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1. Introduction

The purpose of this paper is to derive formulae for the sums of products of the q-Euler
polynomials and numbers, since many identities can be obtained from our sums of products
of the q-Euler polynomials and numbers. In [1], Simsek evaluated the complete sums for the
Euler numbers and polynomials and obtained some identities related to Euler numbers and
polynomials from his complete sums, and Jang et al. [2] also considered the sums of products
of Euler numbers. Kim [3] derived the sums of products of the q-Euler numbers using the
fermionic p-adic q-Volkenborn integral. In this paper, we will evaluate the complete sum
of the q-Euler polynomials and numbers using the fermionic p-adic q-Volkenborn integral
on Zp. Assume that p is a fixed odd prime. Throughout this paper, the symbols Zp,Qp,C,
and Cp denote the ring of p-adic rational integers, the field of p-adic rational numbers, the
complex number field, and the completion of algebraic closure of Qp, respectively. Let N
be the set of natural numbers. Let vp be the normalized exponential valuation of Cp with
|p|p = p−vp(p) = p−1. When one talks about q-extension, q is variously considered as an
indeterminate, which is a complex number q ∈ C, or a p-adic number q ∈ Cp. If q ∈ C,
one normally assumes |q| < 1. If q ∈ Cp, then one assumes |q − 1|p < 1. We use the notations

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

, (1.1)

for all x ∈ Zp. Hence limq→ 1[x]q = x for any x with |x|p ≤ 1 (cf. [3–12]).
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For a fixed odd positive integer d with (p, d) = 1, let

X = Xd = lim−→
N

Z/dpNZ, X1 = Zp,

X∗ =
⋃

0<a<dp
(a,p)=1

(
a + dp Zp

)
,

a + dpNZp =
{
x ∈ X | x ≡ a

(
moddpN

)}
,

(1.2)

where a ∈ Z lies in 0 ≤ a < dpN . The distribution on X is defined by

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

. (1.3)

We say that f is a uniformly differentiable function at a point a ∈ Zp and denote this
property by f ∈ UD(Zp), if the difference quotients Ff(x, y) = (f(x) − f(y))/(x − y) have a
limit l = f ′(a) as (x, y) → (a, a).

For f ∈ UD(Zp), the q-deformed bosonic p-adic integral is defined as

Iq
(
f
)
=
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx (1.4)

(see [12]). The fermionic p-adic q-measures on Zp are defined as

μ−q
(
a + dpNZp

)
=

(−q)a
[
dpN

]
−q
, (1.5)

and the q-deformed fermonic p-adic integral is defined by

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN

]
−q

pN−1∑

x=0

f(x)
(−q)x (1.6)

(see [6]), for f ∈ UD(Zp). The fermionic p-adic integral on Zp is defined as

I−1
(
f
)
= lim

q→ 1
I−q

(
f
)
=
∫

Zp

f(x)dμ−1(x). (1.7)
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It follows that I−1(f1) = −I−1(f) + 2f(0), where f1(x) = f(x + 1). If we take f(x) = etx, then
the classical Euler polynomials En(x) are defined by the generating function,

2
et + 1

ext =
∞∑

x=0

En(x)
tn

n!
, (1.8)

and the Euler numbers En are defined as En = En(0) (cf. [1–20]).
It is known that the q-Euler numbers En,q are defined as

En,q =
∫

Zp

[x]nqdμ−q(x), (1.9)

and the q-Euler polynomials En,q(x) are defined as

En,q(x) =
∫

Zp

[x + t]nqdμ−q(t), (1.10)

where x ∈ C with |x|p ≤ 1. We note that limq→ 1En,q = En and limq→ 1En,q(x) = En(x) (cf.
[3, 6–12, 15–17]).

