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The efficiency of the implicit method proposed by He (1999) depends on the parameter β heavily;
while it varies for individual problem, that is, different problem has different “suitable” parameter,
which is difficult to find. In this paper, we present a modified implicit method, which adjusts the
parameter β automatically per iteration, based on the message from former iterates. To improve
the performance of the algorithm, an inexact version is proposed, where the subproblem is
just solved approximately. Under mild conditions as those for variational inequalities, we prove
the global convergence of both exact and inexact versions of the new method. We also present
several preliminary numerical results, which demonstrate that the self-adaptive implicit method,
especially the inexact version, is efficient and robust.
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1. Introduction

LetΩ be a closed convex subset ofRn and let F be amapping fromRn into itself. The so-called
finite-dimensional variant variational inequalities, denoted by VVI(Ω, F), is to find a vector
u ∈ Rn, such that

F(u) ∈ Ω, (v − F(u))�u ≥ 0, ∀v ∈ Ω, (1.1)

while a classical variational inequality problem, abbreviated by VI(Ω, f), is to find a vector
x ∈ Ω, such that

(
x′ − x

)�
f(x) ≥ 0, ∀x′ ∈ Ω, (1.2)

where f is a mapping from Rn into itself.
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Both VVI(Ω, F) and VI(Ω, f) serve as very general mathematical models of numerous
applications arising in economics, engineering, transportation, and so forth. They include
some widely applicable problems as special cases, such as mathematical programming
problems, system of nonlinear equations, and nonlinear complementarity problems, and so
forth. Thus, they have been extensively investigated. We refer the readers to the excellent
monograph of Faccinei and Pang [1, 2] and the references therein for theoretical and
algorithmic developments on VI(Ω, f), for example, [3–10], and [11–16] for VVI(Ω, F).

It is observed that if F is invertible, then by setting f = F−1, the inverse mapping
of F, VVI(Ω, F) can be reduced to VI(Ω, f). Thus, theoretically, all numerical methods for
solving VI(Ω, f) can be used to solve VVI(Ω, F). However, in many practical applications,
the inverse mapping F−1 may not exist. On the other hand, even if it exists, it is not easy to
find it. Thus, there is a need to develop numerical methods for VVI(Ω, F) and recently, the
Goldstein’s type method was extended from solving VI(Ω, f) to VVI(Ω, F) [12, 17].

In [11], He proposed an implicit method for solving general variational inequality
problems. A general variational inequality problem is to find a vector u ∈ Rn, such that

F(u) ∈ Ω, (v − F(u))�G(u) ≥ 0, ∀v ∈ Ω. (1.3)

When G is the identity mapping, it reduces to VVI(Ω, F) and if F is the identity mapping, it
reduces to VI(Ω, G). He’s implicit method is as follows.

(S0) Given u0 ∈ Rn, β > 0, γ ∈ (0, 2), and a positive definite matrix M.

(S1) Find uk+1 via

θk(u) = 0, (1.4)

where

θk(u) = F(u) + βG(u) − F
(
uk

)
− βG

(
uk

)

+ γρ
(
uk,M, β

)
M−1e

(
uk, β

)
,

(1.5)

ρ
(
uk,M, β

)
=

∥∥e(uk, β)
∥∥2

e(uk, β)�M−1e
(
uk, β

) ,

e
(
u, β

)
:= F(u) − PΩ

[
F(u) − βG(u)

]
,

(1.6)

with PΩ being the projection from Rn onto Ω, under the Euclidean norm.

He’s method is attractive since it solves the general variational inequality problem,
which is essentially equivalent to a system of nonsmooth equations

e
(
u, β

)
= 0, (1.7)

via solving a series of smooth equations (1.4). The mapping in the subproblem is well
conditioned andmany efficient numerical methods, such asNewton’smethod, can be applied
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to solve it. Furthermore, to improve the efficiency of the algorithm, He [11] proposed to solve
the subproblem approximately. That is, at Step 1, instead of finding a zero of θk, it only needs
to find a vector uk+1 satisfying

∥
∥
∥θk

(
uk+1

)∥∥
∥ ≤ ηk

∥
∥
∥e

(
uk, β

)∥∥
∥, (1.8)

where {ηk} is a nonnegative sequence. He proved the global convergence of the algorithm
under the condition that the error tolerance sequence {ηk} satisfies

∞∑

k=0

ηk
2 < +∞. (1.9)

In the above algorithm, there are two parameters β > 0 and γ ∈ (0, 2), which affect the
efficiency of the algorithm. It was observed that nearly for all problems, γ close to 2 is a better
choice than smaller γ , while different problem has different optimalβ. A suitable parameter β
is thus difficult to find for an individual problem. For solving variational inequality problems,
He et al. [18] proposed to choose a sequence of parameters {βk}, instead of a fixed parameter
β, to improve the efficiency of the algorithm. Under the same conditions as those in [11],
they proved the global convergence of the algorithm. The numerical results reported there
indicated that for any given initial parameter β0, the algorithm can find a suitable parameter
self-adaptively. This improves the efficiency of the algorithm greatly andmakes the algorithm
easy and robust to implement in practice.

