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1. Introduction and the Main Results

In this paper we study integral inequalities of the form

y(x) ≤ f(x) + g(x)
∫
S(x)

q ◦ y dμ, x ∈ X, (1.1)

and the corresponding integral equations

y(x) = f(x) + g(x)
∫
S(x)

q ◦ y dμ, x ∈ X, (1.2)

where

(A1) (X,A, μ) is a measure space;

(A2) S is a function from X into A such that the following properties hold:
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(A1
2) μ(S(x)) < ∞ for every x ∈ X,

(A2
2) if x2 ∈ S(x1), then S(x2) ⊂ S(x1),

(A3
2) {(x1, x2) ∈ X2 | x2 ∈ S(x1)} is μ2-measurable;

(A3) q is a function from [0,∞[ into [0,∞[ with the following conditions:

(A1
3) q is concave,

(A2
3) limt→∞(q(t)/t) = 0;

(A4) the functions f and g belong to

Lloc(X) :=
{
p : X −→ [0,∞[ | p is μ-integrable over S(x) ∀x ∈ X

}
. (1.3)

It may be noted that under the condition (A1
3) the function q is increasing (see Lemma 2.1 for

the justification).
A always represents a σ-algebra in X. The μ-integrable functions over a measurable

set A ∈ A are considered to be μ-almost measurable on A. The product of the measure space
(X,A, μ)with itself is understood as in [1], and it is denoted by (X2,A2, μ2).

By N we designate the set of nonnegative integers.
Special cases of (1.1) seem first to have been investigated by Lasalle [2] and Bihari

[3]. Bihari’s classical result gives an explicit upper bound for the solutions of the integral
inequality

u(t) ≤ a +
∫ t

c

k(s)h(u(s))ds, t ∈ [c, d], (1.4)

where a ≥ 0, k and u are nonnegative continuous functions on [c, d], and h is a positive
continuous and increasing function on [0,∞[. A group of inequalities is now associated with
Bihari’s name. Results for the various forms of such inequalities and references to different
works in this topic can be found in [4–6]. Bihari type inequalities have been widely studied
because they can be applied in the theory of difference, differential and integral equations.
Riemann or classical Lebesgue integral is used in most of the theorems in this area. There are
relatively few papers using other types of integral. For generalizations to abstract Lebesgue
integral; see [7–9]. The linear version of (1.1) is given in [7]. The special case q(x) = xα,
(x ≥ 0, 0 < α < 1) of (1.1) is considered in [8], while the special case q(x) = xα, (x ≥ 0,
1 < α) of (1.1) is discussed in [9]. It turns out to be useful to study Bihari type inequalities
with abstract Lebesgue integral. It is motivated proceeding in this direction as follows. We
can get new facts about the nature of Bihari type inequalities even in the finite dimensional
environment; the results can be applied in the study of certain new classes of differential and
integral equations (see [7–11]).

The traditional treatment assumes not only that X ⊂ R
n, but also that the sets S(x),

x ∈ X are intervals, while the present treatment (it should be emphasized that the methods
employed to establish our results are not usual in this topic) makes it possible to consider
more general sets (examples for functions satisfying (A2

2) and (A3
2) can be found in [11]).

Such results are not quite so easy to find in literature, although they can be used as powerful
tools in many fields of mathematics.

Besides Lloc(X), the following function spaces will play an important role.
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Definition 1.1. If A is a nonempty subset of X such that S(x) ⊂ A for every x ∈ A, then let

Lloc(A) :=
{
p : A −→ [0,∞[ | p is μ-integrable over S(x) ∀x ∈ A

}
. (1.5)

Next, the basic concepts of the solutions of the inequalities (1.1) and

y(x) ≥ f(x) + g(x)
∫
S(x)

q ◦ y dμ, x ∈ X, (1.6)

and the equation (1.2) are defined.

Definition 1.2. We say that a function y : Dy → R is a solution of (1.1), (1.6), or (1.2) if

(i) Dy is a nonempty subset of X such that S(x) ⊂ Dy for every x ∈ Dy,

(ii) y ∈ Lloc(Dy),

(iii) y satisfies (1.1), (1.6), or (1.2) for each x ∈ Dy.

It is easily verified (see Lemma 2.5) that if y : Dy → R is a solution of (1.1), (1.6), or
(1.2), then q ◦ y is μ-integrable over S(x) for all x ∈ Dy.

After these preparations we set ourselves the task of obtaining an upper bound for the
solutions of (1.1). The following definition will be useful.

Definition 1.3. (a) For every x ∈ X with μ(S(x)) > 0, let

ax :=
1

μ(S(x))

∫
S(x)

f dμ, bx :=
∫
S(x)

g dμ. (1.7)

(b) Let

t(x) :=

⎧⎨
⎩
max

{
t ≥ 0 | t = ax + bxq(t)

}
, if μ(S(x)) > 0,

0, if μ(S(x)) = 0,
x ∈ X. (1.8)

By (A2
3), t(x) is a nonnegative real number for every x ∈ X.

Now we are in a position to formulate the first main result.

