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1. Introduction

We use the standard notations from Nevanlinna theory in this paper (see [1–3]).
The study of the properties of the solutions of a linear differential equation with

periodic coefficients is one of the difficult aspects in the complex oscillation theory of
differential equations. However, it is also one of the important aspects since it relates to
many special functions. Some important researches were done by different authors; see, for
instance, [4–9].

Now, we firstly consider the second-order homogeneous linear differential equations

f ′′ + P1(ez)f ′ + P2(ez)f = 0, (1.1)

where P1(z) and P2(z) are polynomials in z and are not both constants. It is well known that
every solution f(z) of (1.1) is an entire function.



2 Journal of Inequalities and Applications

Let f(z) be an entire function. We define

ρe
(
f
)
= lim

r→+∞
log T

(
r, f

)

r
, (1.2)

to be the e-type order of f(z).
If f(z)/≡ 0 is a solution of (1.1) and if f(z) satisfies ρe(f) = 0 , then we say that f(z)

is a subnormal solution of (1.1). For convenience, we also say that f(z) ≡ 0 is a subnormal
solution of (1.1).

H. Wittich has given the general forms of all subnormal solutions of (1.1) that are
shown in the following theorem.

Theorem A (see [9]). If f(z)/≡ 0 is a subnormal solution of (1.1), where P1(z) and P2(z) are
polynomials in z and are not both constants, then f(z) must have the form

f(z) = ecz(a0 + a1e
z + · · · + ame

mz), (1.3)

wherem ≥ 0 is an integer and c, a0, a1, . . . , am are constants with a0am /= 0.

G. G. Gundersen and E. M. Steinbart refined Theorem A and obtained the exact forms
of subnormal solutions of (1.1) as follows.

Theorem B (see [6]). In addition to the statement of Theorem A, the following statements hold with
regard to the subnormal solutions f(z) of (1.1).

(i) If degP1 > degP2 and P2 /≡ 0, then any subnormal solution f(z)/≡ 0 of (1.1) must have
the form

f(z) =
m∑

k=0

ake
−kz, (1.4)

wherem ≥ 1 is an integer and a0, a1, . . . , am are constants with a0am /= 0.

(ii) If P2 ≡ 0 and degP1 ≥ 1, then any subnormal solution f(z) of (1.1) must be a constant.

(iii) If degP1 < degP2, then the only subnormal solution f(z) of (1.1) is f(z) ≡ 0.

Whether the conclusions of Theorem A and Theorem B can be generalized or not,
Gundersen and Steinbart considered the second-order nonhomogeneous linear differential
equations

f ′′ + P1(ez)f ′ + P2(ez)f = R1(ez) + R2
(
e−z

)
, (1.5)

where P1(z), P2(z), R1(z), and R2(z) are polynomials in z such that P1(z), P2(z) are not both
constants. They found the exact forms of all subnormal solutions of (1.5), that is, what is
mentioned in [6, Theorem 2.2, Theorem 2.3 and Theorem 2.4].
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In [6], they also have raised the following problem, that is, what about the forms of
the subnormal solutions of the equation

f ′′ +
[
P1(ez) +Q1

(
e−z

)]
f ′ +

[
P2(ez) +Q2

(
e−z

)]
f = R1(ez) + R2

(
e−z

)
, (1.6)

where P1(z), P2(z), Q1(z), Q2(z), R1(z), and R2(z) are polynomials in z such that P1(z), P2(z),
Q1(z), and Q2(z) are not all constants?

In [7], we have obtained the exact forms of all subnormal solutions of homogeneous
equation

f ′′ +
[
P1(ez) +Q1

(
e−z

)]
f ′ +

[
P2(ez) +Q2

(
e−z

)]
f = 0, (1.7)

where P1(z), P2(z), Q1(z), and Q2(z) are polynomials in z and are not all constants.
In this paper, we obtain the forms of subnormal solutions of nonhomogeneous linear

differential equation (1.6) when degP1 > degP2. We have the following theorem.

Theorem 1.1. Suppose that f(z) is a subnormal solution of (1.6), where P1(z), P2(z),
Q1(z), Q2(z), R1(z), and R2(z) are polynomials in z such that P1(z), P2(z), Q1(z) and Q2(z) are
not all constants.