Let r ∈ N. We consider the q-Euler numbers E(r)
n,q of order r defined by

E
(r)
n,q =

∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

r times

[x1 + · · · + xr]nq dμ−q(x1) · · ·dμ−q(xr), (1.11)

and the q-Euler polynomials E(r)
n,q(x) of order r defined by

E
(r)
n,q(x) =

∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

r times

[x + x1 + · · · + xr]nq dμ−q(x1) · · ·dμ−q(xr). (1.12)

(see [5–7]). In Section 2, we evaluate the following multivariate fermionic p-adic q-integral :

∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

r times

[N1(x1 + α1) + · · · +Nr(xr + αr)]
n
q dμ−qN1 (x1) · · ·dμ−qNr (xr), (1.13)

for any elements α1, . . . , αr ∈ Cp, n ∈ N and distinct odd positive integers N1, . . . ,Nr . We
have the formulae for the complete sum of the products of q-Euler polynomials related to the
higher order q-Euler polynomials using the fermionic p-adic q-Volkenborn integral on Zp. We
also obtain the formulae for the q-Euler numbers.

In [21–24], Khrennikov introduced other theories of p-adic distributions which were
recently generated in p-adic mathematical physics, both bosonic and fermionic: Khrennikov
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tried to build a p-adic picture of reality based on the field of p-adic numbers Qp and
corresponding analysis (a particular case of so-called non-Archimedean analysis). He
showed that many problems of the description of reality with the aid of real numbers are
induced by unlimited application of the Archimedean axiom. This axiom means that the
physical observation can be measured with an infinite exactness. The results connected with
an infinite exactness of measurements appear all the time in the formalisms of quantum
mechanics and quantum field theories, which have the real continuum as one of their
foundations. In particular, the author explains that the famous EPR paradox is nothing
other than a result of using ideal real elements corresponding to an infinite exactness of
measurement of the position and the momentum of a quantum particle. From the author’s
point of view, the EPR paradox is only a new form of Zeno’s ancient paradox of Achilles and
the tortoise. Both of these paradoxes are connected with the notion of an infinitely deep and
infinitely divisible real continuum (see [21, 22]). In [23, 24], Khrennikov outlines both the p-
adic frequencymodel and ameasure-theoretic approach. The latter is understood in the sense
of non-Archimedean integration theory where measures have only additive property, not σ-
additive property, and satisfy a condition of the boundedness. Analogues of the laws of large
numbers including the central limit theorem are given. They studied a possible statistical
interpretation of group-valued probabilities as well as nontraditional probabilistic models in
physics and the cognitive sciences.

2. Sums of Products of q-Euler Polynomials and Numbers

Let α1, · · · , αr ∈ Cp, n ∈ N, and letN1, . . . , Nr be distinct odd positive integers. LetN be the
least common multiple of N1, . . . , Nr .

Now we evaluate the multivariate fermionic p-adic q-integral

∫

Zp

· · ·
∫

Zp
︸ ︷︷ ︸

r times

[N1(x1 + α1) + · · · +Nr(xr + αr)]
n
qdμ−qN1 (x1) · · ·dμ−qNr (xr). (2.1)

By the definition of the multivariate p-adic q-integral, we have

∫

Zp

· · ·
∫

Zp

[N1(x1 + α1) + · · · +Nr(xr + αr)]
n
qdμ−qN1 (x1) · · ·dμ−qNr (xr)

= lim
ρ→∞

1
[
N/N1pρ

]
−qN1 · · ·

[
N/Nrpρ

]
−qNr

×
(N/N1)pρ−1∑

x1=0

· · ·
(N/Nr)pρ−1∑

xr=0
[N1(x1 + α1) + · · · +Nr(xr + αr)]

n
q

(−q)N1x1+···+Nrxr

= lim
ρ→∞

[N1]−q[N2]−q · · · [Nr]−q
[N]r−q

[
pρ
]r
−qN

×
N/N1−1∑

i1=0

· · ·
N/Nr−1∑

ir=0

pρ−1∑

n1,··· ,nr=0

(−q)N1(i1+(N/N1)n1)+...+Nr(ir+(N/Nr)nr)

