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1. Introduction

This paper is concerned with the exterior problem for hyperbolic system of second order. Let
K be a closed domain with smooth boundary in R® and let the origin belong to X. Consider
the following exterior problem for the hyperbolic system of second order:

3
ofut — > aja(t, )00 =b', i=1,2,3, (t,x) ER, xR*\ X,
k=1
(1.1)
u(0,x) = f(x), ou(0,x) = g(x),

u(t,x) =0, x€ok,

where ajji(t, x) € C3([0,00) x R*\ ) and b = (b', b*,b*). We assume that a;j(t, x) satisfies

3
>, aju(t, X)ejen 2 alEP,  (a>0), (1.2)
k=1
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for all symmetric matrixes E = (e;;), where e;; = (1/2)(du;/0x; + 0u;/0x;), |EP* = Zijzleizi,
(t,x) e R, xR3\ K.
Let v = 0;u. The system (1.1) can be written as an evolution system in the form

%U:A®U+R (1.3)
where
U = ', 12,8, 0,002, 0) = (o),  B=(0,b),
A(t)=< 0 IM) ,
a(t) 0 /. (1.4)

3
am=<z%m@>.
jl=1 3x3

Ikawa considered in [1] the mixed problem of a hyperbolic equation of second-order.
The existence theorem is known for the obstacle free problem in [2]. Dafermos and Hrusa
proved in [3] the local existence of the Dirichlet problem for the hyperbolic system inside a
domain by energy method.

In this paper, we deal with the exterior problem for the second order hyperbolic
system. In Section 2, we show the existence of the exterior problem for the problem (1.1)
by the semigroup theory. In Section 3, we prove the regularity for the solutions of the exterior
problem (1.1) and give the estimate for the regularity of solutions. In Section 4, we discuss
the application of the existence theorem to elastrodynamics.

2. Existence of the Exterior Problem for Hyperbolic System of
Second Order

Note that H(t) = H} (R3 \ X) x L*(R® \ X) with the inner product

(U, Ua)prgy = (a1, 00), (2, 0y = Y, (@it 0034}, 00k ) + (01, 02). (21)
i,k]=1

By (1.2) and Korn inequality (cf. [4, 5]), we have
Lemma 2.1. For some M > 0, we have

1 2 2 2 2 2
37 Ul e + 112 ) < MWy < Ml o + Il E2oney)- (22)
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Then H (t) is a Hilbert space with the inner product defined as above. We define the
operator (without loss of generality, we still write this operator as A(t)) in H(t) by

A(t): D — H(b), 05
U — AU, '

where D = (H?(R® \ X) N H}(R® \ X)) x H}(R® \ X). It is obvious that A(t) is a densely
defined operator.
Lemma 2.2. There exists a constant ¢ > 0 such that for any U € D,

(ABU W)y | < U, Wy (24)

holds.

Proof. LetU = (u,v) € D.

[AOUW | =] > (agudje’,onk) + (alt)u,0)
i,jk,1=1

<

3

= Z j aijklalukvivjdr— Z f viajaijklalukdx
p) R3\ K

i,j k=17 0K i,j,k]1=1

=

(2.5)

3
- j v’aijkléjaluk dx + (a(t)u,v)
i k=17 RIA\K

ij

3
f v'0;a;0u” dx — (v, a(t)u) + (a(t)u,v)
=17 RA\KL

2 2
< C(Iuls oy + 101210 )

2
< C”u”H(t)'

Corollary 2.3. For all real A such that |\| > 2c, the estimate
AT = AUl g1y 2 (M = U gz (2.6)

holds for any U € D.
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Proof. By (2.4),

(M =AU, (M = A0))U) )
=m%uanm-A«uAﬁﬂnmo+uumLuth+@«nuAUﬂnHm
> AP U U) gy~ 20Me (U, U) gy (2.7)
= (A1 =20 +2¢(1A] - 20) ) 1Ul3

