumptions (see [2, 46, Chapter 5]; [45,
pages 58-59]) one can obtain results similar to Theorem 8.1 for a homogeneous elliptic
operator L in L2 of order 2m in the divergence form

Lf = (−1)m
∑

|α|=|β|=m
Dα

(
aαβD

βf
)
. (8.9)

In this case estimate (8.1) should be replaced by

∣∣pt(x, y)∣∣ ≤ c3
tn/2m

e−c4(|x−y|/t
1/(2m))2m/(2m−1)

(8.10)

for all t > 0 and all x, y ∈ R
n,where c3, c4 > 0 are independent of x, y, and t.
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