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For x = (x1, x2, . . . , xn) ∈ Rn
+, the symmetric function φn(x, r) is defined by φn(x, r) = φn(x1,

x2, . . . , xn; r) =
∏

1≤i1<i2 ···<ir≤n(
∑r

j=1(xij /(1+xij )))
1/r , where r = 1, 2, . . . , n and i1, i2, . . . , in are positive

integers. In this article, the Schur convexity, Schur multiplicative convexity and Schur harmonic
convexity of φn(x, r) are discussed. As applications, some inequalities are established by use of the
theory of majorization.
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1. Introduction

Throughout this paper we use Rn to denote the n-dimensional Euclidean space over the field
of real numbers and Rn

+ = {(x1, x2, . . . , xn) : xi > 0, i = 1, 2, . . . , n}. In particular, we use R to
denote R1.

For the sake of convenience, we use the following notation system.
For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn

+, and α > 0, let

x + y =
(
x1 + y1, x2 + y2, . . . , xn + yn

)
,

xy =
(
x1y1, x2y2, . . . , xnyn

)
,

αx = (αx1, αx2, . . . , αxn),

xα =
(
xα
1 , x

α
2 , . . . , x

α
n

)
,

1
x
=
(

1
x1

,
1
x2

, . . . ,
1
xn

)

,
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log x =
(
log x1, log x2, . . . , log xn

)
,

ex = (ex1 , ex2 , . . . , exn).

(1.1)

The notion of Schur convexity was first introduced by Schur in 1923 [1]. It has
many important applications in analytic inequalities [2–7], combinatorial optimization [8],
isoperimetric problem for polytopes [9], linear regression [10], graphs and matrices [11],
gamma and digamma functions [12], reliability and availability [13], and other related fields.
The following definition for Schur convex or concave can be found in [1, 3, 7] and the
references therein.

Definition 1.1. Let E ⊆ Rn (n ≥ 2) be a set, a real-valued function F on E is called a Schur
convex function if

F(x1, x1, . . . , xn) ≤ F
(
y1, y2, . . . , yn

)
(1.2)

for each pair of n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) on E, such that x is majorized
by y ( in symbols x ≺ y), that is,

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, 2, . . . , n − 1,

n∑

i=1

x[i] =
n∑

i=1

y[i],

(1.3)

where x[i] denotes the ith largest component in x. F is called Schur concave if −F is Schur
convex.

The notation of multiplicative convexity was first introduced by Montel [14]. The
Schur multiplicative convexity was investigated by Niculescu [15], Guan [7], and Chu et
al. [16].

Definition 1.2 (see [7, 16]). Let E ⊆ Rn
+ (n ≥ 2) be a set, a real-valued function F : E → R+ is

called a Schur multiplicatively convex function on E if

F(x1, x2, . . . , xn) ≤ F
(
y1, y2, . . . , yn

)
(1.4)

for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) on E, such that x is
logarithmically majorized by y (in symbols log x ≺ log y), that is,

k∏

i=1

x[i] ≤
k∏

i=1

y[i], k = 1, 2, . . . , n − 1,

n∏

i=1

x[i] =
n∏

i=1

y[i].

(1.5)

However F is called Schur multiplicatively concave if 1/F is Schur multiplicatively convex.
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In paper [17], Anderson et al. discussed an attractive class of inequalities, which
arise from the notion of harmonic convex functions. Here, we introduce the notion of Schur
harmonic convexity.

Definition 1.3. Let E ⊆ Rn
+ (n ≥ 2) be a set. A real-valued function F on E is called a Schur

harmonic convex function if

F(x1, x2, . . . , xn) ≤ F
(
y1, y2, . . . , yn

)
(1.6)

for each pair of n-tuples x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) on E, such that 1/x ≺ 1/y.
F is called a Schur harmonic concave function on E if (1.6) is reversed.

The main purpose of this paper is to discuss the Schur convexity, Schur multiplicative
convexity, and Schur harmonic convexity of the following symmetric function:

φn(x, r) = φn(x1, x2, . . . , xn; r) =
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

xij

1 + xij

⎞

⎠

1/r

, (1.7)

where x = (x1, x2, . . . , xn) ∈ Rn
+ (n ≥ 2), r = 1, 2, . . . , n, and i1, i2, . . . , ir are positive integers. As

applications, some inequalities are established by use of the theory of majorization.