In this paper, in a similar theme as [18], we suggest a general rule for choosing suitable
parameter in the implicit method for solving VVI(Ω, F). By replacing the constant factor β
in (1.4) and (1.5) with a self-adaptive variable positive sequence {βk}, the efficiency of the
algorithm can be improved greatly. Moreover, it is also robust to the initial choice of the
parameter β0. Thus, for any given problems, we can choose a parameter β0 arbitrarily, for
example, β0 = 1 or β0 = 0.1. The algorithm chooses a suitable parameter self-adaptively,
based on the information from the former iteration, which makes it able to add a little
additional computational cost against the original algorithm with fixed parameter β. To
further improve the efficiency of the algorithm, we also admit approximate computation in
solving the subproblem per iteration. That is, per iteration, we just need to find a vector uk+1

that satisfies (1.8).
Throughout this paper, we make the following assumptions.

Assumption A. The solution set of VVI(Ω, F), denoted by Ω∗, is nonempty.

Assumption B. The operator F is monotone, that is, for any u, v ∈ Rn,

(u − v)�(F(u) − F(v)) ≥ 0. (1.10)

The rest of this paper is organized as follows. In Section 2, we summarize some basic
properties which are useful in the convergence analysis of our method. In Sections 3 and
4, we describe the exact version and inexact version of the method and prove their global
convergence, respectively. We report our preliminary computational results in Section 5 and
give some final conclusions in the last section.
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2. Preliminaries

For a vector x ∈ Rn and a symmetric positive definite matrix M ∈ Rn×n, we denote
‖x‖ =

√
x�x as the Euclidean-norm and ‖x‖M as the matrix-induced norm, that is, ‖x‖M :=

(x�Mx)1/2.
Let Ω be a nonempty closed convex subset of Rn, and let PΩ(·) denote the projection

mapping from Rn onto Ω, under the matrix-induced norm. That is,

PΩ(x) := argmin
{∥∥x − y

∥
∥
M, y ∈ Ω

}
. (2.1)

It is known [12, 19] that the variant variational inequality problem (1.1) is equivalent to the
projection equation

F(u) = PΩ

[
F(u) − βM−1u

]
, (2.2)

where β is an arbitrary positive constant. Then, we have the following lemma.

Lemma 2.1. u∗ is a solution of VVI(Ω, F) if and only if e(u, β) = 0 for any fixed constant β > 0,
where

e
(
u, β

)
:= F(u) − PΩ

[
F(u) − βM−1u

]
(2.3)

is the residual function of the projection equation (2.2).

Proof. See [11, Theorem 1].

The following lemma summarizes some basic properties of the projection operator,
which will be used in the subsequent analysis.

Lemma 2.2. Let Ω be a closed convex set in Rn and let PΩ denote the projection operator onto Ω
under the matrix-induced norm, then one has

(w − PΩ(v))
�M(v − PΩ(v)) ≤ 0, ∀v ∈ Rn, ∀w ∈ Ω, (2.4)

‖PΩ(u) − PΩ(v)‖M ≤ ‖u − v‖M, ∀u, v ∈ Rn. (2.5)

The following lemma plays an important role in convergence analysis of our
algorithm.

Lemma 2.3. For a given u ∈ Rn, let β̃ ≥ β > 0. Then it holds that

∥∥∥e
(
u, β̃

)∥∥∥
M

≥ ∥∥e(u, β)
∥∥
M. (2.6)

Proof. See [20] for a simple proof.
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Lemma 2.4. Let u∗ ∈ Ω∗, then for all u ∈ Rn and β > 0, one has

{[F(u) − F(u∗)] + βM−1(u − u∗)}�Me
(
u, β

) ≥ ∥
∥e(u, β)

∥
∥2
M. (2.7)

Proof. It follows from the definition of VVI(Ω, F) (see (1.1)) that

{PΩ[F(u) − βM−1u] − F(u∗)}�βu∗ ≥ 0. (2.8)

By setting v := F(u) − βM−1u and w := F(u∗) in (2.4), we obtain

{PΩ[F(u) − βM−1u] − F(u∗)}�M
{
e
(
u, β

) − βM−1u
}
≥ 0. (2.9)

Adding (2.8) and (2.9), and using the definition of e(u, β) in (2.3), we get

{F(u) − F(u∗) − e(u, β)}�M
{
e
(
u, β

) − βM−1(u − u∗)
}
≥ 0, (2.10)

that is,

(F(u) − F(u∗) + βM−1(u − u∗))
�
Me

(
u, β

)

≥ ∥∥e(u, β)
∥∥2
M + β(F(u) − F(u∗))�(u − u∗)

≥ ∥∥e(u, β)
∥∥2
M,

(2.11)

where the last inequality follows from the monotonicity of F (Assumption B). This completes
the proof.