(i) If degP1 > degP2 and degP1 > degR1, then f(z) must have the form

f(z) = eβz
[
g1(ez) + g2

(
e−z

)]
, (1.8)

where β is a constant, g1(z) and g2(z) are polynomials in z.

(ii) If degP1 > degP2 and degP1 ≤ degR1, then f(z) must have the form

f(z) = eβz
[
g1(ez) + g2

(
e−z

)]
+ c1zg3

(
e−z

)
+ c2g4

(
e−z

)
+ g0(ez), (1.9)

where β is a constant, c1 and c2 are constants that may or may not be equal to zero,
g0(z) may be equal to zero or may be a polynomial in z, g1(z), g2(z), g3(z), and g4(z)
are polynomials in z with deg{g3} ≥ 1.

2. Lemmas for the Proof

In order to prove Theorem 1.1, we need some lemmas.

Lemma 2.1 (see [7]). Suppose that f(z) is a subnormal solution of (1.7), where P1(z), P2(z),Q1(z)
and Q2(z) are polynomials in z and are not all constants.

(i) If degP1 > degP2 and P2 +Q2 ≡ 0, then any subnormal solution f(z)must be a constant.

(ii) If degP1 > degP2 and P2 +Q2 /≡ 0, then f(z)/≡ 0 must have the form

f(z) = g2
(
e−z

)
, (2.1)

where g2(z) is a polynomial in z with deg{g2} ≥ 1.
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Lemma 2.2 (see [10]). Let f(z) be a transcendental meromorphic function, let α > 1 be a given real
constant, and let k > j ≥ 0. Then there exists a constant C = C(α) > 0 such that the following two
statements hold (where r = |z|).

(i) There exists a set E1 ⊂ [−π,π) that has linear measure zero such that if ψ ∈ [−π,π) \ E1,
then there is a constant R = R(ψ) > 0 such that for all z satisfying arg z = ψ and |z| ≥ R,
one has

∣
∣
∣
∣
∣
f (k)(z)

f(j)(z)

∣
∣
∣
∣
∣
≤ C

(
T
(
αr, f

)

r
logαr log T

(
αr, f

)
)k−j

. (2.2)

(ii) There exists a set E2 ⊂ (0,∞) that has finite logarithmic measure such that (2.2) holds for
all z satisfying |z| = r /∈E2 ∪ [0, 1].

Lemma 2.3 (see [6]). Let 0 < r1 < r2 < · · · < rj < · · · with rj → ∞ as j → ∞, and let
θ1 < θ2 < θ1 + 2π. Let

W1 =
{
z : arg z = θ1

}
, W2 =

{
z : arg z = θ2

}
,

W3 =
{
z : |z| = rj for some j and θ1 ≤ arg z ≤ θ2

}
,

(2.3)

and set

W = W1 ∪W2 ∪W3. (2.4)

Let f(z) be analytic on the set W . Suppose that f ′(z) is unbounded on the set W . Then there exists
an infinite sequence of points zj ∈ W with |zj | → ∞ as j → ∞ such that

f ′(zj
) −→ ∞,

∣∣∣
∣∣
f ′(zj

)

f
(
zj
)

∣∣∣
∣∣
≥ (1 + o(1))

1
8
∣∣zj

∣∣ .
(2.5)

Lemma 2.4 (see [8]). Consider the nth- order differential equation of the form

P0
(
ez, e−z

)
f (n) + P1

(
ez, e−z

)
f (n−1) + · · · + Pn

(
ez, e−z

)
f = Pn+1

(
ez, e−z

)
, (2.6)

where Pj(ez, e−z) (j = 0, 1, 2, . . . , n + 1) are polynomials in ez and e−z with P0(ez, e−z)/= 0. Suppose
that f(z) is an entire and subnormal solution of (2.6) and that f(z) can be expressed as f(z) =
eβzG(ez), where β is a constant and G(ζ) is analytic on 0 < |ζ| < ∞. Then f(z) has the form

f(z) = eβz
[
g1(ez) + g2

(
e−z

)]
, (2.7)

where β is a constant and g1(z) and g2(z) are polynomials in z.
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As an application of Lemma 2.4, one has the following lemma.