2. Lemmas

In order to establish our main results we need several lemmas, which we present in this
section.

The following lemma is so-called Schur’s condition which is very useful for
determining whether or not a given function is Schur convex or Schur concave.

Lemma 2.1 (see [6, 7, 18]). Let f : Rn
+ = (0,∞)n → R+ = (0,∞) be a continuous symmetric

function. If f is differentiable in Rn
+, then f is Schur convex if and only if

(
xi − xj

)
(

∂f

∂xi
− ∂f

∂xj

)

≥ 0 (2.1)

for all i, j = 1, 2, . . . , n and x = (x1, . . . , xn) ∈ Rn
+. Also f is Schur concave if and only if (2.1) is

reversed for all i, j = 1, 2, . . . , n and x = (x1, . . . , xn) ∈ Rn
+. Here, f is a symmetric function in Rn

+
meaning that f(Px) = f(x) for any x ∈ Rn

+ and any n × n permutation matrix P .

Remark 2.2. Since f is symmetric, the Schur’s condition in Lemma 2.1, that is, (2.1) can be
reduced to

(x1 − x2)
(

∂f

∂x1
− ∂f

∂x2

)

≥ 0. (2.2)
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Lemma 2.3 (see [7, 16]). Let f : Rn
+ → R+ be a continuous symmtric function. If f is differentiable

in Rn
+, then f is Schur multiplicatively convex if and only if

(
log x1 − log x2

)
(

x1
∂f

∂x1
− x2

∂f

∂x2

)

≥ 0 (2.3)

for all x = (x1, x2, . . . , xn) ∈ Rn
+. Also f is Schur multiplicatively concave if and only if (2.3) is

reversed.

Lemma 2.4. Let f : Rn
+ → R+ be a continuous symmetric function. If f is differentiable in Rn

+, then
f is Schur harmonic convex if and only if

(x1 − x2)
(

x2
1
∂f

∂x1
− x2

2
∂f

∂x2

)

≥ 0 (2.4)

for all x = (x1, x2, . . . , xn) ∈ Rn
+. Also f is Schur harmonic concave if and only if (2.4) is reversed.

Proof. FromDefinitions 1.1 and 1.3, we clearly see the fact that f : Rn
+ → R+ is Schur harmonic

convex if and only if F(x) = 1/f(1/x) : Rn
+ → R+ is Schur concave.

This fact, Lemma 2.1 and Remark 2.2 together with elementary calculation imply that
Lemma 2.4 is true.

Lemma 2.5 (see [5, 6]). Let x = (x1, x2, . . . , xn) ∈ Rn
+ and

∑n
i=1 xi = s. If c ≥ s, then

c − x

nc/s − 1
=
(

c − x1

nc/s − 1
,

c − x2

nc/s − 1
, . . . ,

c − xn

nc/s − 1

)

≺ (x1, x2, . . . , xn) = x. (2.5)

Lemma 2.6 (see [6]). Let x = (x1, x2, . . . , xn) ∈ Rn
+ and

∑n
i=1 xi = s. If c ≥ 0, then

c + x

nc/s + 1
=
(

c + x1

nc/s + 1
,

c + x2

nc/s + 1
, . . . ,

c + xn

nc/s + 1

)

≺ (x1, x2, . . . , xn) = x. (2.6)

Lemma 2.7 (see [19]). Suppose that x = (x1, x2, . . . , xn) ∈ Rn
+ and

∑n
i=1 xi = s. If 0 ≤ λ ≤ 1, then

s − λx

n − λ
=
(
s − λx1

n − λ
,
s − λx2

n − λ
, . . . ,

s − λxn

n − λ

)

≺ (x1, x2, . . . , xn) = x. (2.7)

3. Main Results

Theorem 3.1. For r ∈ {1, 2, . . . , n}, the symmetric function φn(x, r) is Schur concave in Rn
+.

Proof. By Lemma 2.1 and Remark 2.2, we only need to prove that

(x1 − x2)
(
∂φn(x, r)

∂x1
− ∂φn(x, r)

∂x2

)

≤ 0 (3.1)

for all x = (x1, x2, . . . , xn) ∈ Rn
+ and r = 1, 2, . . . , n.
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The proof is divided into four cases.