Theorem 1.4. Assume the conditions (A1)–(A4).

(a) Every solution y : Dy → R of (1.1) satisfies

y(x) ≤ f(x) + g(x)μ(S(x))q(t(x)), x ∈ Dy. (1.9)

(b) The function z defined on X by

z(x) = f(x) + g(x)μ(S(x))q(t(x)) (1.10)

belongs to Lloc(X).
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In the second main result we test the scope of the previous theorem by applying it to
prove the existence of a maximal and a minimal solution of the integral equation (1.2). At the
same time, we show that every solution has maximal domain of existence X, and we apply
the method of successive approximations to (1.2). Moreover, the behavior of the solutions is
studied in a special case. The considered integral equations are in a very general form, there
are classical Volterra and Fredholm type integral equations among them.

Theorem 1.5. Suppose the conditions (A1)–(A4).

(a1) There exists a solution ymin ∈ Lloc(X) of (1.2), which is minimal in the sense that
ymin(x) ≤ y(x), x ∈ Dy whenever y : Dy → R is a solution of (1.6).

(a2) There exists a solution ymax ∈ Lloc(X) of (1.2), which is maximal in the sense that
ymax(x) ≥ y(x), x ∈ Dy whenever y : Dy → R is a solution of (1.1).

(b) If y : Dy → R is a solution of (1.2), then y has an extension ŷ to X that is a solution of
(1.2) on X.

(c) Let y : Dy → R be a solution of (1.1). Then the successive approximations determined by
y,

y0 := y, yn+1(x) := f(x) + g(x)
∫
S(x)

q ◦ yn dμ, x ∈ Dy, n ∈ N, (1.11)

are well defined, yn ∈ Lloc(Dy), n ∈ N; the sequence (yn)
∞
n=0 is increasing and converges

pointwise on Dy to a solution of (1.2).

(d) Let y : Dy → R be a solution of (1.6). Then the successive approximations (1.11)
determined by y are well defined, yn ∈ Lloc(Dy), n ∈ N, and the sequence (yn)

∞
n=0 is

decreasing. Moreover, if either q is continuous (at 0) or q(0) > 0, then they converge
pointwise on Dy to a solution of (1.2).

(e) If in addition f and g are bounded on S(x) for all x ∈ X, then every solution y : Dy → R

of (1.2) is bounded on S(x) for all x ∈ Dy.

We conclude this section with some remarks.

Remark 1.6. The next example shows that the concavity of q alone does not imply neither the
existence of an upper bound for the solutions of the integral inequality (1.1) nor the existence
of a solution of the integral equation (1.2). Consider the integral inequality

y(x) ≤ 1 +
∫
[0,x]

q ◦ ydε0 = 1 + q
(
y(0)

)
, x ∈ [0,∞[, (1.12)

and the corresponding integral equation

y(x) = 1 +
∫
[0,x]

q ◦ ydε0 = 1 + q
(
y(0)

)
, x ∈ [0,∞[, (1.13)

where ε0 is the unit mass at 0 defined on the σ-algebra of Borel subsets of [0,∞[, and

q : [0,∞[ −→ [0,∞[, q(t) := t. (1.14)
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Then the conditions (A1)–(A4) are satisfied without (A2
3). It is obvious that the functions

yn : [0,∞[ −→ [0,∞[, yn(x) := n, n ∈ N (1.15)

are solutions of (1.12), showing that there are no either global or local upper bounds for the
solutions of (1.12). It is easy to check that (1.13) has no solution.

Remark 1.7. It is illustrated by an example that under the conditions (A1)–(A4) the maximal
domain of existence of a solution of (1.1)may be a proper subset ofX. LetX := [0, 1], letA be
the Lebesgue measurable subsets ofX, and let μ be the Lebesgue measure onA. The function
S is defined on A by

S(x) :=

⎧⎨
⎩
∅, if x ∈ [0, 1[,

[0, 1], if x = 1.
(1.16)

The functions f and g are defined on X by f(x) = g(x) := 1. Suppose q : [0,∞[→ R, q(t) :=
t1/2. Then (A1)–(A4) are satisfied. Let y : [0, 1[→ [0, 1] be a non (Lebesgue) measurable
function. Then y is a solution of (1.1) which has no extension to X.

Remark 1.8. The following example makes it clear that some extra conditions for q are
necessary in Theorem 1.5(d). Let

X :=
{
1 − 1

k
| k ∈ N \ {0}

}
∪ {1, 2}, (1.17)

let A be the power set of X, and let the measure μ be defined on A by

μ :=
∞∑
k=1

1
2k

ε1−1/k + ε1 + ε2, (1.18)

where the measure εx(x ∈ X) is the unit mass at x defined on A. We consider the integral
equation

y(x) =
∫
S(x)

q ◦ y dμ, x ∈ X, (1.19)

where S : X → A, S(x) := {s ∈ X | s < x}, and

q : [0,∞[ −→ [0,∞[, q(t) :=

⎧⎨
⎩
0, if t = 0,

1, if t > 0.
(1.20)
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The conditions (A1)–(A4) can be immediately verified. Define the function y0 : X → R by
y0(x) := 4. Noting that μ(X) = 3 leads to the inequality

y0(x) ≥
∫
S(x)

q ◦ y0 dμ, x ∈ X. (1.21)