Lemma 2.5. Suppose that f(z) is an entire subnormal solution of (2.6), where Pj(ez, e−z)(j =
0, 1, 2, . . . , n + 1) are polynomials in ez and e−z with P0(ez, e−z)/= 0, and that f(z) and f(z + 2πi)
are linearly dependent. Then f(z) has the form

f(z) = eβz
[
g1(ez) + g2

(
e−z

)]
, (2.8)

where β is a constant and g1(z) and g2(z) are polynomials in z.

Proof. Since f(z) is entire and is linearly dependent with f(z + 2πi), f(z) can be written as
f(z) = eβzG(ez) (see [11, page 382]), where β is a constant and G(ζ) is analytic on 0 < |ζ| < ∞.
Then we have the representation from Lemma 2.4.

Lemma 2.6. Suppose that f(z) is a solution of (1.6), where P1(z), P2(z), Q1(z), Q2(z), R1(z), and
R2(z) are polynomials in z such that P1(z), P2(z), Q1(z) and Q2(z) are not all constants. If

degP2 < degP1 < degR1, (2.9)

then there exists a polynomial g0(z) such that

f(z) = g(z) + g0(ez), (2.10)

where g(z) is a solution of

g ′′ +
[
P1(ez) +Q1

(
e−z

)]
g ′ +

[
P2(ez) +Q2

(
e−z

)]
g = R3(ez) + R4

(
e−z

)
, (2.11)

where R3(z) and R4(z) are polynomials in z with degR3 ≤ degP1.

Proof. Let n = degR1 − degP1 ≥ 1, and set

g(z) = f(z) − aenz, (2.12)

where a is the constant such that

deg{R1(z) − anznP1(z)} < degR1. (2.13)

It follows from (1.6) and (2.12) that

g ′′ +
[
P1(ez) +Q1

(
e−z

)]
g ′ +

[
P2(ez) +Q2

(
e−z

)]
g = T1(ez) + T2

(
e−z

)
, (2.14)

where

T1(ez) + T2
(
e−z

)
= R1(ez) + R2

(
e−z

) − anenz
[
P1(ez) +Q1

(
e−z

)]

− aenz
[
P2(ez) +Q2

(
e−z

)] − an2enz.
(2.15)
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So T1(ez) and T2(e−z) are polynomials in ez and e−z, respectively, and deg T1 < degR1 by
(2.13), but T1(ez) and T2(e−z) have the exact representations that depend on the relations of
n,degQ1, and degQ2. If deg T1 ≤ degP1, then (2.14) is of the form (2.11), and (2.12) gives
(2.10). If deg T1 > degP1 , then we repeat the above process finite times until we obtain (2.10)
and (2.11). This completes the proof of Lemma 2.6.

3. Proof of Theorem

In this section, we will prove Theorem 1.1.

Proof. (i) Suppose that f(z) is a subnormal solution of (1.6)with degP1 > degP2 and degP1 >
degR1. If f(z) is a polynomial solution of (1.6), then f(z) must be a constant, which is of the
form (1.8). Thus we suppose that f(z) is transcendental. It follows from Lemma 2.2(i) that
there exists a set E1 ⊂ [−π,π) that has linear measure zero such that if ψ ∈ [−π,π) \ E1,
then there is a constant R = R(ψ) > 0 such that for all z satisfying arg z = ψ and |z| ≥ R, we
have

∣∣∣∣
f ′′

f ′

∣∣∣∣ ≤ C
T
(
2r, f

)

r
log2r log T

(
2r, f

)
, (3.1)

where C > 0 is a constant and r = |z|. It also follows from Lemma 2.2(ii) that there exists a
set E2 ⊂ (0,∞) that has finite logarithmic measure such that (3.1) holds for all z satisfying
|z|�∈E2 ∪ [0, 1].