Case 1. If r = 1, then (1.7) leads to

φn(x, 1) = φn(x1, x2, . . . , xn; 1) =
n∏

i=1

xi

1 + xi
. (3.2)

However (3.2) and elementary computation lead to

(x1 − x2)
(
∂φn(x, 1)

∂x1
− ∂φn(x, 1)

∂x2

)

= − (x1 − x2)2(1 + x1 + x2)
x1x2(1 + x1)(1 + x2)

φn(x, 1) ≤ 0. (3.3)

Case 2. If n ≥ 2 and r = n, then (1.7) yields

φn(x, n) = φn(x1, x2, . . . , xn;n) =

(
n∑

i=1

xi

1 + xi

)1/n

. (3.4)

From (3.4) and elementary computation, we have

(x1 − x2)
(
∂φn(x, n)

∂x1
− ∂φn(x, n)

∂x2

)

= − (x1 − x2)2(2 + x1 + x2)

n(1 + x1)2(1 + x2)2

(
n∑

i=1

xi

1 + xi

)1/n−1
≤ 0. (3.5)

Case 3. If n ≥ 3 and r = 2, then by (1.7) we have

φn(x, 2) = φn(x1, x2, · · · , xn; 2)

=
(

x1

1 + x1
+

x2

1 + x2

)1/2
⎡

⎣
n∏

j=3

(
x1

1 + x1
+

xj

1 + xj

)1/2
⎤

⎦φn−1(x2, x3, . . . , xn; 2)

=
(

x2

1 + x2
+

x1

1 + x1

)1/2
⎡

⎣
n∏

j=3

(
x2

1 + x2
+

xj

1 + xj

)1/2
⎤

⎦φn−1(x1, x3, . . . , xn; 2).

(3.6)
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Elementary computation and (3.6) yield

(x1 − x2)
(
∂φn(x, 2)

∂x1
− ∂φn(x, 2)

∂x2

)

= − (x1 − x2)2

(1 + x1)(1 + x2)
φn(x, 2)

2

×
⎡

⎣
2 + x1 + x2

x1 + x2 + 2x1x2
+

n∑

j=3

[
(1 + x1 + x2) + (3 + 2x1 + 2x2)xj

](
1 + xj

)

(
x1 + xj + 2x1xj

)(
x2 + xj + 2x2xj

)

⎤

⎦ ≤ 0.

(3.7)

Case 4. If n ≥ 4 and 3 ≤ r ≤ n − 1, then from (1.7), we have

φn(x, r) = φn(x1, x2, . . . , xn; r)

= φn−1(x2, x3, . . . , xn; r)
∏

3≤i1<i2<···<ir−1≤n

⎛

⎝ x1

1 + x1
+

r−1∑

j=1

xij

1 + xij

⎞

⎠

1/r

×
∏

3≤i1<i2<···<ir−2≤n

⎛

⎝ x1

1 + x1
+

x2

1 + x2
+

r−2∑

j=1

xij

1 + xij

⎞

⎠

1/r

= φn−1(x1, x3, . . . , xn; r)
∏

3≤i1<i2<···<ir−1≤n

⎛

⎝ x2

1 + x2
+

r−1∑

j=1

xij

1 + xij

⎞

⎠

1/r

×
∏

3≤i1<i2<···<ir−2≤n

⎛

⎝ x1

1 + x1
+

x2

1 + x2
+

r−2∑

j=1

xij

1 + xij

⎞

⎠

1/r

,

(3.8)

(x1 − x2)
(
∂φn(x, r)

∂x1
− ∂φn(x, r)

∂x2

)

= − (x1 − x2)2

(1 + x1)2(1 + x2)2

×

⎡

⎢
⎣

∑

3≤i1<i2<···<ir−2≤n

2+x1+x2

(x1/(1+x1)) + (x2/(1+x2)) +
∑r−2

j=1

(
xij /

(
1+xij

))

+
∑

3≤i1<i2<···<ir−1≤n

1+x1+x2+(2+x1+x2)
∑r−1

j=1

(
xij /1+xij

)

(
x1/(1+x1) +

∑r−1
j=1

(
xij /

(
1+xij

)))(
x2/(1+x2) +

∑r−1
j=1

(
xij /

(
1+ xij

)))

⎤

⎥
⎦

× φn(x, r)
r

≤ 0.