3. Exact Implicit Method and Convergence Analysis

We are now in the position to describe our algorithm formally.

3.1. Self-Adaptive Exact Implicit Method

(S0) Given γ ∈ (0, 2), β0 > 0, u0 ∈ Rn and a positive definite matrix M.

(S1) Compute uk+1 such that

F
(
uk+1

)
+ βkM

−1 uk+1 − F
(
uk

)
− βkM

−1 uk + γe
(
uk, βk

)
= 0. (3.1)
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(S2) If the given stopping criterion is satisfied, then stop; otherwise choose a new
parameter βk+1 ∈ [1/(1 + τk)βk, (1 + τk)βk], where τk satisfies

∞∑

k=0

τk < +∞, τk ≥ 0. (3.2)

Set k := k + 1 and go to Step 1.

From (3.1), we know that uk+1 is the (exact) unique zero of

θk(u) := F(u) + βkM
−1u − F

(
uk

)
− βkM

−1uk + γe
(
uk, βk

)
. (3.3)

We refer to the above method as the self-adaptive exact implicit method.

Remark 3.1. According to the assumption τk ≥ 0 and
∑∞

k=0τk < +∞, we have
∏∞

k=0(1 + τk) <
+∞. Denote

Sτ :=
∞∏

k=0

(1 + τk). (3.4)

Hence, the sequence{βk} ⊂ [(1/Sτ)β0, Sτβ0] is bounded. Then, let inf{βk}∞k=0 := βL > 0 and
sup{βk}∞k=0 := βU < +∞.

Now, we analyze the convergence of the algorithm, beginning with the following
lemma.

Lemma 3.2. Let {uk} be the sequence generated by the proposed self-adaptive exact implicit method.
Then for any u∗ ∈ Ω∗ and k > 0, one has

∥∥∥(F(uk+1) − F(u∗)) + βkM
−1(uk+1 − u∗)

∥∥∥
2

M

≤
∥∥
∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥∥
∥
2

M
− γ

(
2 − γ

)∥∥
∥e(uk, βk)

∥∥
∥
2

M
.

(3.5)

Proof. Using (3.1), we get

∥∥∥(F(uk+1) − F(u∗)) + βkM
−1(uk+1 − u∗)

∥∥∥
2

M

=
∥∥∥[(F(uk) − F(u∗)) + βkM

−1(uk − u∗)] − γe(uk, βk)
∥∥∥
2

M

≤
∥∥∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥∥∥
2

M
− 2γ

∥∥∥e(uk, βk)
∥∥∥
2

M
+ γ2

∥∥∥e(uk, βk)
∥∥∥
2

M

=
∥∥∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥∥∥
2

M
− γ

(
2 − γ

)∥∥∥e(uk, βk)
∥∥∥
2

M
,

(3.6)

where the inequality follows from (2.7). This completes the proof.
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Since 0 < βk+1 ≤ (1 + τk)βk and F is monotone, it follows that

∥
∥
∥(F(uk+1) − F(u∗)) + βk+1M

−1(uk+1 − u∗)
∥
∥
∥
2

M

=
∥
∥
∥(F(uk+1) − F(u∗)) + βkM

−1(uk+1 − u∗) + (βk+1 − βk)M−1(uk+1 − u∗)
∥
∥
∥
2

M

=
∥
∥
∥(F(uk+1) − F(u∗)) + βkM

−1(uk+1 − u∗)
∥
∥
∥
2

M
+ (βk+1 − βk)

2
∥
∥
∥(uk+1 − u∗)

∥
∥
∥
2

M

+ 2
(
βk+1 − βk

)
(uk+1 − u∗)

�[(
F
(
uk+1

)
− F(u∗)

)
+ βkM

−1
(
uk+1 − u∗

)]

≤ (1 + τk)
2
∥
∥
∥(F(uk+1) − F(u∗)) + βkM

−1(uk+1 − u∗)
∥
∥
∥
2

M
,

(3.7)

where the inequality follows from the monotonicity of the mapping F. Combining (3.5) and
(3.7), we have

∥∥∥(F(uk+1) − F(u∗)) + βk+1M
−1(uk+1 − u∗)

∥∥∥
2

M

≤ (1 + τk)
2
∥∥∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥∥∥
2

M
− γ

(
2 − γ

)∥∥∥e(uk, βk)
∥∥∥
2

M
.