Now let r1, r2, . . . , rj , be an infinite sequence satisfying 1 < r1 < r2 < · · · < rj < · · · such
that rj�∈E2 for all j and rj → ∞ as j → ∞. Let ε0 be a small constant such that −(π/2)+ε0 /∈E1

and (π/2) − ε0 /∈E1. Set

W1 =
{
z : arg z = −π

2
+ ε0

}
, W2 =

{
z : arg z =

π

2
− ε0

}
,

W3 =
{
z : |z| = rj for some j and − π

2
+ ε0 ≤ arg z ≤ π

2
− ε0

}
,

(3.2)

and set

W = W1 ∪W2 ∪W3. (3.3)

From above, we have that (3.1) holds on the set W.
We now assert that f ′(z) is bounded on the set W . On the contrary, it follows from

Lemma 2.3 that there exists a sequence of points zj ∈ W with |zj | → ∞ as j → ∞ such that

∣∣f ′(zj
)∣∣ −→ ∞, (3.4)

∣∣∣∣∣
f ′(zj

)

f
(
zj
)

∣∣∣∣∣
≥ (1 + o(1))

1
8
∣∣zj

∣∣ . (3.5)
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By (1.6), we have for all zj ∈ W ,

f ′′(zj
)

f ′(zj
) · 1

P1(ezj ) +Q1(e−zj )
+ 1 +

P2(ezj ) +Q2(e−zj )
P1(ezj ) +Q1(e−zj )

· f
(
zj
)

f ′(zj
) =

1
f ′(zj

) · R1(ezj ) + R2(e−zj )
P1(ezj ) +Q1(e−zj )

.

(3.6)

It follows from (3.4)–(3.6) and ρe(f) = 0 that (3.6) yields 1 ≡ 0 as |zj | → ∞ on the setW. This
is a contradiction.

By the maximum modulus principle, f ′(z) is bounded in the angular domain

D =
{
z : −π

2
+ ε0 ≤ arg z ≤ π

2
− ε0

}
. (3.7)

However, we know

f(z) = f(z0) +
∫z

z0

f ′(t)dt, (3.8)

where the integral of f ′(t) is defined on the simple contour C, extending from a point z0 to a
point z in the complex domain.

So we obtain

∣∣f(z)
∣∣ = O(|z|), (3.9)

as z → ∞ in the angular domain D.
Thus , from the Cauchy integral formula, we obtain

∣∣f ′′(z)
∣∣ = O(1), (3.10)

as z → ∞ in the angular domain D. By (1.6), (3.8), and (3.9), we have for some constant
A > 0

∣∣f ′(z)
∣∣ ≤ exp{−(1 + o(1))A|z|}, (3.11)

as z → ∞ in the angular domain D. Together with (3.8) and (3.11), f(z) is bounded in the
angular domain D.

If f(z) ≡ f(z + 2πi), it follows from Lemma 2.5 that f(z) must have the form (1.8).
If f(z)/≡ f(z + 2πi), since f(z) is a subnormal solution of (1.6), so is f(z + 2πi). Thus,

h(z) = f(z) − f(z + 2πi) (3.12)

will be a subnormal solution of (1.7). Since we suppose that degP1 > degP2, we will discuss
the following two cases.
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Case 1. If P2 +Q2 ≡ 0, we have, by Lemma 2.1(i),

h(z) = C, (3.13)

where C is a constant. Hence h′(z) ≡ 0, that is,

f ′(z) ≡ f ′(z + 2πi). (3.14)

From this, f ′(z) can be written as f ′(z) = eβ1zG1(ez)(see [11, page 382]), where β1 is a constant
and G1(z) is analytic on 0 < |z| < ∞. Thus, f(z) can be written as f(z) = eβ2zG2(ez), where β2
is a constant and G2(z) is analytic on 0 < |z| < ∞. It follows from Lemma 2.4 that

f(z) = eβz
[
g1(ez) + g2

(
e−z

)]
, (3.15)

where β is a constant, g1(z) and g2(z) are polynomials in z. Thus, f(z) has the form of (1.8).

Case 2. If P2 +Q2 /≡ 0, we obtain from Lemma 2.1(ii) that

h(z) = f(z) − f(z + 2πi) = g3
(
e−z

)
, (3.16)

where g3(z) is a polynomial in z with deg{g3} ≥ 1.