(3.9)

Therefore, (3.1) follows from Cases 1–4 and the proof of Theorem 3.1 is completed.
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For the Schur multiplicative convexity or concavity of φn(x, r), we have the following
theorem

Theorem 3.2. It holds that φn(x, r) is Schur multiplicatively concave in [1,∞)n.

Proof. According to Lemma 2.3 we only need to prove that

(
logx1 − logx2

)
(

x1
∂φn(x, r)

∂x1
− x2

∂φn(x, r)
∂x2

)

≤ 0 (3.10)

for all x = (x1, x2, . . . , n) ∈ [1,∞)n and r = 1, 2, . . . , n. Then proof is divided into four cases.

Case 1. If r = 1, then (3.2) leads to

(
logx1 − logx2

)
(

x1
∂φn(x, 1)

∂x1
− x2

∂φn(x, 1)
∂x2

)

= −
(
logx1 − logx2

)
(x1 − x2)

(1 + x1)(1 + x2)
φn(x, 1) ≤ 0.

(3.11)

Case 2. If r = n, n ≥ 2, then (3.4) yields

(
logx1 − logx2

)
(

x1
∂φn(x, n)

∂x1
− x2

∂φn(x, n)
∂x2

)

=

(
logx1 − logx2

)
(x1 − x2)

n(1 + x1)2(1 + x2)2
(1 − x1x2)

(
n∑

i=1

xi

1 + xi

)1/n−1
≤ 0.

(3.12)

Case 3. If n ≥ 3 and r = 2, then (3.6) implies

(
logx1 − logx2

)
(

x1
∂φn(x, 2)

∂x1
− x2

∂φn(x, 2)
∂x2

)

=
φn(x, 2)

2

(
logx1 − logx2

)
(x1 − x2)

(1 + x1)2(1 + x2)2

×
⎡

⎣
1 − x1x2

x1/(1 + x1) + x2/(1 + x2)

+
n∑

j=3

−x1x2 + (1 − x1x2)
(
xj/

(
1 + xj

))

(
x1/(1 + x1) + xj/

(
1 + xj

))(
x2/(1 + x2) + xj/

(
1 + xj

))

⎤

⎦ ≤ 0.

(3.13)
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Case 4. If n ≥ 4 and 3 ≤ r ≤ n − 1, then from (3.8)we have

(
logx1 − logx2

)
(

x1
∂φn(x, r)

∂x1
− x2

∂φn(x, r)
∂x2

)

=

(
logx1 − logx2

)
(x1 − x2)

(1 + x1)2(1 + x2)2

×

⎡

⎢
⎣

∑

3≤i1<i2<···<ir−2≤n

1 − x1x2

x1/(1 + x1) + x2/(1 + x2) +
∑r−2

j=1

(
xij /

(
1 + xij

))

+
∑

3≤i1<i2<···<ir−1≤n

−x1x2+(1 − x1x2)
∑r−1

j=1

(
xij /

(
1 + xij

))

(
x1/(1+x1) +

∑r−1
j=1

(
xij /

(
1 + xij

)))(
x2/(1+x2) +

∑r−1
j=1

(
xij /

(
1 + xij

)))

⎤

⎥
⎦

× φn(x, r)
r

≤ 0.

(3.14)

Therefore, Theorem 3.2 follows from (3.10) and Cases 1–4.

Remark 3.3. From (3.11) and (3.12) we know that φn(x, 1) is Schur multiplicatively concave
in (0,∞)n and φn(x, n) is Schur multiplicatively convex in (0, 1]n.

Theorem 3.4. For r ∈ {1, 2, . . . , n}, the symmetric function φn(x, r) is Schur harmonic convex in
Rn

+.

Proof. According to Lemma 2.4 we only need to prove that

(x1 − x2)
(

x2
1
∂φn(x, r)

∂x1
− x2

2
∂φn(x, r)

∂x2

)

≥ 0 (3.15)

for all x = (x1, x2, . . . , xn) ∈ Rn
+ and r = 1, 2, . . . , n.