A few easy calculations imply that, for every n ∈ N \ {0},

yn

(
1 − 1

k

)
=

⎧⎪⎪⎨
⎪⎪⎩
0, if 1 ≤ k ≤ n,

k−1∑
i=n

1
2i
, if k ≥ n + 1,

yn(1) =
∞∑
i=n

1
2i
, yn(2) = 1 +

∞∑
i=n

1
2i
,

(1.22)

and therefore

lim
n→∞

yn(x) =

⎧⎨
⎩
0, if x = 1 − 1

k
, k ∈ N \ {0} or x = 1,

1, if x = 2.
(1.23)

Since (1.19) has the unique solution y(x) = 0, x ∈ X, then the successive approximations
(yn)

∞
n=0 do not converge to the solution of (1.19).

2. Preliminaries

This section is devoted to some preparatory results. In the following three lemmas we
establish some useful properties of concave functions.

Lemma 2.1. If the function r : [0,∞[→ [0,∞[ is concave, then r is increasing.

Proof. Suppose that there exist 0 ≤ t1 < t2 for which r(t1) > r(t2). By the concavity of r, the
points of the graph of r are below or on the ray from t1 through t2 for all t ≥ t2, and therefore

r(t) ≤ r(t2) − r(t1)
t2 − t1

(t − t2) + r(t2), t ≥ t2. (2.1)

Since

r(t2) − r(t1)
t2 − t1

< 0, (2.2)

it follows from (2.1) that r(t) < 0 if t is large enough. This contradicts the range of r.
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Lemma 2.2. Suppose the function r : [0,∞[→ R is concave, r(0) ≥ 0, and limt→∞r(t) = −∞.
Associate to r the nonnegative real number

tr := max{t ≥ 0 | r(t) = 0}. (2.3)

Then

(a) r is strictly decreasing on [tr ,∞[;

(b) r(t) ≥ 0 for all t ∈ [0, tr];

(c) If tr > 0, and there is a t1 ∈ ]0, tr[ such that r(t1) = 0, then r(t) = 0 for all t ∈ [0, tr].

Proof. The hypotheses on r (since r is concave, r is continuous on ]0,∞[) guarantee that
exactly one of the following three cases holds:

(i) r(0) = 0 and r(t) < 0 for all t ∈ ]0,∞[;

(ii) there exists a t̂ > 0 such that r(t) = 0 for all t ∈ [0, t̂] and r(t) < 0 for all t ∈ ]t̂,∞[;

(iii) there is a unique t̂ > 0 such that r(t̂) = 0, r(t) > 0 for all t ∈ ]0, t̂[ and r(t) < 0 for all
t ∈ ]t̂,∞[.

It follows that tr = 0 if (i) is satisfied, and tr = t̂ otherwise. At the same time (b) and (c) are
proved.

It remains to show (a). If tr < t, then (i)–(iii) show that 0 = r(tr) > r(t). Assume
tr < t1 < t2. By the concavity of r,

r(t1)
t1 − tr

≥ r(t2)
t2 − tr

, (2.4)

and hence

r(t1) ≥ t1 − tr
t2 − tr

r(t2) > r(t2). (2.5)

The proof is complete.

Lemma 2.3. Suppose the function r : [0,∞[→ [0,∞[ is concave, and limt→∞(r(t)/t) = 0.
Associate to r and to each of the nonnegative real numbers a, b the function

ra,b : [0,∞[ −→ R, ra,b(t) := a + br(t) − t. (2.6)

Then

(a) ra,b is concave, and limt→∞ra,b(t) = −∞;

(b) If t ≤ a + br(t), t ≥ 0, then t ∈ [0, ta,b], where

ta,b := max{t ≥ 0 | ra,b(t) = 0}; (2.7)
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(c) If (a0, b0) ∈ [0,∞[×[0,∞[ and t0 > 0, then ra,b → ra0,b0 uniformly on [0, t0] as (a, b) →
(a0, b0) in [0,∞[×[0,∞[;

(d) the function (a, b) → ta,b defined on [0,∞[×[0,∞[ is upper semicontinuous.

Proof. (a) It is obvious.

(b) By (a), Lemma 2.2(b) and (a) give the result.

(c) The triangle inequality insures that

|ra,b(t) − ra0,b0(t)| ≤ |a − a0| + |b − b0|r(t), t ∈ [0, t0]. (2.8)

Then from Lemma 2.1

|ra,b(t) − ra0,b0(t)| ≤ |a − a0| + |b − b0|r(t0), t ∈ [0, t0], (2.9)

and this gives the result.