> (I = 20)* U130 -

O
The estimate of the resolvent operator (A — A(t) 7 is the following.
Lemma 2.4. There exists a constant 6 > 0 such that for all A real and |\| > 6,
Al - A(t): D — H(t) (2.8)
is a bijective mapping. Moreover, we have
”ul—Au»4” < 1 (2.9)
HBH ~ A -6
Proof. Consider the system
M -AMH))U =P, (2.10)
namely,
AMi-v=p
(2.11)
—a(thu+ v =gq,
where (p,q) € Hy(R?\ X) x L*(R®\ X) = H(t).
The substitution of the first relation
v=A\u-p (2.12)

in the second of (2.11) gives

—a(t) + \? u=x\p+q=w€L2 R3\ X). (2.13)
( ) (B )
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By the well-known variation method, there exists a solution u € H*(R3 \ X) N H} (R3 \ X) of
the elliptic system (2.13) for any w € L?(R® \ X). Defining v by (2.12), we have a solution

(u,0) € (H2 <R3 \JC) N H] <R3 \JC)) x H} (R3 \JC> =D (2.14)
of (2.10). Therefore, AI — A(t) is a surjection.
From (2.6), it follows that the existence of (AI — A(t)) ! and the estimate

1

|- Ayl < el (2.15)

H(p)

Let 6 = 2¢, we have (2.9). O
For U = (u,v) € HP(R®\ X) x HP7L(R? \ X), we define the following norm:

||U||f, = ”u”i[p(u@\,/() + ”v”épfl(Ra\x)- (2~16)

Suppose that a;jk (t, x) € CP([0, 00) x R3\ X), we have

Corollary 2.5. For the real number g > 6 (Ao fixed) and the integer p > 1, where 6 is as in
Lemma 2.4, there exists d,, > 0 such that for any U € D 0 (HP (R? \ X) x HP/(R3 \ X)),

U], < dpll(AoI = AB)U|-y- (2.17)
Proof. From Lemma 2.4,

AoI-A(t) : DN (HP (R3 \ ,/c) x HP! <R3 \ JC)) —SH(®N <H”’1 <R3 \ ,/c) x HP2 <R3 \ JC>>
(2.18)

is a bijective continuous mapping, then Aol — A(f) is a closed operator. It implies that
(Aol — A(#))" is also a closed operator. By Banach’s closed graph theorem, (Aol — A) 7 is
continuous. So for any U € D N (HP(R?\ X) x HP"1(R?\ X)), we have

ul, = || Aol = A@)™ ol = ABIU| < dyll ol = ADIU,. (2.19)

O

Definition 2.6. Let X be a Banach space. A family {A(t)},c[or) of infinitesimal generators of
Co semigroups on X is called stable if there are constants M > 1 and 6 (called the stability
constants) such that

p(A(t) 3 (6,%0), Vte[0,T],

(2.20)
<MA-8)F vis>§

k
[TOI-A@)™
j=1
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for every finite sequence 0 < t; <t < -+ <t <T,k=1,2,....

Lemma 2.7. For t € [0,T], let A(t) be the infinitesimal generators of Cy semigroups S¢(s) on the
Banach X. The family of generators { A(t) },eo,ry is stable if and only if there are constants M > 1
and 6 such that

p(A(t) 3 (6,%0), Vte[0,T],

. (2.21)
HSt (sp)] < Mexp{6z },
j=1

j=1
for any finite sequence 0 <t; <t <--- <t <T, k=1,2,....

Lemma 2.8. Let { A(t) }1¢[o,r] be a stable family of infinitesimal generators of Co semigroups Si(s) on
the Banach space X such that D(A(t)) = D is independent of t and for every Uy € D, A(t)U is
continuously differentiable in X. If B(t) € C1([0,T]; X), then

%U(t) = A(HU(t) + B(t) (2.22)

has a unique classical solution U (t) € C'([0,T]; X) N C([0, T]; D) such that U(0) =

The proofs of Lemmas 2.7 and 2.8 are in [6]. The straightforward application of the
semigroup theory to the system (1.3) gives the following proposition.