The proof is divided into four cases.

Case 1. If r = 1, then from (3.2)we have

(x1 − x2)
(

x2
1
∂φn(x, 1)

∂x1
− x2

2
∂φn(x, 1)

∂x2

)

=
(x1 − x2)2

(1 + x1)(1 + x2)
φn(x, 1) ≥ 0. (3.16)

Case 2. If n ≥ 2 and r = n, then (3.4) leads to

(x1 − x2)
(

x2
1
∂φn(x, n)

∂x1
− x2

2
∂φn(x, n)

∂x2

)

=
(x1 − x2)2(x1 + x2 + 2x1x2)

n(1 + x1)2(1 + x2)2

(
n∑

i=1

xi

1 + xi

)1/n−1
≥ 0.

(3.17)
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Case 3. If n ≥ 3 and r = 2, then (3.6) yields

(x1 − x2)
(

x2
1
∂φn(x, 2)

∂x1
− x2

2
∂φn(x, 2)

∂x2

)

=
(x1 − x2)2

(1 + x1)(1 + x2)
φn(x, 2)

2

×
⎡

⎣1 +
n∑

j=3

(
x1x2 + x1xj + x2xj + 3x1x2xj

)(
1 + xj

)

(
x1 + xj + 2x1xj

)(
x2 + xj + 2x2xj

)

⎤

⎦

≥ 0.

(3.18)

Case 4. If n ≥ 4 and 3 ≤ r ≤ n − 1, then (3.8) implies

(x1 − x2)
(

x2
1
∂φn(x, r)

∂x1
− x2

2
∂φn(x, r)

∂x2

)

=
(x1 − x2)2

(1 + x1)2(1 + x2)2
φn(x, r)

r

×

⎡

⎢
⎣

∑

3≤i1<i2<···<ir−2≤n

x1 + x2 + 2x1x2

x1/(1 + x1) + x2/(1 + x2) +
∑r−2

j=1

(
xij /

(
1 + xij

))

+
∑

3≤i1<i2<···<ir−1≤n

x1x2+(x1+x2 +2x1x2)
∑r−2

j=1

(
xij /

(
1+xij

))

(
x1/(1+x1)+

∑r−1
j=1

(
xij /

(
1 + xij

)))(
x2/(1 + x2)+

∑r−1
j=1

(
xij /

(
1+ xij

)))

⎤

⎥
⎦

≥ 0.
(3.19)

Therefore, (3.15) follows from Cases 1–4 and the proof of Theorem 3.4 is completed.

4. Applications

In this section, we establish some inequalities by use of Theorems 3.1, 3.2 and 3.4 and the
theory of majorization.

Theorem 4.1. If x = (x1, x2, · · · , xn) ∈ Rn
+, s =

∑n
i=1 xi,Hn(x) = n/

∑n
i=1(1/xi), and r ∈

{1, 2, . . . , n}, then
(1) φn(x, r) ≤ φn((c − x)/(nc/s − 1), r) for c ≥ s;

(2) φn(x, r) ≥ φn((cHn(x) − 1)/(cx − 1)x, r) for c ≥ ∑n
i=1(1/xi) ;

(3) φn(x, r) ≤ φn((c + x)/(nc/s + 1), r) for c ≥ 0;

(4) φn(x, r) ≥ φn((cHn(x) + 1)/(cx + 1)x, r) for c ≥ 0;

(5) φn(x, r) ≤ φn((s − λx)/(n − λ), r) for 0 ≤ λ ≤ 1;
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(6) φn(x, r) ≥ φn((n − λ)/
∑n

i=1 (1/xi − λ/x) , r) for 0 ≤ λ ≤ 1;

(7) φn(x, r) ≤ φn((s + λx)/(n + λ), r) for 0 ≤ λ ≤ 1;

(8) φn(x, r) ≥ φn((n + λ)/(
∑n

i=1(1/xi + λ/x)) , r) for 0 ≤ λ ≤ 1.