However, we can assert that h(z) = g3(e−z) ≡ 0 in (3.16). Otherwise, there exists z0 ∈ D
such that

g3
(
e−z

)
= a/= 0. (3.17)

By (3.16), we have

f(z + 2πi) − f(z + 4πi) = g3
(
e−z

)
. (3.18)

Thus from (3.16) and (3.18), we have

f(z) − f(z + 4πi) = 2g3
(
e−z

)
. (3.19)

By repeating this process finite times, we obtain that for any integer n ≥ 1,

f(z) − f(z + n · 2πi) = ng3
(
e−z

)
. (3.20)

We have, by (3.17) and (3.20),

f(z) − f(z + n · 2πi) = na −→ ∞, (3.21)
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as n → +∞. This is a contradiction to the fact that f(z) is bounded in the angular domain D.
This shows that P2 +Q2 /≡ 0 is not possible when f(z)/≡ f(z + 2πi) under the hypotheses. This
completes the proof of part (i).

(ii)We firstly suppose that degP1 = degR1. Since f(z) is a subnormal solution of (1.6),
so is f(z + 2πi). Set

h(z) = f(z) − f(z + 2πi). (3.22)

Then h(z) is a subnormal solution of (1.7). Now if h(z) ≡ 0, this shows that f(z) ≡ f(z + 2πi)
and f(z) has the form of (1.9) by Lemma 2.5. Thus, we suppose that h(z)/≡ 0 in the following.

Now, assume that degP1 > degP2.
If P2 + Q2 ≡ 0, it follows from the proof of Case 1 of Theorem 1.1(i) that f(z) has the

form of (1.9).
If P2 +Q2 /≡ 0, we obtain from Lemma 2.1(ii) that

h(z) = f(z) − f(z + 2πi) = g3
(
e−z

)
, (3.23)

where g3(z) is a polynomial in z with deg{g3} ≥ 1.
Set

g3
(
e−z

)
=

m∑

k=0

ake
−kz, (3.24)

where m ≥ 1 is an integer and ak(k = 0, 1, . . . , m) are constants with am /= 0.
Let n = degP1 = degR1 and set

P1(ez) =
n∑

k=0

pke
kz, R1(ez) =

n∑

k=0

rke
kz, (3.25)

where pnrn /= 0.
Now, we will discuss the following two cases.

Case A. We consider a0 /= 0 in (3.24). Let c1 be a constant defined by

c1a0pn = rn, (3.26)

and set

H1(z) = c1zh(z). (3.27)

Since h(z) is a subnormal solution of (1.7), it follows from (3.27) that H1(z) satisfies

H ′′
1 +

[
P1(ez) +Q1

(
e−z

)]
H ′

1 +
[
P2(ez) +Q2

(
e−z

)]
H1 = 2c1h′(z) + c1h(z)

[
P1(ez) +Q1

(
e−z

)]
.

(3.28)
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We obtain from (3.23)–(3.28) that

H ′′
1 +

[
P1(ez) +Q1

(
e−z

)]
H ′

1 +
[
P2(ez) +Q2

(
e−z

)]
H1 = rne

nz + T3(ez) + T4
(
e−z

)
, (3.29)

where T3(z) and T4(z) are polynomials in zwith deg T3 ≤ n − 1.
Set

φ1(z) = H1(z) − f(z). (3.30)

It follows from (1.6), (3.25), (3.29) and (3.30) that φ′′
1 + [P1(ez) + Q1(e−z)]φ′

1 + [P2(ez) +

Q2(e−z)]φ1 = T3(ez) + T4(e−z) −
n−1∑

k=0
rke

kz − R2(e−z).

Set

S1(ez) = T3(ez) −
n−1∑

k=0

rke
kz, S2

(
e−z

)
= T4

(
e−z

) − R2
(
e−z

)
. (3.31)

So degS1 ≤ n − 1 < degP1, and φ1(z) satisfies

φ′′
1 +

[
P1(ez) +Q1

(
e−z

)]
φ′
1 +

[
P2(ez) +Q2

(
e−z

)]
φ1 = S1(ez) + S2

(
e−z

)
. (3.32)