(d) To prove this, choose (a0, b0) ∈ [0,∞[×[0,∞[, and ε > 0. The definition of ta0,b0 and
Lemma 2.2(a) imply that

δ := −ra0,b0(ta0,b0 + ε) > 0. (2.10)

By (b), ra,b → ra0,b0 uniformly on [0, ta0,b0 + ε] as (a, b) → (a0, b0) in [0,∞[×[0,∞[, and hence
there exists a neighborhood U of (a0, b0) in [0,∞[×[0,∞[ such that

|ra,b(t) − ra0,b0(t)| < δ, (a, b) ∈ U, t ∈ [0, ta0,b0 + ε]. (2.11)

It now follows from Lemma 2.2 (a) that

ta,b ≤ ta0,b0 + ε, (a, b) ∈ U, (2.12)

and the proof is complete.

The next result was proved in [8, Lemma 5(b)].

Lemma 2.4. Suppose that (A1) and (A3
2) hold. Let A ∈ A such that S(x) ⊂ A for every x ∈ A.

Suppose u : A → R is μ-integrable over A, v : A → R is μ-almost measurable on A, and there
exists a measurable subset C of A such that μ(C) is σ-finite and v(x) = 0 for all x ∈ A \ C. Then the
function

x −→ v(x)
∫
S(x)

udμ, x ∈ A (2.13)

is μ-almost measurable on A.
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Lemma 2.5. Assume the conditions (A1)–(A3). If A is a nonempty subset of X such that S(x) ⊂ A
for every x ∈ A and u ∈ Lloc(A), then q ◦ u ∈ Lloc(A).

Proof. Let x ∈ A be fixed. Since q is increasing it is Borel measurable. Consequently, since u
is μ-almost measurable on S(x), q ◦ u is μ-almost measurable on S(x). By (A2

3), we can find
t0 > 0 such that q(t) ≤ t for all t ≥ t0. Hence, note that q is increasing:

q(u(s)) ≤
⎧⎨
⎩
u(s), if u(s) ≥ t0,

q(t0), if u(s) < t0,
s ∈ S(x). (2.14)

It now follows from the definition of Lloc(A) and from (A1
2) that q ◦ u is μ-integrable over

S(x). The proof is complete.

A consequence of the previous results that will be important later on is follows.

Lemma 2.6. Suppose that (A1)–(A4) hold. If A is a nonempty subset of X such that S(x) ⊂ A for
every x ∈ A and u ∈ Lloc(A), then the function

x −→ f(x) + g(x)
∫
S(x)

q ◦ udμ, x ∈ A (2.15)

belongs to Lloc(A).

Proof. Let x ∈ X.
By Lemma 2.4, the function

s −→ g(s)
∫
S(s)

q ◦ udμ, s ∈ A (2.16)

is μ-almost measurable on S(x). Hence it follows from the μ-integrability of g and q ◦ u over
S(x) (the latter can be seen from Lemma 2.5), combined with the inequality

g(s)
∫
S(s)

q ◦ udμ ≤ g(s)
∫
S(x)

q ◦ udμ, s ∈ S(x), (2.17)

that the function (2.16) is μ-integrable over S(x). We conclude that the function (2.15) is μ-
integrable over S(x).

The proof is complete.

We need the concept of AL-space, which is of fundamental significance in the proof of
Theorem 1.5.

Definition 2.7. Suppose (A1), and let A be a nonempty set fromA.
(a) Let

L(A) :=
{
u : A −→ R | u is μ-integrable over A

}
. (2.18)

For a given u ∈ L(A), the symbol ‖u‖ is defined by ‖u‖ :=
∫
A|u|dμ.
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(b) Let N := {u ∈ L(A) | ‖u‖ = 0}, and let L(A) := L(A)/N. For every u ∈ L(A), let
u ∈ L(A) be the equivalence class containing u (u = u +N), and we set ‖u‖ := ‖u‖.

(c) We introduce the canonical ordering on L(A): for u1, u2 ∈ L(A), and u1 
 u2 means
that u1 ≤ u2 μ-almost everywhere on A.

Remark 2.8. (a) (L(A), ‖ · ‖) is a complete pseudometric space.

(b) (L(A), ‖ · ‖,
) is an L-normed Banach lattice, briefly, AL-space (see [12]).

If u is a function and A is a subset of the domain of u, then the restriction of u to A is
denoted by u | A.

Lemma 2.9. Suppose (A1), and let A and B be nonempty sets from A such that B ⊂ A. If F := {uλ |
λ ∈ Λ} and G := {vλ | λ ∈ Λ} are nonempty majorized subsets of L(A) such that uλ | B = vλ |
B (λ ∈ Λ), then

(
supF

) | B =
(
supG

) | B. (2.19)

Proof. Since (L(A), ‖ ·‖,
) is anAL-space, it is order complete (see [12]), and hence supF and
supG exist. Let u ∈ supF and v ∈ supG. Then u ≥ uλ μ-almost everywhere on A (λ ∈ Λ),
thus the function

v1 ∈ L(A), v1(x) :=

⎧⎨
⎩
u(x), if x ∈ B,

v(x), if x ∈ A \ B
(2.20)

is an upper bound of G. It follows that supG 
 v1, that is v ≤ u μ-almost everywhere on B.
An argument entirely similar to the preceding part gives that supF 
 u1, where

u1 ∈ L(A), u1(x) :=

⎧⎨
⎩
v(x), if x ∈ B,

u(x), if x ∈ A \ B,
(2.21)

and therefore u ≤ v μ-almost everywhere on B.
The proof is now complete.