Proof. Theorem 4.1 follows from Theorem 3.1, Theorem 3.4 and Lemmas 2.5–2.7 together with
the fact that

s + λx

n + λ
=
(
s + λx1

n + λ
,
s + λx2

n + λ
, . . . ,

s + λxn

n + λ

)

≺ (x1, x2, . . . , xn) = x. (4.1)

Theorem 4.2. If x = (x1, x2, · · · , xn) ∈ Rn
+, An(x) = (1/n)

∑n
i=1 xi, and r ∈ {1, 2, . . . , n}, then

(i)
∏

1≤i1<i2<···<ir≤n

⎛

⎝
r∑

j=1

xij

1 + xij

⎞

⎠

1/r

≤
[

r
An(x)

An(1 + x)

]n!/(r·r!(n−r)!)
;

(ii)
∏

1≤i1<i2<···<ir≤n

⎛

⎝
r∑

j=1

1
1 + xij

⎞

⎠

1/r

≥
[

r
1

An(1 + x)

]n!/(r·r!(n−r)!)
.

(4.2)

Proof. We clearly see that

(An(x), An(x), . . . , An(x)) ≺ (x1, x2, . . . , xn) = x. (4.3)

Therefore, Theorem 4.2(i) follows from (4.3) and Theorem 3.1 together with (1.7), and
Theorem 4.2(ii) follows from (4.3) and Theorem 3.4 together with (1.7).

If we take r = 1 in Theorem 4.2(i) and r = n in Theorem 4.2, respectively, then we have
the following corollary.

Corollary 4.3. If x = (x1, x2, . . . , xn) ∈ Rn
+ and Gn(x) = (

∏n
i=1xi)

1/n, then

(i)
Gn(x)

Gn(1 + x)
≤ An(x)

An(1 + x)
;

(ii) An

( x

1 + x

)
≤ An(x)

An(1 + x)
;

(iii) An

(
1

1 + x

)

≥ 1
An(1 + x)

.

(4.4)

Remark 4.4. If we take
∑n

i=1 xi = 1 in Corollary 4.3(i), then we obtain the Weierstrass
inequality: (see [20, page 260])

n∏

i=1

(
1
xi

+ 1
)

≥ (n + 1)n. (4.5)
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Theorem 4.5. If x = (x1, x2, . . . , xn) ∈ Rn
+ and r ∈ {1, 2, . . . , n}, then

(i)
∏

1≤i1<i2<···<ir≤n

⎛

⎝
r∑

j=1

xij

1 + xij

⎞

⎠

1/r

≥
[

r
Hn(x)

1 +Hn(x)

]n!/(r·r!(n−r)!)
;

(ii)
∏

1≤i1<i2<···<ir≤n

⎛

⎝
r∑

j=1

1
1 + xij

⎞

⎠

1/r

≤
[

r
1

1 +Hn(x)

]n!/(r·r!(n−r)!)
.

(4.6)

Proof. We clearly see that

(
1

Hn(x)
,

1
Hn(x)

, . . . ,
1

Hn(x)

)

≺
(

1
x1

,
1
x2

, . . . ,
1
xn

)

=
1
x
. (4.7)

Therefore, Theorem 4.5(i) follows from (4.7) and Theorem 3.4 together with (1.7), and
Theorem 4.5(ii) follows from (4.7) and Theorem 3.1 together with (1.7).

If we take r = 1 and r = n in Theorem 4.5, respectively, then we get the following
corollary.

Corollary 4.6. If x = (x1, x2, . . . , xn) ∈ Rn
+, then

(i)
Gn(x)

Gn(1 + x)
≥ Hn(x)

1 +Hn(x)
;

(ii) Gn(1 + x) ≥ 1 +Hn(x);

(iii) An

( x

1 + x

)
≥ Hn(x)

1 +Hn(x)
;

(iv) An

(
1

1 + x

)

≤ 1
1 +Hn(x)

.

(4.8)

Theorem 4.7. If x = (x1, x2, . . . , xn) ∈ [1,∞)n and r ∈ {1, 2, . . . , n}, then

∏

1≤i1<i2<···<ir≤n

⎛

⎝
r∑

j=1

xij

1 + xij

⎞

⎠

1/r

≤
[

r
Gn(x)

1 +Gn(x)

]n!/(r·r!(n−r)!)
. (4.9)

Proof. We clearly see that

log(Gn(x), Gn(x), . . . , Gn(x)) ≺ log(x1, x2, . . . , xn). (4.10)

Therefore, Theorem 4.7 follows from (4.10), Theorem 3.2, and (1.7).
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If we take r = 1 and r = n in Theorem 4.7, respectively, then we get the following
corollary.

