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1. Introduction

In 1954, Harold Seymour Shapiro proposed the inequality for a cyclic sum in n variables as
follows:
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2
, (1.1)

where xi ≥ 0, xi + xi+1 > 0, and xi+n = xi for i ∈ N. Although (1.1) was settled in 1989 by
Troesch [1], the history of long year proofs of this inequality was interesting, and the certain
problems remain (see [1–8]). Motivated by the directions of generalizations and proofs of
(1.1), we consider the following inequality:
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(1.2)
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where p, q ≥ 0 and p + q > 0. It is clear that (1.2) is true for n = 3. Indeed, by the Cauchy
inequality, we have
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(1.3)

It follows that

P
(
3, p, q

) ≥ (x1 + x2 + x3)2(
p + q

)
(x1x2 + x2x3 + x3x1)

≥ 3
p + q

. (1.4)

Obviously, (1.2) is true for every n ≥ 4 if p = 0 or q = 0.
In this note, by studying (1.2) in the case n = 4, we show that it is true when p ≥ q, and

false when p < q. Moreover, we give a sufficient condition of p, q under which (1.2) is true in
the case n = 5. It is worth saying that if p < q, then (1.2) is false for every even n ≥ 4. Two
open questions are discussed at the end of this paper.

2. Main Result

Without loss generality of (1.2), we assume that p + q = 1. However, (1.2) for n = 4 now is of
the form

P
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)
=
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px2 + qx3
+
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+
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x4
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≥ 4. (2.1)

Theorem 2.1. It holds that (2.1) is true for p ≥ q, and it is false for p < q.

Proof. By the Cauchy inequality, we have
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(2.2)

Hence

P
(
4, p, q

) ≥ (x1 + x2 + x3 + x4)2

px1x2 + 2qx1x3 + px1x4 + px2x3 + 2qx2x4 + px3x4
. (2.3)

It is an equality if and only if

px2 + qx3 = px3 + qx4 = px4 + qx1 = px1 + qx2. (2.4)
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Consider the following quadratic form:

ω(x1, x2, x3, x4) = (x1 + x2 + x3 + x4)2

− 4
(
px1x2 + 2qx1x3 + px1x4 + px2x3 + 2qx2x4 + px3x4

)
.

(2.5)

By a simple calculation we obtain the canonical quadratic form ω as follows:

ω(t1, t2, t3, t4) = t21 + 4pqt22 +
4q

(
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)

p
t23, (2.6)

where
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p
x4,

t3 = x3 − x4.

(2.7)

It is easily seen that if p ≥ q, that is, p ≥ 1/2, then ω ≥ 0 for all t1, t2, t3 ∈ R. This implies that
ω is positive. We thus have P(4, p, q) ≥ 4.

Now let us consider the cases when ω vanishes. This depends considerably on the
comparison of p with q. If p = q, that is, p = 1/2, then the quadratic form ω attains 0 at
t1 = x1 − x3 = 0 and t2 = x2 − x4 = 0. By (2.4) we assert that P(4, p, q) = 4 whenever x1 = x3

and x2 = x4. Also, if p > 1/2, then ω vanishes if and only if
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q

p
x4 = 0,
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(2.8)

Combining these facts with (2.4) we conclude that P(4, p, q) = 4 when x1 = x2 = x3 = x4.
Now we give a counter-example to (2.1) in the case p < q, that is, p < 1/2. Let x1 =

x3 = a, x2 = x4 = b, and a/= b. We will prove that
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+

b
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+

a
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+

b

pa + qb
= 2
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It is obvious that

(2.9) ⇐⇒ p
(
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)(
a2 + b2

)
+ 2

(
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)
ab > 0 ⇐⇒ p

(
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)
(a − b)2 > 0. (2.10)

The last inequality is evident as a/= b and p < 1/2, so (2.9) follows.
The theorem is proved.
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Remark 2.2. Let A denote the matrix of the quadratic form ω in the canonical base of the real
vector space R4. Namely,

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 − 2p 1 − 4q 1 − 2p

1 − 2p 1 1 − 2p 1 − 4q

1 − 4q 1 − 2p 1 1 − 2p

1 − 2p 1 − 4q 1 − 2p 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (2.11)

Let D1, D2, D3, and D4 be the principal minors of orders 1, 2, 3, and 4, respectively, of A. By
direct calculation we obtain

D1 = 1, D2 = 4pq, D3 = 16q2
(
2p − 1

)
, D4 = 0. (2.12)

Then ω is positive if and only if Di ≥ 0 for every i = 1, 2, 3, 4. We find the first part of
Theorem 2.1.

Thanks to the idea of using positive quadratic form we now study (1.2) in the case
n = 5. It is sufficient to consider the case p + q = 1. By the Cauchy inequality, we reduce our
work to the following inequality
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(2.13)

The matrix of ϕ in an appropriate system of basic vectors is of the form

B =
1
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 2 − 5p 2 − 5q 2 − 5q 2 − 5p

2 − 5p 2 2 − 5p 2 − 5q 2 − 5q

2 − 5q 2 − 5p 2 2 − 5p 2 − 5q

2 − 5q 2 − 5q 2 − 5p 2 2 − 5p

2 − 5p 2 − 5q 2 − 5q 2 − 5p 2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (2.14)

which has the principal minors

D1 = 1, D2 =
5p

(
4 − 5p

)

4
, D3 =

25q
(
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)

4
, D4 =
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(
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)2

16
, D5 = 0.

(2.15)
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This implies that the necessary and sufficient condition for the positivity of the quadratic
form ϕ is

5 − √
5

10
≤ p ≤ 5 +

√
5

10
. (2.16)

We thus obtain a sufficient condition under which (1.2) holds for n = 5.

Theorem 2.3. If (5 − √
5)/10 ≤ p ≤ (5 +

√
5)/10, then (1.2) is true for n = 5.

Remark 2.4. Consider (1.2) in the case n ≥ 4, n is even, and p < q. According to the proof of
the second part of Theorem 2.1, this inequality is false. Indeed, we choose x1 = x3 = · · · = a,
x2 = x4 = · · · = b. By the above counter-example, we conclude P(n, p, q) < n/(p + q).

Open Questions. (a) Find pairs of nonnegative numbers p, q so that (1.2) is true for every
n ≥ 4.

(b) For certain n ≥ 5, which is sufficient condition of the pair p, q so that (1.2) is true.
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