We have by (3.27) that h(z) is a subnormal solution of (1.7), H1(z) is a subnormal
solution of (3.29). Moreover, φ1(z) is also a subnormal solution of (3.32) by (3.30) and f(z) is
a subnormal solution of (1.6). Thus, we deduce from Theorem 1.1(i) and (3.32)with degP1 >
degS1 that φ1(z) has the form

φ1(z) = eβz
[
g1(ez) + g2

(
e−z

)]
, (3.33)

where β is a constant, g1(z) and g2(z) are polynomials in z. Hence (3.23), (3.24), (3.27), (3.30),
and (3.33) yield

f(z) = eβz
[−g1(ez) − g2

(
e−z

)]
+ c1zg3

(
e−z

)
, (3.34)

where c1 /= 0 and β are constants, g1(z), g2(z), and g3(z) are polynomials in zwith deg g3 ≥ 1.
This is the form of (1.9).

Case B. We consider a0 = 0 in (3.24). Let c2 be a constant defined by

c2saspn = rn, (3.35)

where s ∈ {0, 1, . . . , m} is a number such that as is the first coefficient a0, a1, . . . , am in (3.24)
which is not equal to zero. Set

H2(z) = c2e
szh(z). (3.36)
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Similar to the proof of Case A of Theorem 1.1(ii), we have

f(z) = eβz
[−g1(ez) − g2

(
e−z

)]
+ c2

[
eszg3

(
e−z

)]
, (3.37)

where c2 /= 0 and β are constants, g1(z), g2(z) and, g3(z) are polynomials in zwith deg g3 ≥ 1.
Set g4(e−z) = c2e

szg3(e−z). Then g4(e−z)/≡ 0 is a polynomial in e−z by the hypotheses of s in
(3.36). This is the form of (1.9). We have proved Theorem 1.1(ii) when degP1 = degR1.

Now we suppose that degP1 < degR1. By Lemma 2.6, there exists a polynomial g0(z)
in z, satisfies (2.10) and (2.11).

Since degR3 ≤ degP1 and since we have proved Theorem 1.1 holds in the cases when
degP1 ≥ degR1 holds, we can apply this result to (2.11).

If degP1 > degR3, it follows from Theorem 1.1(i) that

g(z) = eβz
[
g1(ez) + g2

(
e−z

)]
, (3.38)

where β is a constant, g1(z) and g2(z) are polynomials in z. By (2.10) and (3.38), we obtain
that

f(z) = g0(ez) + eβz
[
g1(ez) + g2

(
e−z

)]
, (3.39)

where β is a constant, g0(z), g1(z) and g2(z) are polynomials in z. This is a form of (1.9).
If degP1 = degR3, it follows from the proof of Theorem 1.1(ii) when degP1 = degR1

that

g(z) = eβz
[
g1(ez) + g2

(
e−z

)]
+ c1zg3

(
e−z

)
+ c2g4

(
e−z

)
, (3.40)

where g1(z), g2(z), g3(z) and g4(z) are polynomials in z with deg g3 ≥ 1, c1 and c2 are
constants that may or may not be equal to zero. By (2.10) and (3.40), we obtain that f(z)
has the form of (1.9). Theorem 1.1(ii) is completed.

Now, we give some examples to show that Theorem 1.1 is correct.

Example 3.1. Let f(z) = e−z + e−2z, then f(z) satisfies

f ′′ +
(
e2z + e−z + 1

)
f ′ − (

ez + 2e−z − 1
)
f = −ez − 3 + 2e−2z. (3.41)

This is an example of Theorem 1.1(i).

Example 3.2. Let f(z) = z(1 + e−z) + e−2z, then f(z) satisfies

f ′′ +
(
e2z + 2ez + e−z + 3

)
f ′ +

(
ez + e−z + 1

)
f = e2z + 3ez + 3 − e−z + e−3z. (3.42)

This is an example of Theorem 1.1(ii)with degP1 > degP2 and degP1 = degR1.
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Example 3.3. Let f(z) = z(e−z) + ez + e−z, then f(z) satisfies

f ′′ +
(
e2z + ez + e−z

)
f ′ +

(
ez + e−z

)
f = e3z + 2e2z + ez − e−z + e−2z + 3. (3.43)

This is an example of Theorem 1.1 (ii)with degP1 > degP2 and degP1 < degR1.
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