(3.8)

Now, we give the self-adaptive rule in choosing the parameter βk. For the sake of
balance, we hope that

∥∥∥(F(uk+1) − F(uk))
∥∥∥
M

≈
∥∥∥βkM−1(uk+1 − uk)

∥∥∥
M
. (3.9)

That is, for given constant τ > 0, if

∥∥∥(F(uk+1) − F(uk))
∥∥∥
M

> (1 + τ)
∥∥∥βkM−1(uk+1 − uk)

∥∥∥
M
, (3.10)

we should increase βk in the next iteration; on the other hand, we should decrease βk when

∥∥∥(F(uk+1) − F(uk))
∥∥∥
M

<
1

(1 + τ)

∥∥∥βkM−1(uk+1 − uk)
∥∥∥
M
. (3.11)

Let

ωk =

∥∥(F(uk+1) − F(uk))
∥∥
M∥∥βkM−1(uk+1 − uk)

∥∥
M

. (3.12)
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Then we give

βk+1 :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1 + τk)βk, if ωk > (1 + τ),

1
(1 + τk)

βk, if ωk <
1

(1 + τ)
,

βk, otherwise.

(3.13)

Such a self-adaptive strategy was adopted in [18, 21–24] for solving variational inequality
problems, where the numerical results indicated its efficiency and robustness to the choice
of the initial parameter β0. Here we adopted it for solving variant variational inequality
problems.

We are now in the position to give the convergence result of the algorithm, the main
result of this section.

Theorem 3.3. The sequence {uk} generated by the proposed self-adaptive exact implicit method
converges to a solution of VVI(Ω, F).

Proof. Let ξk := 2τk + τk
2. Then from the assumption that

∑∞
k=0τk < +∞, we have that

∑∞
k=0ξk <

+∞, which means that
∏∞

k=0(1 + ξk) < +∞. Denote

Cs :=
∞∑

i=0

ξi, Cp :=
∞∏

i=0

(1 + ξi). (3.14)

From (3.8), for any u∗ ∈ Ω∗, that is, an arbitrary solution of VVI(Ω, F), we have

∥∥∥(F(uk+1) − F(u∗)) + βk+1M
−1(uk+1 − u∗)

∥∥∥
2

M

≤ (1 + ξk)
∥∥∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥∥∥
2

M

≤
(

k∏

i=0

(1 + ξi)

)∥∥∥(F(u0) − F(u∗)) + β0M
−1(u0 − u∗)

∥∥∥
2

M

(3.15)

≤ Cp

∥∥∥(F(u0) − F(u∗)) + β0M
−1(u0 − u∗)

∥∥∥
2

M

< +∞.

(3.16)

This, together with the monotonicity of the mapping F, means that the generated sequence
{uk} is bounded.
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Also from (3.8), we have

γ
(
2 − γ

)∥∥
∥e(uk, βk)

∥
∥
∥
2

M
≤ (1 + τk)

2
∥
∥
∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥
∥
∥
2

M

−
∥
∥
∥(F(uk+1) − F(u∗)) + βk+1M

−1(uk+1 − u∗)
∥
∥
∥
2

M

=
∥
∥
∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥
∥
∥
2

M

−
∥
∥
∥(F(uk+1) − F(u∗)) + βk+1M

−1(uk+1 − u∗)
∥
∥
∥
2

M

+ ξk
∥
∥
∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥
∥
∥
2

M
.

(3.17)

Adding both sides of the above inequality, we obtain

γ
(
2 − γ

) ∞∑

k=k0

∥∥∥e(uk, βk)
∥∥∥
2

M

≤
∥∥∥(F(u0) − F(u∗)) + β0M

−1(u0 − u∗)
∥∥∥
2

M

+
∞∑

k=0

ξk
∥∥∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥∥∥
2

M

≤
∥∥∥(F(u0) − F(u∗)) + β0M

−1(u0 − u∗)
∥∥∥
2

M

+

( ∞∑

k=0

ξk

)

Cp

∥∥∥(F(u0) − F(u∗)) + β0M
−1(u0 − u∗)

∥∥∥
2

M

=
(
1 + CsCp

)∥∥∥(F(u0) − F(u∗)) + β0M
−1(u0 − u∗)

∥∥∥
2

M

< +∞,

(3.18)

where the second inequality follows from (3.15). Thus, we have

lim
k→∞

∥∥∥e(uk, βk)
∥∥∥
M

= 0, (3.19)

which, from Lemma 2.3, means that

lim
k→∞

∥∥∥e(uk, βL)
∥∥∥
M

≤ lim
k→∞

∥∥∥e(uk, βk)
∥∥∥
M

= 0. (3.20)



10 Journal of Inequalities and Applications

Since {uk} is bounded, it has at least one cluster point. Let u be a cluster point of {uk}
and let {ukj} be the subsequence converging to u. Since e(u, βL) is continuous, taking limit in
(3.20) along the subsequence, we get

∥
∥e(u, βL)

∥
∥
M = lim

j→∞

∥
∥
∥e(ukj , βL)

∥
∥
∥
M

= 0. (3.21)