Corollary 4.8. If x = (x1, x2, . . . , xn) ∈ [1,∞)n, then

(i) An

( x

1 + x

)
≤ Gn(x)

1 +Gn(x)
;

(ii) Gn(1 + x) ≥ 1 +Gn(x).

(4.11)

Remark 4.9. From Remark 3.3 and (4.10) together with (1.7) we clearly see that inequality in
Corollary 4.8(i) is reversed for x ∈ (0, 1]n and inequality in Corollary 4.8(ii) is true for x ∈ Rn

+.

Theorem 4.10. If x = (x1, x2, · · · , xn) ∈ Rn
+, then

(i)
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

1 + xij

2 + xij

⎞

⎠

1/r

≥
[
1 +

∑n
i=1 xi

2 +
∑n

i=1 xi
+
r − 1
2

](n−1)!/r!(n−r)!
×
( r

2

)(n−1)!/r·r!(n−r−1)!

for 1 ≤ r ≤ n − 1;

(ii)
n∑

i=1

1 + xi

2 + xi
≥ 1 +

∑n
i=1 xi

2 +
∑n

i=1 xi
+
n − 1
2

;

(iii)
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

1
2 + xij

⎞

⎠

1/r

≤
(

1
2 +

∑n
i=1 xi

+
r − 1
2

)(n−1)!/(r−1)!(n−r)!
×
( r

2

)(n−1)!/r·r!(n−r−1)!

for 1 ≤ r ≤ n − 1;

(iv)
n∑

i=1

1
2 + xi

≤ 1
2 +

∑n
i=1 xi

+
n − 1
2

.

(4.12)

Proof. Theorem 4.10 follows from Theorems 3.1, 3.4, and (1.7) together with the fact that

(1 + x1, 1 + x2, . . . , 1 + xn) ≺
(

1 +
n∑

i=1

xi, 1, 1, . . . , 1

)

. (4.13)

Theorem 4.11. Let A = A1A2 · · ·An+1 be an n-dimensional simplex in Rn and let P be an arbitrary
point in the interior of A. If Bi is the intersection point of straight line AiP and hyperplane

∑
i =

A1A2 · · ·Ai−1Ai+1 · · ·An+1, i = 1, 2, . . . , n + 1, then for r ∈ {1, 2, . . . , n + 1} one has

(i)
∏

1≤i1<i2···<ir≤n+1

⎛

⎝
r∑

j=1

PBij

AijBij + PBij

⎞

⎠

1/r

≤
(

r

n + 2

)(n+1)!/r·r!(n−r+1)!
;



Journal of Inequalities and Applications 13

(ii)
∏

1≤i1<i2···<ir≤n+1

⎛

⎝
r∑

j=1

AijBij

AijBij + PBij

⎞

⎠

1/r

≥
[

r

(
n + 1
n + 2

)](n+1)!/r·r!(n−r+1)!
;

(iii)
∏

1≤i1<i2···<ir≤n+1

⎛

⎝
r∑

j=1

PAij

AijBij + PAij

⎞

⎠

1/r

≤
[

r

(
n

2n + 1

)](n+1)!/r·r!(n−r+1)!
;

(iv)
∏

1≤i1<i2···<ir≤n+1

⎛

⎝
r∑

j=1

AijBij

AijBij + PAij

⎞

⎠

1/r

≥
[

r

(
n + 1
2n + 1

)](n+1)!/r·r!(n−r+1)!
.

(4.14)

Proof. It is easy to see that
∑n+1

i=1 (PBi/AiBi) = 1 and
∑n+1

i=1 (PAi/AiBi) = n, these identical
equations imply

(
1

n + 1
,

1
n + 1

, . . . ,
1

n + 1

)

≺
(

PB1

A1B1
,
PB2

A2B2
, . . . ,

PBn+1

An+1Bn+1

)

,

(
n

n + 1
,

n

n + 1
, . . . ,

n

n + 1

)

≺
(

PA1

A1B1
,
PA2

A2B2
, . . . ,

PAn+1

An+1Bn+1

)

.