Proposition 2.9. Given U, € D and B(t) € C'([0,T], H} (R®\ X) x L>(R3\ X)), then there exists
one and only one solution U (t) € C'([0,T]; Hy(R3\ X) x L>(R®\ X)) nC([0,T]; D) of (1.3) such
that U(0) = U

Proof. Let X = H(t). For given t > 0, A(t) is an infinitesimal generator of Cy semigroups S¢(s)
on X. For any U € D, it is easy to know that

1Se(s)Ull ey < € IUrrs)- (2.23)

Then for any U € D, t1,t, > 0, we have

3
Uy, = f Z aiji (t)0ju'du* dx + (v, v)
k,1=1

3 3
f 3 Z aijki (t2)9; ualu dx+(v, v)+f Z (aijkl(tl)—aijkl(tz))ajulaluk dx
RIAK i,j k=1

Rs\/flj k=1

< U3y + Cltr = B2l I[U1[31 sy
(2.24)
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namely,
U1y < 4+ Caltr = 822U prey- (2.25)
For any finite sequence 0 <t; <t, <--- <ty <Tandanys;,j=1,2,...,k

1St (1) Sty (Sie=1) -+ St (U )
< Cl|S (k) Sty (Sk-1) =+ Sty (SOU || g,
< Ce®™||Sy,., (sk-1) -+~ St (1)Ul s,
< Ce%* (1 + Cy (t — tr1)) 2|k, (Sk-1) -+ - Sty (sOUll s,y

< Cedlervsiat=rsats) (14 Cy (be—tir)) 2 (14+C1 (e —tr)) /7 - - (14 Ca(ba—11)) VUl 11 s,

k k/2
<Cexp <6Zs]-> (B2 il
j=1

k
< Cexp <6Zs]~> eCTT/2||LI||H(t)
=1

k
< Mexp <6ZS]'> U ey
71

(2.26)

where M > 1. From Lemma 2.4, for any t € [0,T], (§,00) C p(A(t)). Then by Lemma 2.7,
{A(t) }epo,r) is a stable family. Obviously, A(t)Uy is continuously differentiable in X. So
Proposition 2.9 follows from Lemma 2.8. O

From Proposition 2.9, we obtain the existence of solutions to the problem (1.1).

Theorem 2.10. Given (f,g) € D and b € C'([0,T]; L>(R3\ X)), then there exists one and only one
solution u(t, x) of (1.1) such that

u(t, x) € C([O,T];H2<R3 \ ,/c) mHé<R3 \,/<>)
(2.27)
ncl([o,T];Hol(R3 \Jc)) N C2<[O,T];L2(R3 \Jc)).

Proof. Let Uy = (f,¢)", B = (0,b)". By Proposition 2.9, there exists a solution U(t) €
CU([0,T]; Hy(R® \ X) x L*(R3 \ X)) N C([0,T]; D) of problem (1.3) such that U(0) = Uj. Let
u(t, x) denote the forgoing three components of U (t), then u(t, x) is the solution of problem
(1.1) and satisfies (2.27). O
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3. Regularity of Solutions for the Exterior Problem

First, we show the energy inequalities for our problem. These inequalities play an important
role in the proof of the regularity of solutions.

Proposition 3.1. Suppose that
u(t, x) € C([O,T];H2<]R3 \ x) N H] <R3 \ JC>>

(3.1)
mcl<[0,T],-H3 <R3 \ x))a C2<[0,T];L2<R3 \ JC)>

is a solution of problem (1.1) and that b(t, x) € C*([0, T]; L2(R®\ X)), then for any given t € [0,T],
we have

2
et M e sy + 10t ) b oy + ||atu(t") [2(R3\K)

<C(T) <||u(0/')|IHZ(R3\JC) +110:1(0, ) | 11 rov (3.2)

t
+[b(0, )l 2 mov ) + f 10sb(s, )l 2 m3\ ) ds>,
0

where C(T') is a constant which depends on T.