The next result can be found in [11, Lemma 16].

Lemma 2.10. Assume that the hypotheses (A1), (A2
2), (A

3
2), and (A4) are satisfied. Let L := {x ∈ X |

S(x)/= ∅}. Suppose we are given solutions sx ∈ L(S(x)), x ∈ L of (1.2) such that sx2 | S(x1) = sx1

for each x1 ∈ L, x2 ∈ X with x1 ∈ S(x2). Then there exists exactly one solution s : X → R of (1.2)
for which s | S(x) = sx, x ∈ L.
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3. Proofs of the Main Results

Consider now the proof of Theorem 1.4.

Proof. (a) If x ∈ Dy such that μ(S(x)) = 0, then (1.9) follows directly from (1.1).
Now, fix a point x ∈ Dy with μ(S(x)) > 0. To estimate the second term on the right of

(1.1), we can apply Jensen’s inequality (see [13]), by (A1
2):

y(s) ≤ f(s) + g(s)
∫
S(s)

q ◦ y dμ

≤ f(s) + g(s)
∫
S(x)

q ◦ y dμ

≤ f(s) + g(s)μ(S(x))q

(
1

μ(S(x))

∫
S(x)

y dμ

)
, s ∈ S(x),

(3.1)

and therefore

1
μ(S(x))

∫
S(x)

y dμ ≤ 1
μ(S(x))

∫
S(x)

f dμ +
∫
S(x)

g dμ · q
(

1
μ(S(x))

∫
S(x)

y dμ

)
. (3.2)

This inequality, together with Definition 1.3(a), implies that the expression

1
μ(S(x))

∫
S(x)

y dμ (3.3)

satisfies the inequality

t ≤ ax + bxq(t), t ≥ 0. (3.4)

By Lemma 2.3 (b) and Definition 1.3 (b), t ∈ [0, t(x)], and hence (1.9) can be deduced from

y(x) ≤ f(x) + g(x)
∫
S(x)

q ◦ y dμ ≤ f(x) + g(x)μ(S(x))q

(
1

μ(S(x))

∫
S(x)

y dμ

)
. (3.5)

(b) The properties defining Lloc(X) are trivial if x ∈ X with
∫
S(x)g dμ = 0. So assume

x ∈ X such that
∫
S(x)g dμ > 0.

First, we show that the function z is μ-almost measurable on S(x). It is an easy
consequence of (A1

2) and Lemma 2.4 that the functions

s −→ μ(S(s)) =
∫
S(s)

1dμ, s ∈ X, (3.6)

s −→
∫
S(s)

f dμ, s −→
∫
S(s)

g dμ, s ∈ X (3.7)
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are μ-almost measurable on S(x). This means that there exists a measurable subset C of S(x)
such that μ(S(x) \ C) = 0 and (3.6), (3.7) are measurable on C. Further, since g is μ-almost
measurable on S(x), it can be supposed that g is measurable on C. Thus we need to show
that the function

s −→ q(t(s)), s ∈ X (3.8)

is measurable on C. To prove this let

D :=
{
s ∈ C | μ(S(s)) > 0

}
. (3.9)

The measurability of (3.6) on C implies that D ∈ A. Since

q(t(s)) = q(0), s ∈ C \D, (3.10)

it is enough to show that (3.8) is measurable on D. It follows from the definitions of C and D
that the function

s −→
(

1
μ(S(s))

∫
S(s)

f dμ,

∫
S(s)

g dμ

)
, s ∈ D (3.11)

is measurable. Hence, by Lemma 2.3 (d), (3.8) is measurable on D.
It is now clear that z is μ-almost measurable on S(x).
Next, we prove that z is μ-integrable over S(x).
To prove this, it is enough to show that the function

s −→ μ(S(s))q(t(s)), s ∈ X (3.12)

is bounded on C. Since

μ(S(s))q(t(s)) = 0, s ∈ C \D, (3.13)

we need to verify that (3.12) is bounded on D. By (A2
3), we can find a t0 > 0 such that

q(t) <

(
2
∫
S(x)

g dμ

)−1
· t ∀ t > t0. (3.14)

It therefore follows from

t(s) = as + bsq(t(s)), s ∈ D (3.15)
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that

μ(S(s))t(s) ≤
∫
S(s)

f dμ + μ(S(s))
∫
S(s)

g dμ

(
2
∫
S(x)

g dμ

)−1
t(s) (3.16)

for all s ∈ E := {s ∈ D | t(s) > t0}, and hence

1
2
μ(S(s))t(s) ≤ μ(S(s))t(s)

⎛
⎝1 −

∫
S(s)

g dμ

(
2
∫
S(x)

g dμ

)−1⎞
⎠ ≤

∫
S(s)

f dμ, s ∈ E. (3.17)