(4.15)

Therefore, Theorem 4.11 follows from (4.15), Theorems 3.1, 3.4, and (1.7).

Remark 4.12. Mitrinovic’ et al. [21, pages 473–479] established a series of inequalities for
PAi/AiBi and PBi/AiBi, i = 1, 2, . . . , n + 1. Obvious, our inequalities in Theorem 4.11 are
different from theirs.

Theorem 4.13. Suppose that A ∈ Mn(C) (n ≥ 2) is a complex matrix, λ1, λ2, . . . , λn, and
σ1, σ2, . . . , σn are the eigenvalues and singular values of A, respectively. If A is a positive definite
Hermitian matrix and r ∈ {1, 2, . . . , n}, then

(i)
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

λij
1 + λij

⎞

⎠

1/r

≤
[

r

(
trA

n + trA

)]n!/r·r!(n−r)!
;

(ii)
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

1
1 + λij

⎞

⎠

1/r

≥
[

r

(
n

n + trA

)]n!/r·r!(n−r)!
;

(iii)
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

1 + λij
2 + λij

⎞

⎠

1/r

≤
[

r

(
n
√
det(I +A)

1 + n
√
det(I +A)

)]n!/r·r!(n−r)!
;

(iv)
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

1
trA + λij

⎞

⎠

1/r

≤
[

r

(
1

trA + n
√
detA

)]n!/r·r!(n−r)!
;
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(v)
∏

1≤i1<i2···<ir≤n

⎛

⎝
r∑

j=1

1
λij +

∑n
i=1 λi +

∑n
i=1 σi

⎞

⎠

1/r

≥
∏

1≤i1<i2···<ir≥n

⎛

⎝
r∑

j=1

1
σij +

∑n
i=1 λi +

∑n
i=1 σi

⎞

⎠

1/r

.

(4.16)

Proof. (i)–(ii) We clearly see that λi > 0 (i = 1, 2, . . . , n) and
∑n

i=1 λi = trA, then we have

(
trA
n

,
trA
n

, . . . ,
trA
n

)

≺ (λ1, λ2, . . . , λn). (4.17)

Therefore, Theorem 4.13(i) and (ii) follows from (4.17), Theorems 3.1, 3.4, and (1.7).
(iii) It is easy to see that 1+ λ1, 1+ λ2, . . . , 1+ λn are the eigenvalues of matrix I +A and

∏n
i=1(1 + λi) = det(I +A), then we get

log
(

n

√
det(I +A), n

√
det(I +A), . . . , n

√
det(I +A)

)

≺ log(1 + λ1, 1 + λ2, . . . , 1 + λn)

1 + λi ≥ 1, i = 1, 2, . . . , n.

(4.18)

Therefore, Theorem 4.13(iii) follows from (4.18), Theorem 3.2, and (1.7).
(iv) It is not difficult to verify that

log
(

trA
n
√
detA

,
trA

n
√
detA

, . . . ,
trA

n
√
detA

)

≺ log
(
trA
λ1

,
trA
λ2

, . . . ,
trA
λn

)

,

trA
λi

≥ 1, i = 1, 2, . . . , n.

(4.19)

Therefore, Theorem 4.13(iv) follows from (4.19), and Theorem 3.2 together with (1.7).
(v) A result due to Weyl [22] gives

log(λ1, λ2, . . . , λn) ≺ log(σ1, σ2, . . . , σn). (4.20)

From (4.20), we clearly see that

log
(∑n

i=1 λi +
∑n

i=1 σi

λ1
,

∑n
i=1 λi +

∑n
i=1 σi

λ2
, . . . ,

∑n
i=1 λi +

∑n
i=1 σi

λn

)

≺ log
(∑n

i=1 λi +
∑n

i=1 σi

σ1
,

∑n
i=1 λi +

∑n
i=1 σi

σ2
, . . . ,

∑n
i=1 λi +

∑n
i=1 σi

σn

)

∑n
i=1 λi +

∑n
i=1 σi

λi
,

∑n
i=1 λi +

∑n
i=1 σi

σi
≥ 1, i = 1, 2, . . . , n.

, (4.21)

Therefore, Theorem 4.13(v) follows from (4.21), Theorem 3.2, and (1.7).
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