Proof. Put U (t) = (u, 0su), then U (t) € D and satisfies

d
EU(t) =AM)U(t) + B(t),

d
E(u(t)lu(t))H(t) (3.3)

= (U'®),U®) gy + UG, U (E) gy + UE),U®) pr)
= (AMU(E) + B(), U (1) + (U(E), ABU(E) + B(E)) prry + U(E), U)oy,

where U'(t) = (d/dH)U(t), (U (t), U()) ¢ = zﬁjrk,,zl(ataijk,ajui, ouk). Obviously,
U®, UD) gy | < CIUD Irgo- (34)
By (2.4),

(ADU ), UE)) gy + U0, AOUD) ) | < CIUG Iy (3.5)
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Thus

d
UGN < CIUO ey + 1BOr UG 0 ),

(3.6)
d
NG lss) < COU Ny + 1B )
Applying Gronwall’s inequality, we get
t
IOy < <|Iu(0)”H(0) + J‘OHB(S)”H(s) dS>- (3.7)

Without loss of generality, we assume that d;u(t, x) € C([0,T]; H*(R® \ X) n H}(R? \
X)) N CH[0,T]; Hy(R® \ X)). Then we see

u'(t) = <8tu, afu> €D,

4 (3.8)
Eu’(t) =AU (t) + A (HU() + B'(t).
Applying (3.7) for U'(t), we get
t
||ll’(t)||H(t) <e“ <||LI’(O) ||H(0) + f0||A'(s)U(s) +B'(s) ||H(s) ds>. (3.9)
By (2.17) and (2.2),
IO, + [T O] < dall (Al = AOIUO gz + I Ol
< dy (AoIU® iy + 1L Ol 1500 + 1BOl1zy) + I O]
(3.10)

t
<C(T) <||u(0)||H(0) + fo”B<S)HH(S) ds + ||B()| gy + ||LI’(0)||H(0)

t t
s f AUy ds + f JLIOT ds).
Obviously,
1) 1110, < TAOUO) 110+ 1BO) sy < C(IUO) iy + 160, Mz ) (B

Also we have

t
IB® ey < C<’[0”asb(sl')”L2(]R3\JC) ds + ||b(0/')||L2(R3\J<)>/ (3.12)
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and for all t € [0, T],
t t
fOnB(s)nH(s) ds < T<f0||asb<s,->||Lz<R3\J<> ds + [b(0, ->||L2<Ra\,,<)>- (3.13)

Inserting these estimates to the above inequality, we get

U@l + ' el

t t (3.14)
<C(T) <||U<0>||2 4160, Mz py + fonasb(s, Mz ds + fonms)nz ds>-

An application of Gronwall’s inequality implies
t
@, + [U'®]], < C(T) <IIU(0)||2 + 1600, 2o\ k) +I 10sb(s, )12\ k) dS>- (3.15)
0

Namely,

et M @i + 10E @k + 10, )l @oy sy + 100, ) |2y

= JuaCt, Moy + 10eCE, )l oty + 19134, Ml ooy + || 02, )

L2(R3\K)
(3.16)
<C(M)( lu(o, ')”HZ(R3\J<) + ||atu(0,.)||Hl(R3\K) +11b(0, ')”LZ(R3\JC)
t
+J‘O”asb(s/ ) ”LZ(]R3\JC) dS) .
This completes the proof of (3.2). -

Theorem 3.2. For h > 2, suppose that ajji(t,x) € CR([0,T] x R3\ X), f € H'(R®\ X), g €
H"Y(R3\ X), and

be Cﬂ<[o,:r];H"-2—ﬂ<R3 \ JC)), 0<B<h-2,
(3.17)
ol e L1<[0,T];L2<R3\JC>>.
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If the compatibility conditions of order h—1 are satisfied, then problem (1.1) has a solution u such that
u(t,x) € cﬂ([o,T];Hh-ﬂ(R3 \JC)), 0<p<h,
SuP”aau(t/ ‘)||L2(R3\J() < C<||f||Hh(R3\J<) + ||g||Hh_1 (R3\ ) +sup sup ”aab(r/ ')”LZ(R3\J<) (3.18)

la|<h 0<r<t |a|<h—2
t
h-1
+I 0" b(r,-)
0

dr>, vt > 0.
L2(R3\K)