Thus

μ(S(s))t(s) ≤ 2
∫
S(s)

f dμ, s ∈ E, (3.18)

and therefore another application of (3.14) gives

μ(S(s))q(t(s))

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μ(S(s))

(
2
∫
S(x)

g dμ

)−1
t(s) ≤

∫
S(s)

f dμ

(∫
S(x)

g dμ

)−1
, if s ∈ E

μ(S(x))q(t0), if s ∈ D \ E

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
S(x)

f dμ

(∫
S(x)

g dμ

)−1
, if s ∈ E

μ(S(x))q(t0), if s ∈ D \ E,

(3.19)

and from this the claim follows. Consequently, z is μ-integrable over S(x), as required.
The result is completely proved.

Now we are in a position to prove Theorem 1.5.

Proof. We begin with the proof of (c) and (d).
(c) To prove that yn ∈ Lloc(Dy) we use induction on n. Clearly y0 belongs to Lloc(Dy).

Let n ∈ N such that the assertion holds. Then Lemma 2.6 yields that yn+1 ∈ Lloc(Dy). We show
now that the sequence (yn) is increasing. By our hypotheses on y0, it follows that y0 ≤ y1, and
we again complete the proof by induction. Suppose n ∈ N such that yn ≤ yn+1. Then, by
Lemma 2.1 and the induction hypothesis

yn+2(x) := f(x) + g(x)
∫
S(x)

q ◦ yn+1 dμ

≥ f(x) + g(x)
∫
S(x)

q ◦ yn dμ = yn+1(x), x ∈ Dy.

(3.20)
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Since

yn(x) ≤ yn+1(x) := f(x) + g(x)
∫
S(x)

q ◦ yn dμ, x ∈ Dy, n ∈ N, (3.21)

Theorem 1.4(a) implies that

yn(x) ≤ f(x) + g(x)μ(S(x))q(z(x)), x ∈ Dy, n ∈ N. (3.22)

Because of (3.22) and the fact that (yn) is increasing, there exists a function ŷ : Dy → [0,∞[
such that (yn) converges pointwise on Dy to ŷ. Then ŷ ∈ Lloc(Dy) is a consequence of yn ∈
Lloc(Dy) (n ∈ N) together with (3.22), Lemma 2.1(a) and, Theorem 1.4(b). If x ∈ Dy with
ŷ(x) > 0, then according to the continuity of q on ]0,∞[, q(yn(x)) converges to ŷ(x). Let
x ∈ Dy with ŷ(x) = 0. As we have seen (yn(x)) is increasing, and therefore yn(x) = 0 for all
n ∈ N. Consequently

q
(
yn(x)

)
= q(0) = q

(
ŷ(x)

)
. (3.23)

Now (1.11) and the monotone convergence theorem give that ŷ is a solution of (1.2).
(d)We can see exactly as in the proof of (c) that yn ∈ Lloc(Dy), n ∈ N, and the sequence

(yn) is decreasing. It follows from an easy induction argument that yn is nonnegative for all
n ∈ N. Linking up with the foregoing, there exists a function ŷ : Dy → [0,∞[ such that (yn)
converges pointwise on Dy to ŷ. ŷ ∈ Lloc(Dy) can be shown as in the proof of (c).

The continuity of q on [0,∞[ implies that q(yn(x)) converges to q(ŷ(x)) for every x ∈
Dy.

Assume now that q(0) > 0. If x ∈ Dy such that yn(x) = 0 for every large enough n ∈ N,
then

q
(
yn(x)

)
= q(0) = q

(
ŷ(x)

)
. (3.24)

If x ∈ Dy such that yn(x) > 0 for every n ∈ N, then

yn+1(x) = f(x) + g(x)
∫
S(x)

q ◦ yn dμ ≥ f(x) + g(x)q(0)μ(S(x)) > 0, n ∈ N, (3.25)

which leads to ŷ(x) > 0. In both cases q(yn(x)) converges to q(ŷ(x)) for every x ∈ Dy.
According to (1.11) and the monotone convergence theorem ŷ is a solution of (1.2).
(a1) For convergence of the successive approximations

y0 := f, yn+1(x) := f(x) + g(x)
∫
S(x)

q ◦ yn dμ, x ∈ X, n ∈ N (3.26)
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to a solution ymin : X → R of (1.2) it suffices, in view of (c), to show that f is a solution
of (1.1), which is evident. It remains to prove that if y : Dy → R is a solution of (1.6), then
ymin(x) ≤ y(x) for every x ∈ Dy. To this end, it is enough to show that

yn(x) ≤ y(x), x ∈ Dy, n ∈ N. (3.27)

This is true for n = 0, since the functions g and q are nonnegative. Let n ∈ N for which the
result holds. Then, because of the nonnegativity of g and the fact that q is increasing,

yn+1(x) := f(x) + g(x)
∫
S(x)

q ◦ yn dμ

≤ f(x) + g(x)
∫
S(x)

q ◦ y dμ ≤ y(x), x ∈ X, n ∈ N,

(3.28)

and the proof of the induction step is complete.
(a2) Let

Xp :=
{
x ∈ X | μ(S(x)) > 0

}
. (3.29)