Thus, from Lemma 2.1, u is a solution of VVI(Ω, F).
In the followingwe prove that the sequence {uk} has exactly one cluster point. Assume

that û is another cluster point of {uk}, which is different from u. Because u is a cluster point
of the sequence {uk} and F is monotone, there is a k0 > 0 such that

∥∥∥F(uk0) − F(u) + βk0M
−1(uk0 − u)

∥∥∥
M

≤ δ

2Cp
, (3.22)

where

δ :=
∥∥∥(F(û) − F(u)) + βk0M

−1(û − u)
∥∥∥
M
. (3.23)

On the other hand, since u ∈ Ω∗ and u∗ is an arbitrary solution, by setting u∗ := u in (3.15),
we have for all k ≥ k0,

∥∥∥(F(uk) − F(u)) + βkM
−1(uk − u)

∥∥∥
2

M

≤
k∏

i=k0

(1 + ξi)
∥∥∥(F(ui) − F(u)) + βiM

−1(ui − u)
∥∥∥
2

M

≤ Cp

∥∥∥(F(uk0) − F(u)) + βk0M
−1(uk0 − u)

∥∥∥
2

M
,

(3.24)

that is,

∥∥∥(F(uk) − F(u)) + βkM
−1(uk − u)

∥∥∥
M

≤ C1/2
p

∥∥∥(F(uk0) − F(u)) + βk0M
−1(uk0 − u)

∥∥∥
M

≤ δ

2C1/2
p

.

(3.25)
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Then,

∥
∥
∥(F(uk) − F(û)) + βkM

−1(uk − û)
∥
∥
∥
M

≥
∥
∥
∥(F(û) − F(u)) + βkM

−1(û − u)
∥
∥
∥
M

−
∥
∥
∥(F(uk) − F(u)) + βkM

−1(uk − u)
∥
∥
∥
M
.

(3.26)

Using the monotonicity of F and the choosing rule of βk, we have

∥
∥
∥(F(u) − F(û)) + βkM

−1(u − û)
∥
∥
∥
2

M

=
∥∥∥(F(u) − F(û)) + βk−1M−1(u − û) + (βk − βk−1)M−1(u − û)

∥∥∥
2

M

=
∥∥∥(F(u) − F(û)) + βk−1M−1(u − û)

∥∥∥
2

M
+
∥∥∥(βk − βk−1)M−1(u − û)

∥∥∥
2

M

+ 2
(
βk − βk−1

)
(u − û)T

[
(F(u) − F(û)) + βk−1M−1(u − û)

]

≥ 1

(1 + τk−1)
2

∥∥∥(F(u) − F(û)) + βk−1M−1(u − û)
∥∥∥
2

M

≥ 1
Cp

∥∥∥(F(u) − F(û)) + βk0M
−1(u − û)

∥∥∥
2

M
.

(3.27)

Combing (3.25)–(3.27), we have that for any k ≥ k0,

∥∥∥(F(uk) − F(û)) + βkM
−1(uk − û)

∥∥∥
M

≥ δ

C1/2
p

− δ

2C1/2
p

=
δ

2C1/2
p

> 0,

(3.28)

whichmeans that û cannot be a cluster point of {uk}. Thus, {uk} has just one cluster point.

4. Inexact Implicit Method and Convergence Analysis

The main task at each iteration of the implicit exact algorithm in the last section is to solve a
system of nonlinear equations. To solve it exactly per iteration is time consuming, and there
is little justification to solve it exactly, especially when the iterative point is far away from the
solution set. Thus, in this section, we propose to solve the subproblem approximately. That
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is, for a given uk, instead of finding the exact solution of (3.1), we would accept uk+1 as the
new iterate if it satisfies

∥
∥
∥F(uk+1) − F(uk) + βkM

−1(uk+1 − uk) + γe(uk, βk)
∥
∥
∥
M

≤ ηk
∥
∥
∥e(uk, βk)

∥
∥
∥
M
, (4.1)

where {ηk} is a nonnegative sequence with
∑∞

k=0ηk
2 < +∞. If (3.1) is replaced by (4.1), the

modified method is called inexact implicit method.
We now analyze the convergence of the inexact implicit method.

Lemma 4.1. Let {uk} be the sequence generated by the inexact implicit method. Then there exists a
k0 > 0 such that for any k ≥ k0 and u∗ ∈ Ω∗,

∥∥∥(F(uk+1) − F(u∗)) + βkM
−1(uk+1 − u∗)

∥∥∥
2

M

≤
(

1 +
4ηk2

γ
(
2 − γ

)

)∥∥∥(F(uk) − F(u∗)) + βkM
−1(uk − u∗)

∥∥∥
2

M

− 1
2
γ
(
2 − γ

)∥∥∥e(uk, βk)
∥∥∥
2

M
.