×
[
N1

(
i1 +

N

N1
n1 + α1

)
+ . . . +Nr

(
ir +

N

Nr
nr + αr

)]n

q

,

(2.2)
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where
∑pρ−1

n1,...,nr=0
=
∑pρ−1

n1=0
· · ·∑pρ−1

nr=0
. The second equality in (2.2) is satisfied by the equation

1
[
(N/Nj)pρ

]
−qNj

=
1 + qNj

1 + qNpρ
=

[
Nj

]
−q

[N]−q
[
pρ
]
−qN

, for 1 ≤ j ≤ r. (2.3)

We easily see that

[
N1

(
i1 +

N

N1
n1 + α1

)
+ · · · +Nr

(
ir +

N

Nr
nr + αr

)]n

q

= [N]nq

[
N1

N
(i1 + α1) + · · · + Nr

N
(ir + αr) + n1 + · · · + nr

]n

qN
.

(2.4)

From (2.2), (2.4), and the definition of the q-Euler polynomials, we derive the following
equations:

∫

Zp

· · ·
∫

Zp

[N1(x1 + α1) + · · · +Nr(xr + αr)]nq dμ−qN1 (x1) · · ·dμ−qNr (xr)

=
[2]rq
[2]rqN

[N]nq[N1]−q[N2]−q · · · [Nr]−q
N/N1−1∑

i1=0

· · ·
N/Nr−1∑

ir=0
(−1)i1+···+ir qN1i1+···+Nrir

× lim
ρ→∞

1
[
pρ
]r
−qN

pρ−1∑

n1,...,nr=0

[
N1

N
(i1 + α1) + · · · + Nr

N
(ir + αr) + n1 + · · · + nr

]n

qN

× (−q)N(n1+···+nr)

=
[2]rq
[2]rqN

[N]nq[N1]−q[N2]−q · · · [Nr]−q
N/N1−1∑

i1=0

· · ·
N/Nr−1∑

ir=0
(−1)i1+···+ir qN1i1+···+Nrir

× E
(r)
n,qN

(
N1

N
(i1 + α1) + · · · + Nr

N
(ir + αr)

)
.

(2.5)

Therefore we have the following theorem.

Theorem 2.1. Let r ∈ N, n ∈ N, and let α1, . . . , αr ∈ Cp. Let N1, . . . , Nr be distinct odd positive
integers, and letN be the least common multiple of N1, . . . , Nr . Then we have

∫

Zp

· · ·
∫

Zp

[N1(x1 + α1) + · · · +Nr(xr + αr)]
n
q dμ−qN1 (x1) · · ·dμ−qNr (xr)

=
[2]rq
[2]rqN

[N]nq[N1]−q[N2]−q · · · [Nr]−q
N/N1−1∑

i1=0

· · ·
N/Nr−1∑

ir=0
(−1)i1+···+ir qN1i1+···+Nrir

× E
(r)
n,qN

(
N1

N
(i1 + α1) + · · · + Nr

N
(ir + αr)

)
.

(2.6)
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By using the multinomial theorem, we can obtain the following Theorem 2.2.
Theorem 2.2 is important to derive the main results of our paper.

Theorem 2.2. Let r ∈ N, n ∈ N and α1, . . . , αr ∈ Cp. Let N1, . . . , Nr be distinct odd positive
integers. Then we have

[N1(x1 + α1) + · · · +Nr(xr + αr)]
n
q

=
∑

i1,...,ir≥0
i1+···+ir=n

n−i1∑

k1=0

n−i1−i2∑

k2=0

· · ·
n−i1−···−ir−1∑

kr−1=0

×
(

n

i1, · · · , ir

)(
n − i1

k1

)(
n − i1 − i2

k2

)

· · ·
(
n − i1 − i2 − · · · − ir−1

kr−1

)

× (
q − 1

)k1+···+kr−1[N1]i1+k1q · · · [Nr−1]ir−1+kr−1q [Nr]irq

× [x1 + α1]
i1+k1
qN1

· · · [xr−1 + αr−1]
ir−1+kr−1
qNr−1 [xr + αr]

ir
qNr

.