Proof. At first we prove

u(t,x) € Ch‘2<[O,T];H2<R3 \ JC>> n ch-l<[o,:r];H1 <R3 \ ,/c)) n Ch<[O,T];L2<R3 \J()).
(3.19)

Let ¢ = f and ¢1 = g. We define ¢}, by
; 3RS /P=2\ o -2,
¢, = > oV "ayd;0pk + 0 b (0,x), i=1,23,p=23,...,h-1, (320)

then (¢p, ¢pp11) €D, p=1,2,...,h -2
We consider the following problem:

3
2.0 k
at vq+1 - Z aifkl(t’ x)afalvq+1
jk1=1

3 h3/h-2 .
= Z Z( > (6;’_2_"111']‘14) (a?a,-alu’;) +0/7%b, i=1,2,3, (3.21)

k=1 n=0 n

Uq+1 (0/ x) = ¢h—2 (x)/ at‘0q+l (0/ x) = (i)h—l (x)/
vg1(t,x) =0, x€0K,

where

th-3 Eit—r)3
ug(t, x) = ¢o(x) + tp1(x) +--- + m(l)h_p, (x) + Ioqu(r,x)dr, (3.22)

here uy = 0.
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From (3.21),
3
0 (vhr = }) = X aua(t 2001 (v, - 0f)

_ i h=3 (h - 2> (a?-z—na,.jk,>a?ajal <u'q‘ - u;l) (3.23)

jki=1n=0 \ N
3 h-3 h-2 t (t—r)h_3_"
= o2 g, 6-8"'— ok — ok dr.
j;:ln:(( - ><t /k’> i 0(h—3—n)!< q q—l)

By (3.2), we have

o501 = gl 2o + 1060501 = B0l 1 oy * (|07 2001 = B0,

t (3.24)
< cmjonvq gl A 4=25,..,

thus

<C

(C(T)t)?
L2(R3\X) — !

llog:1 - v‘1”H2(R3\J() + [|0rvgen — aqu”Hl(RS\Jc) + ”atzvq+1 - atzvq - (3:25)

This implies that v, converges to some v in C([0, T]; H*(R® \ X)) N C!([0, T]; H(R* \ X)) N
C2([0, T]; L2(R® \ X)). Set

h-3 E(t—r)i3
Ut %) = o) + 11(x) -+ T Pra(x) + 0—(2;1 _r)a)!

=3 v(r, x)dr, (3.26)

then u, tends to u in C([0, T]; H"2(R3\ X))nC" ([0, T]; H'(R3\ £))nC"([0, T]; L*(R3\ X)).
The passage to the limit of (3.21) shows

3
070U = D ayji(t, x)0;0,0) "
k=1
(3.27)

= i 5 (h ) 2> (a?_z_"ﬂim) <a?6j61uk> +0I%, i=1,2,3,

namely,

jkI=1

h-2 . 3 )
% <8t2ul - aijkl(t,x)a]-aluk> =02, i=1,2,3. (3.28)
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Taking account of the definition of ¢,, we see

dar 2 i S k
7 ofu' — > agji(t, x)0;0u

jkl=1

=0/b'(0,x), i=1,23, p=0,1,2,...,h—-2. (3.29)

t=0

Therefore u is the solution of problem (1.1) and satisfies (3.19).

We now prove (3.18) by induction. When h = 2, (3.18) follows from (3.2). For h > 2,
suppose that (3.18) holds for h — 1. We show that it still holds for h.