(4.2)

Proof. Denote

θk(u) := F(u) − F
(
uk

)
+ βkM

−1
(
u − uk

)
+ γe

(
uk, βk

)
. (4.3)

Then (4.1) can be rewritten as

∥∥∥θk(uk+1)
∥∥∥
M

≤ ηk
∥∥∥e(uk, βk)

∥∥∥
M
. (4.4)

According to (4.3) and (2.7),

∥∥∥F(uk+1) − F(u∗) + βk(uk+1 − u∗)
∥∥∥
2

M

=
∥∥∥[(F(uk) − F(u∗)) + βkM

−1(uk − u∗)] − [γe(uk, βk) − θk(uk+1)]
∥∥∥
2

M

≤
∥∥∥F(uk) − F(u∗) + βkM

−1(uk − u∗)
∥∥∥
2

M
− 2γ

∥∥∥e(uk, βk)
∥∥∥
2

M

+ 2{(F(uk) − F(u∗)) + βkM
−1(uk − u∗)}�Mθk

(
uk+1

)

+
∥∥∥γe(uk, βk) − θk(uk+1)

∥∥∥
2

M
.

(4.5)
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Using Cauchy-Schwarz inequality and (4.4), we have

2{(F(uk) − F(u∗)) + βkM
−1(uk − u∗)}�Mθk

(
uk+1

)

≤ 4ηk2

γ
(
2 − γ

)
∥
∥
∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥
∥
∥
2

M
+
γ
(
2 − γ

)

4ηk2

∥
∥
∥θk(uk+1)

∥
∥
∥
2

M

≤ 4ηk2

γ
(
2 − γ

)
∥
∥
∥(F(uk) − F(u∗)) + βkM

−1(uk − u∗)
∥
∥
∥
2

M
+
γ
(
2 − γ

)

4

∥
∥
∥e(uk, βk)

∥
∥
∥
2

M
,

(4.6)

∥
∥
∥γe(uk, βk) − θk(uk+1)

∥
∥
∥
2

M

= γ2
∥
∥
∥e(uk, βk)

∥
∥
∥
2

M
− 2γe

(
uk, βk

)T

M
θk
(
uk+1

)
+
∥
∥
∥θk(uk+1)

∥
∥
∥
2

M

≤ γ2
∥∥∥e(uk, βk)

∥∥∥
2

M
+
γ
(
2 − γ

)

8

∥∥∥e(uk, βk)
∥∥∥
2

M
+

8γ
(
2 − γ

)
∥∥∥θk(uk+1)

∥∥∥
2

M
+
∥∥∥θk(uk+1)

∥∥∥
2

M

≤ γ2
∥∥∥e(uk, βk)

∥∥∥
2

M
+
γ
(
2 − γ

)

8

∥∥∥e(uk, βk)
∥∥∥
2

M
+

(

1 +
8γ

(
2 − γ

)

)

η2
k

∥∥∥e(uk, βk)
∥∥∥
2

M
.

(4.7)

Since
∑∞

k=0η
2
k
< +∞, there is a constant k0 ≥ 0, such that for all k ≥ k0,

(

1 +
8γ

(
2 − γ

)

)

η2
k ≤ γ

(
2 − γ

)

8
, (4.8)

and (4.7) becomes that for all k ≥ k0,

∥∥∥γe(uk, βk) − θk(uk+1)
∥∥∥
2

M
≤ γ2

∥∥∥e(uk, βk)
∥∥∥
2

M
+
γ
(
2 − γ

)

4

∥∥∥e(uk, βk)
∥∥∥
2

M
. (4.9)

Substituting (4.6) and (4.9) into (4.5), we complete the proof.

In a similar way to (3.7), by using the monotonicity and the assumption that 0 < βk+1 ≤
(1 + τk)βk and (4.2), we obtain that for all k ≥ k0

∥∥∥
(
F
(
uk+1

)
− F(u∗)

)
+ βk+1M

−1
(
uk+1 − u∗

)∥∥∥
2

M

≤ (1 + τk)2
(

1 +
4ηk2

γ
(
2 − γ

)

)∥∥∥
(
F
(
uk

)
− F(u∗)

)
+ βkM

−1
(
uk − u∗

)∥∥∥
2

M

− 1
2
γ
(
2 − γ

)∥∥∥e
(
uk, βk

)∥∥∥
2

M
.

(4.10)

Now, we prove the convergence of the inexact implicit method.
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Theorem 4.2. The sequence {uk} generated by the proposed self-adaptive inexact implicit method
converges to a solution point of VVI(Ω, F).