Choose x0 ∈ Xp. The set of the upper bounds fromL(S(x0)) for the solutions of (1.1) on S(x0)
is denoted by U. By Theorem 1.4,U is not empty. Let

U := {u | u ∈ U}. (3.30)

ThenU is a minorized subset of (L(S(x0)), ‖ · ‖,
) (the elements ofU are nonnegative). Since
this space is order complete (see [12]),

v := inf U (3.31)

exists. Let v ∈ v, and let y : Dy → R be a solution of (1.1) such that S(x0) ⊂ Dy. y(x) ≤
u(x) (x ∈ S(x0), u ∈ U) gives that

y(x) ≤ v(x) μ a.e. on S(x0). (3.32)

It follows that

y(x) ≤ f(x) + g(x)
∫
S(x)

q ◦ v dμ, x ∈ S(x0), (3.33)

because q is increasing. Since v ∈ L(S(x0)) the proof of Lemma 2.5 shows that q ◦ v ∈
L(S(x0)), and hence by (A4), the function v1 : S(x0) → R defined by

v1(x) := f(x) + g(x)
∫
S(x)

q ◦ v dμ (3.34)
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belongs to L(S(x0)), and therefore v1 ∈ U. It now comes from (3.33) and the definition of v
that

v(x) ≤ v1(x) μ a.e. on S(x0). (3.35)

Since q is increasing,

v1(x) ≤ f(x) + g(x)
∫
S(x)

q ◦ v1 dμ, x ∈ S(x0), (3.36)

and thus

v1(x) ≤ v(x) μ a.e. on S(x0). (3.37)

We can see that

v(x) = f(x) + g(x)
∫
S(x)

q ◦ v dμ μ a.e. on S(x0). (3.38)

If we set

vx0 : S(x0) −→ R, vx0(x) := f(x) + g(x)
∫
S(x)

q ◦ v dμ, (3.39)

then (3.38) shows that vx0 is a solution of (1.2). (3.33) gives that

y(x) ≤ vx0(x), x ∈ S(x0) (3.40)

for every solutions y : Dy → R of (1.1) for which S(x0) ⊂ Dy.
Repeat the preceding construction for every x ∈ Xp. We thus obtain a set of functions

vx ∈ L(S(x)), each a solution of (1.2) on its domain. Moreover, if y : Dy → R is a solution of
(1.1), then for every x ∈ Dy ∩Xp we have

y(s) ≤ vx(s), s ∈ S(x). (3.41)

Introduce the next functions: for every x ∈ X \Xp with S(x)/= ∅ let the function vx be defined
on S(x) by

vx(s) := f(s). (3.42)

Obviously, these functions are also solutions of (1.2) on their domains.
Now let x1, x2 ∈ X such that S(x1)/= ∅ and x1 ∈ S(x2). Using (3.41), it is easy to verify

that

vx1(s) = vx2(s), s ∈ S(x1), (3.43)
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and therefore Lemma 2.10 is applicable to the solutions vx. This gives a unique solution ymax :
X → R of (1.2) for which

ymax | S(x) = vx, x ∈ X with S(x)/= ∅. (3.44)

It remains to prove that ymax is maximal. Let y : Dy → R be a solution of (1.1), and let
x ∈ Dy. If μ(S(x)) = 0, then

y(x) ≤ f(x) = ymax(x), (3.45)

while if μ(S(x)) > 0, then by (3.41)

y(s) ≤ ymax(s), s ∈ S(x), (3.46)

so that Lemma 2.1 implies that

y(x) ≤ ymax(x). (3.47)

(b)We first show that every solution y : Dy → R of (1.2)withDy /=X has an extension
y1 : Dy1 → R that is a solution of (1.2) such that Dy is a proper subset of Dy1 . This follows
from (c) as soon as it is realized that every solution y : Dy → R of (1.2) with Dy /=X has
an extension y2 : Dy2 → R that is a solution of (1.1) such that Dy is a proper subset of Dy2 .
Really, in this case the successive approximations determined by y2 converge to a solution
y1 : Dy2 → R of (1.2), which is obviously an extension of y.

That realization can be reached in finitely many steps.
Let y : Dy → R be a solution of (1.2) with Dy /=X, and let x0 ∈ X \Dy.
(i) Suppose S(x0) ⊂ X \Dy.
If S(x0) = ∅, then

y1 : Dy ∪ {x0} −→ R, y1 :=

⎧⎨
⎩
y(x), if x ∈ Dy,

f(x), if x = x0

(3.48)

is an appropriate solution.
If S(x0)/= ∅, then

y2 : Dy ∪ S(x0) −→ R, y2 :=

⎧⎨
⎩
y(x), if x ∈ Dy,

f(x), if x ∈ S(x0)
(3.49)

is a solution of (1.1) that agrees with y on Dy.
(ii) Suppose S(x0) ∩Dy /= ∅ and S(x0) \Dy /= ∅. Let

E :=
{
x ∈ S(x0) ∩Dy | μ(S(x)) > 0

}
. (3.50)
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If E = ∅, then the function

y2 : Dy ∪ S(x0) −→ R, y2 :=

⎧⎨
⎩
y(x), if x ∈ Dy,

f(x), if x ∈ S(x0) \Dy

(3.51)

is a solution of (1.1) (y(x) = f(x), x ∈ S(x0)∩Dy, thus y2 ∈ Lloc(Dy ∪S(x0))) that agrees with
y on Dy.