Applying (3.2) to (3.27), we conclude from the inductive hypothesis that

h-1 h

o2 s |oiu|| et ot , (s < the right-hand side of (3:19). - (3.30)
In a similar way, we can obtain
|f|§h132<” IR S LZ(RS\M) < the right-hand side of (3.19).
(3.31)
Set U (t) = {u, 0;u}, then U (f) is the solution of (1.3) and
U(t) e ch-z([o, T]; H? (m@ \ ,/c) x H <R3 \ JC>>. (3.32)

Now

(Aol — A()UL(E) = AU (t) — U'(t) + B(t) € c([o, T]; H? <R3 \ x) x H <R3 \JC)), (3.33)
then by (2.17) (taking p = 3), we see
U e C<[O,T];H3<R3\JC> x H2<R3 \x)),

lu(t, ) e vy + 11061 (E ) 2oy
= [U®)l; < [[(AoI = AU ()],
<c(iumly +[lu®|l, + 1B®I,)

+ b, -)||H1<R3\,<>)

2
< C (It oo + 10 Mo+ [t

< the right-hand side of (3.19).
(3.34)

Differentiation of (3.33) with respect to t gives

(Mol = AU () = MU' () = U'(t) + B'(t) - U (t) + A/ (HU(H), (3.35)
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and by the above result A'(t)U(t) € C([0,T]; H*(R®\ X) x HY{(R3 \ X)),
the right-hand side of (3.36) € c([o,T] CH? <R3 \ x) x H' <R3 \ x)), (3.36)

from which it follows that

') e c([0,T) H (B \ &) x H2(B\ X)),

(3.37)
2 _ . .
l0sue(t, )l s o) + “atu(t,-)l e |L' (1) ||; < the right-hand side of (3.19).
Repeating this process, we get
U e Ch’3<[0,T];H3<]R3 \ ,/c) x H2<R3 \./c>),
(3.38)

| sluhp3||6t”‘u(t, N ks @\ i) < the right-hand side of (3.19).
a|<h—

Using this, we see the right-hand side of (3.33) € C([0, T]; H*(R®\ X) x H*(R?\ X)), then by
(2.17) (taking p = 4)

U(t) e c([o, T]; H* <R3 \ JC) x H° <R3 \ x)). (3.39)
This assures that the right-hand side of (3.35) € C([0,T]; H3(R® \ X) x H*(R?®\ X)), then

() e (10,7 H (R \ &) x H*(R*\ X)),

(3.40)
||OFue(t, -)||H4(R3\J<) < the right — hand side of (3.19).
Repeating this process, we get
U e Ch‘4<[O,T];H4<R3 \ JC) x H° <R3 \JC)),
(3.41)

|s‘uhp4||(')f‘u(t, | ity 4 < the right —hand side of (3.19).
a|<h—

Step by step, finally, we get
U(t) e c( [0,T]; H" <R3 \ JC) x {{h-1 <R3 \ JC)) nC! ([o, T]; H* <R3 \ ,;c) x {2 <R3 \ JC))

n---nC"2([o,T]; H(B? \J() x H' (R \JC))
(3.42)

and (3.18). O
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4. Application to Elastrodynamics

It is well known that the displacement u = (u!, u?, u?) = u(t, x) of an isotropic, homogeneous,
hyperelastic material without the action of external force satisfies the following hyperbolic
system (cf. [4, 5]):

Lu = 8%u - RAu - <c§ - &) Vdivu = F(t,x), (4.1)

where F = (F!,F?,F?),and ¢y, ¢, are given by the Lamé constants A, p:
2 _ 2 _
cg=A+2pu, ¢ = (4.2)

We assume that y2 > 0, A + u > 0.
From [5], system (4.1) can be written as

3
Ofu' = > ayu(t, )00 =0, i=1,2,3, *3)
jdl=1

where A = (a;jk(t, x)) stands for the elastic tensor.

The system (4.3) is the special case of the system (1.1). So by the existence Theorem 3.2,
we derive the existence of solutions for the initial-boundary problem to the elastrodynamic
system (4.3) outside a domain.
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