Proof. Let

ξk := 2τk + τ2k +
4η2

k

γ
(
2 − γ

) +
8τkη2

k

γ
(
2 − γ

) +
4τ2

k
η2
k

γ
(
2 − γ

) . (4.11)

Then, it follows from (4.10) that for all k ≥ k0,

∥
∥
∥
(
F
(
uk+1

)
− F(u∗)

)
+ βk+1M

−1
(
uk+1 − u∗

)∥∥
∥
2

M

≤ (1 + ξk)
∥∥∥(F

(
uk

)
− F(u∗)) + βkM

−1
(
uk − u∗

)∥∥∥
2

M

− 1
2
γ
(
2 − γ

)∥∥∥e
(
uk, βk

)∥∥∥
2

M
.

(4.12)

From the assumptions that

∞∑

k=0

τk < +∞,
∞∑

k=0

ηk
2 < +∞, (4.13)

it follows that

Cs :=
∞∑

i=0

ξi, Cp :=
∞∏

i=0

(1 + ξi), (4.14)

are finite. The rest of the proof is similar to that of Theorem 3.3 and is thus omitted here.

5. Computational Results

In this section, we present some numerical results for the proposed self-adaptive implicit
methods. Our main interests are two folds: the first one is to compare the proposed method
with He’s method [11] in solving a simple nonlinear problem, showing the numerical
advantage; the second one is to indicate that the strategy is rather insensitive to the initial
point, the initial choice of the parameter, as well as the size of the problems. All codes were
written in Matlab and run on a AMD 3200+ personal computer. In the following tests, the
parameter βk is changed when

∥∥(F
(
uk+1) − F

(
uk

))∥∥
M∥∥βkM−1(uk+1 − uk

)∥∥
M

> 2,

∥∥(F
(
uk+1) − F

(
uk

))∥∥
M∥∥βkM−1(uk+1 − uk

)∥∥
M

<
1
2
. (5.1)
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That is, we set τ = 1 in (3.13). We set M = I, and the matrix-induced norm projection is just
the projection under Euclidean norm, which is very easy to implement when Ω has some
special structure. For example, when Ω is the nonnegative orthant,

{x ∈ Rn | x ≥ 0}, (5.2)

then

(
PΩ[y]

)
j =

⎧
⎨

⎩

yj, if yj ≥ 0,

0, otherwise;
(5.3)

when Ω is a box,

{x ∈ Rn | l ≤ x ≤ h}, (5.4)

then

(
PΩ[y]

)
j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

uj, if yj ≥ uj,

yj , if uj ≥ yj ≥ lj ,

lj , otherwise;

(5.5)

when Ω is a ball,

{x ∈ Rn | ‖x‖ ≤ r}, (5.6)

then

(
PΩ

[
y
])

=

⎧
⎪⎨

⎪⎩

y, if
∥∥y

∥∥ ≤ r,

ry
∥∥y

∥∥ , otherwise.
(5.7)

At each iteration, we use Newton’s method [25, 26] to solve the system of nonlinear
equations

(SNLE) βkM
−1u + F(u) = βkM

−1uk + F
(
uk

)
− γe

(
uk, βk

)
(5.8)
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approximately; that is, we stop the iteration of Newton’s method as soon as the current
iterative point satisfies (4.1), and adopt it as the next iterative point, where

ηk =

⎧
⎪⎨

⎪⎩

0.3, if k ≤ kmax,

1
k − kmax

, otherwise,
(5.9)

with kmax = 50.
In our first test problem , we take

F(u) = arctan (u) +AA�u +Ac, (5.10)

where the matrix A is constructed by A := WΣV . Here

W = Im − 2
ww�

w�w
, V = In − 2

vv�

v�v
(5.11)

are Householder matrices and Σ = diag(σi), i = 1, . . . n, is a diagonal matrix with σi =
cos(iπ/n + 1). The vectors w, v, and c contain pseudorandom numbers:

w1 = 13846, wi = (31416wi−1 + 13846) mod 46261, i = 2, . . . m,

v1 = 13846, vi = (42108vi−1 + 13846) mod 46273, i = 2, . . . n,

c1 = 13846, ci = (45278ci−1 + 13846) mod 46219, i = 2, . . . n.

(5.12)

The closed convex set Ω in this problem is defined as

Ω := {z ∈ Rm, ‖z‖ ≤ α} (5.13)

with different prescribed α. Note that in the case ‖Ac‖ > α, ‖arctan (u∗) + AA�u∗ + Ac‖ = α
(otherwise u∗ = 0 is the trivial solution ). Therefore, we test the problem with α = κ‖Ac‖ and
κ ∈ (0, 1). In the test we take γ = 1.85, τk = 0.85, u0 = 0, and β0 = 0.1. The stopping criterion is

∥∥e
(
uk, βk

)∥∥

α
≤ 10−8. (5.14)

The results in Table 1 show that β0 = 0.1 is a “proper” parameter for the problem with
κ = 0.05, while for the other two cases with larger κ = 0.5 and with smaller κ = 0.01, it is not.
For any of these three cases, the method with self-adaptive strategy rule is efficient.