If E/= ∅, then we introduce the functions ux : S(x0) → R, x ∈ E,

ux(s) :=

⎧⎨
⎩
y(s), if s ∈ S(x),

f(s), if s ∈ S(x0) \ S(x),
(3.52)

which all lie in L(S(x0)), and they are all solutions of (1.1). By Theorem 1.4 (b), {ux | x ∈ E}
is a majorized subset of (L(S(x0)), ‖ · ‖,
). Since this space is order complete (see [12]),

u := sup
x∈E

ux (3.53)

exists. Choose u ∈ u. Then u ≥ ux μ-almost everywhere on S(x0) for every x ∈ E, and
therefore Lemma 2.1 yields that

ux(s) ≤ f(s) + g(s)
∫
S(s)

q ◦ udμ, s ∈ S(x0), x ∈ E. (3.54)

Since u ∈ L(S(x0)) the proof of Lemma 2.5 shows that q ◦ u ∈ L(S(x0)), and hence by (A4),
the function

s −→ f(s) + g(s)
∫
S(s)

q ◦ udμ, s ∈ S(x0) (3.55)

belongs to L(S(x0)) too. It now follows from u ∈ u and (3.54) that

u(s) ≤ f(s) + g(s)
∫
S(s)

q ◦ udμ, μ a.e. on S(x0). (3.56)

We set

û : S(x0) −→ R, û(s) := f(s) + g(s)
∫
S(s)

q ◦ udμ. (3.57)

By (3.56)

û(s) ≤ f(s) + g(s)
∫
S(s)

q ◦ û dμ, s ∈ S(x0). (3.58)
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Fix x̂ ∈ E. From Lemma 2.9 (with F and G there being {ux | x ∈ E} and {ux̂ | x ∈ E} resp.)we
get that u(s) = y(s) μ-almost everywhere on S(x̂), and hence

û(s) = y(s), s ∈ S(x), x ∈ E. (3.59)

Consequently, û(x) = y(x), x ∈ E. If x ∈ S(x0)∩Dy with μ(S(x)) = 0, then û(x) = f(x) = y(x).
We can see that

û(x) = y(x), x ∈ S(x0) ∩Dy. (3.60)

By what we have already proved that

y2 : Dy ∪ S(x0) −→ R, y2 :=

⎧⎨
⎩
y(x), if x ∈ Dy,

û(x), if x ∈ S(x0) \Dy

(3.61)

is a solution of (1.1) that agrees with y on Dy.
(iii) Suppose S(x0)/= ∅ and S(x0) ⊂ Dy. By an argument entirely similar to that for the

case (ii), we can get a solution y2 : Dy ∪ {x0} → R of (1.1) that agrees with y on Dy.
After these preparations, the proof can be concluded quickly. Let y : Dy → R be a

solution of (1.2), and let P be the set of all solutions of (1.2) which agree with y on Dy. Since
y ∈ P , P is not empty. Partially order P by declaring u1 
 u2 to mean that the restriction
of u2 to the domain of u1 agrees with u1. By Hausdorff’s maximality theorem, there exists
a maximal totally ordered subcollection Q of P . Let D be the union of the domains of all
members of Q, and define ŷ : D → R by ŷ(x) := u(x), where u occurs in Q. It is easy to
check that ŷ is well defined, and it is a solution of (1.2). If D were a proper subset of X, then
the first part of the proof would give a further extension of ŷ, and this would contradict the
maximality of Q.

(e) Let y : Dy → R be a solution of (1.2), and let x ∈ Dy.
If μ(S(x)) = 0, then y | S(x) = f | S(x), so that y is bounded on S(x).
Suppose μ(S(x)) > 0. Since f and g are bounded on S(x) and μ(S(x)) is finite,

Theorem 1.4 (a) implies that it is enough to prove the boundedness of the function

s −→ q(t(s)), s ∈ X, (3.62)

on S(x). Moreover, we have only to observe that the function

s −→ t(s), s ∈ X, (3.63)

is bounded on S(x). To prove this, let

A :=
{
s ∈ S(x) | μ(S(s)) > 0

}
. (3.64)
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If f(s) ≤ c and g(s) ≤ c, s ∈ S(x), then as ≤ c and bs ≤ c for every s ∈ A, and therefore by
Lemma 2.3(d), the function (3.63) is bounded on A. If s ∈ S(x) \A, then the definition of the
function t gives that t(s) = 0. The claim about t is therewith confirmed.

The proof of the theorem is now complete.
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