(2.7)

By Theorem 2.2, we obtain

∫

Zp

· · ·
∫

Zp

[N1(x1 + α1) + · · · +Nr(xr + αr)]
n
qdμ−qN1 (x1) · · ·dμ−qNr (xr)

=
∑

i1,...,ir≥0
i1+···+ir=n

n−i1∑

k1=0

n−i1−i2∑

k2=0

· · ·
n−i1−···−ir−1∑

kr−1=0

(
n

i1, . . . , ir

)

×
(
n − i1

k1

)(
n − i1 − i2

k2

)

· · ·
(
n − i1 − · · · − ir−1

kr−1

)

× (
q − 1

)k1+···+kr−1[N1]i1+k1q · · · [Nr−1]ir−1+kr−1q [Nr]irq

× Ei1+k1,qN1 (α1) · · ·Eir−1+kr−1,qNr−1 (αr−1)Eir ,qNr (αr).

(2.8)

Hence we have the complete sum for q-Euler polynomials as follows.

Theorem 2.3. Let r ∈ N, n ∈ N, and let α1, . . . , αr ∈ Cp. Let N1, . . . , Nr be distinct odd positive
integers and N be the least common multiple of N1, . . . , Nr . Then we have

∑

i1,...,ir≥0
i1+···+ir=n

n−i1∑

k1=0

n−i1−i2∑

k2=0

· · ·
n−i1−···−ir−1∑

kr−1=0

(
n

i1, · · · , ir

)(
n − i1
k1

)(
n − i1 − i2

k2

)
· · ·

×
(
n − i1 − · · · − ir−1

kr−1

)
(
q − 1

)k1+···+kr−1[N1]i1+k1q · · · [Nr−1]ir−1+kr−1q [Nr]irq

× Ei1+k1,qN1 (α1) · · ·Eir−1+kr−1,qNr−1 (αr−1)Eir ,qNr (αr)



Journal of Inequalities and Applications 7

=
[2]rq
[2]rqN

[N]nq[N1]−q[N2]−q · · · [Nr]−q
(N/N1)−1∑

i1=0

· · ·
(N/Nr)−1∑

ir=0
(−1)i1+···+ir qN1i1+···+Nrir

× E
(r)
n,qN

(
N1

N
(i1 + α1) + · · · + Nr

N
(ir + αr)

)
.

(2.9)

When α1 = α2 = · · · = αr = 0 in Theorem 2.3, we obtain the following formula involving
the q-Euler numbers.

Corollary 2.4. Let r ∈ N, n ∈ N, and α1, . . . , αr ∈ Cp. Let N1, . . . , Nr be distinct odd positive
integers, and letN be the least common multiple of N1, . . . , Nr . Then we have

∑

i1,...,ir≥0
i1+···+ir=n

n−i1∑

k1=0

n−i1−i2∑

k2=0

· · ·
n−i1−···−ir−1∑

kr−1=0

(
n

i1, . . . , ir

)

×
(
n − i1

k1

)(
n − i1 − i2

k2

)

· · ·
(
n − i1 − · · · − ir−1

kr−1

)

× (
q − 1

)k1+···+kr−1[N1]i1+k1q · · · [Nr−1]ir−1+kr−1q [Nr]irq

× Ei1+k1,qN1 · · ·Eir−1+kr−1,qNr−1Eir ,qNr

=
[2]rq
[2]rqN

[N]nq[N1]−q[N2]−q · · · [Nr]−q
N/N1−1∑

i1=0

· · ·
N/Nr−1∑

ir=0
(−1)i1+···+ir qN1i1+···+Nrir

× E
(r)
n,qN

(
N1i1 + · · · +Nrir

N

)
.

(2.10)
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