The second example considered here is the variant mixed complementarity problem
for short VMCP, with Ω = {u ∈ Rn | li ≤ ui(x) ≤ hi, i = 1, . . . , n}, where li ∈ (5, 10) and
hi ∈ (1000, 2000) are randomly generated parameters. The mapping F is taken as

F(u) = D(u) +Mu + q, (5.15)
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Table 1: Comparison of the proposed method and He’s method [11].

m = 100 n = 50 m = 500 n = 300
Proposed method He’s method Proposed method He’s method

It. no. CPU It. no. CPU It. no. CPU It. no. CPU
0.5‖Ac‖ 25 0.3910 100 1.0780 34 50.4850 — —
0.05‖Ac‖ 20 0.3120 37 0.4850 25 39.8440 17 25.0940
0.01‖Ac‖ 26 0.4060 350 5.8750 33 61.4070 — —
“—” means iteration numbers >200 and CPU >2000 (sec).

Table 2: Numerical results for VMCP with dimension n = 50.

β
Proposed method He’s method

It. no. CPU It. no. CPU
105 69 0.0780 — —
104 65 0.1250 7335 6.1250
103 61 0.0790 485 0.4530
102 59 0.0620 60 4.0780
10 60 0.0780 315 0.3280
1 66 0.0110 2672 2.500
10−1 70 0.0940 22541 21.0320
10−2 73 0.0780 — —
“—” means iteration numbers >3000 and CPU >300 (sec).

where D(u) and Mu + q are the nonlinear part and the linear part of F(u), respectively. We
form the linear partMu+ q similarly as in [27]. The matrixM = A�A+B, whereA is an n×n
matrix whose entries are randomly generated in the interval (−5, 5), and a skew-symmetric
matrix B is generated in the same way. The vector q is generated from a uniform distribution
in the interval (−500, 0). In D(u), the nonlinear part of F(u), the components are Dj(u) =
aj ∗ arctan(uj), and aj is a random variable in (0, 1). The numerical results are summarized
in Tables 2–5, where the initial iterative point is u0 = 0 in Tables 2 and 3 and u0 is randomly
generated in (0, 1) in Tables 4 and 5, respectively. The other parameters are the same: γ = 1.85
and τk = 0.85 for k ≤ 40 and τk = 1/k otherwise. The stopping criterion is

∥∥∥e
(
uk, βk

)∥∥∥
∞
≤ 10−7. (5.16)

As the results in Table 1, the results in Tables 2 to 5 indicate that the number of
iterations and CPU time are rather insensitive to the initial parameter β0, while He’s method
is efficient for proper choice of β. The results also show that the proposed method, as well as
He’s method, is very stable and efficient to the choice of the initial point u0.

6. Conclusions

In this paper, we proposed a self-adaptive implicit method for solving monotone variant
variational inequalities. The proposed self-adaptive adjusting rule avoids the difficult task
of choosing a “suitable” parameter, which makes the method efficient for initial parameter.
Our self-adaptive rule adds only a tiny amount of computation than the method with fixed
parameter, while the efficiency is enhanced greatly. To make the method more efficient and
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Table 3: Numerical results for VMCP with dimension n = 200.

β
Proposed method He’s method

It. no. CPU It. no. CPU
105 82 1.6090 — —
104 74 1.4850 1434 28.3750
103 64 1.2660 199 3.8910
102 63 1.2500 174 3.4060
10 68 1.3500 1486 30.4840
1 75 1.4850 — —
10−1 75 1.5000 — —
10−2 86 1.7030 — —
“—” means iteration numbers >3000 and CPU >300 (sec).

Table 4: Numerical results for VMCP with dimension n = 50.

β
Proposed method He’s method

It. no. CPU It. no. CPU
105 61 0.0620 — —
104 61 0.0940 3422 3.7190
103 60 0.0790 684 0.6410
102 67 0.0780 59 0.0620
10 65 0.0940 309 0.2970
1 69 0.0940 2637 2.3750
10−1 72 0.0940 21949 18.9220
10−2 75 0.1250 — —
“—” means iteration numbers >3000 and CPU >300 (sec).

Table 5: Numerical results for VMCP with dimension n = 200.

β
Proposed method He’s method

It. no. CPU It. no. CPU
105 61 1.2500 — —
104 64 1.2810 1527 29.8750
103 64 1.2660 150 2.9220
102 64 1.2810 222 4.3440
10 89 1.7920 1922 37.6250
1 70 1.3910 — —
10−1 88 1.7340 — —
10−2 84 1.6560 — —
“—” means iteration numbers >5000 and CPU >300 (sec).

practical, an approximate version of the algorithm was proposed. The global convergence
of both the exact version and the inexact version of the new algorithm was proved under
mild assumptions; that is, the underlying mapping of VVI(Ω, F) is monotone and there is at
least one solution of the problem. The reported preliminary numerical results verified our
assertion.
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