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1. Introduction

Recently, Fang and Huang [1] introduced a new class of H-monotone mappings in the
context of solving a system of variational inclusions involving a combianation of H-
monotone and strongly monotone mappings based on the resolvent operator techniques. The
notion of the H-monotonicity has revitalized the theory of maximal monotone mappings in
several directions, especially in the domain of applications. Verma [2] introduced the notion
of A-monotone mappings and its applications to the solvability of a system of variational
inclusions involving a combination of A-monotone and strongly monotone mappings. As
Verma point out “the class of A-monotone mappings generalizes H-monotone mappings.
On the top of that,A-monotonicity originates from hemivariational inequalities, and emerges
as a major contributor to the solvability of nonlinear variational problems on nonconvex
settings.” and as a matter of fact, some nice examples on A-monotone (or generalized
maximal monotone) mappings can be found in Naniewicz and Panagiotopoulos [3] and
Verma [4]. Hemivariational inequalities—initiated and developed by Panagiotopoulos [5]—
are connected with nonconvex energy functions and turned out to be useful tools proving
the existence of solutions of nonconvex constrained problems. It is worthy noting that
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A-monotonicity is defined in terms of relaxed monotone mappings—a more general notion
than the monotonicity or strong monotonocity—which gives a significant edge over the H-
monotonocity. Very recently, Verma [6] studied the solvability of a system of variational
inclusions involving a combination of A-monotone and relaxed cocoercive mappings using
resolvent operator techniques of A-monotone mappings. Since relaxed cocoercive mapping
is a generalization of strong monotone mappings, the main result in [6] is more general than
the corresponding results in [1, 2].

Inspired and motivated by recent works in [1, 2, 6], the purpose of this paper is
to introduce a new mathematical model, which is called a general system of A-monotone
nonlinear variational inclusion problems, that is, a family of A-monotone nonlinear
variational inclusion problems defined on a product set. This new mathematical model
contains the system of inclusions in [1, 2, 6], the variational inclusions in [7, 8], and some
variational inequalities in literature as special cases. By using the resolvent technique for the
A-monotone operators, we prove the existence and uniqueness of solution for this system
of variational inclusions. We also prove the convergence of a multistep iterative algorithm
approximating the solution for this system of variational inclusions. The result in this paper
unifies, extends, and improves some results in [1, 2, 6–8] and the references therein.

2. Preliminaries

We suppose that H is a real Hilbert space with norm and inner product denoted by ‖ · ‖ and
〈·, ·〉, respectively, 2H denotes the family of all the nonempty subsets of H. If M : H → 2H

be a set-valued operator, then we denote the effective domain D(M) ofM as follows:

D(M) = {x ∈ H : M(x)/= ∅}. (2.1)

Now we recall some definitions needed later.

Definition 2.1 (see [2, 6, 7]). LetA : H → H be a single-valued operator and letM : H → 2H

be a set-valued operator. M is said to be

(i) m-relaxed monotone, if there exists a constant m > 0 such that

〈
x − y, u − v

〉 ≥ −m‖u − v‖2, ∀u, v ∈ D(M), x ∈ Mu, y ∈ Mv, (2.2)

(ii) A-monotone with a constant m if

(a) M is m-relaxed monotone,
(b) A + λM is maximal monotone for λ > 0 (i.e., (A + λM)(H) = H, for all λ > 0).

Remark 2.2. If m = 0, A = H : H → H, then the definition of A-monotonicity is that of
H-monotonicity in [1, 8]. It is easy to know that if H = I ( the identity map on H), then the
definition of I-monotone operators is that of maximal monotone operators. Hence, the class
of A-monotone operators provides a unifying frameworks for classes of maximal monotone
operators, H-monotone operators. For more details about the above definitions, please refer
to [1–8] and the references therein.
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It follow from [3, Lemma 7.11] we know that if X is a reflexive Banach space with X∗

its dual, and A : X → X∗ be m-strongly monotone and f : X → R is a locally Lipschitz such
that ∂f is α-relaxed monotone, then ∂f is A-monotone with a constant m − α.

Definition 2.3 (see [1, 7, 8]). Let A, T : H → H, be two single-valued operators. T is said to
be

(i) monotone if

〈Tu − Tv, u − v〉 ≥ 0, ∀u, v ∈ H; (2.3)

(ii) strictly monotone if T is monotone and

〈Tu − Tv, u − v〉 = 0, iff u = v; (2.4)

(iii) γ-strongly monotone if there exists a constant γ > 0 such that

〈Tu − Tv, u − v〉 ≥ γ‖u − v‖2, ∀u, v ∈ H; (2.5)

(iv) s-Lipschitz continuous if there exists a constant s > 0 such that

‖T(u) − T(v)‖ ≤ s‖u − v‖, ∀u, v ∈ H; (2.6)

(v) r-strongly monotone with respect to A if there exists a constant γ > 0 such that

〈Tu − Tv,Au −Av〉 ≥ r‖u − v‖2, u, v ∈ H. (2.7)

Definition 2.4 (see [2]). Let A : H → H be a γ-strongly monotone operator and letM : H →
2H be an A-monotone operator. Then the resolvent operator RA

M,λ : H → H is defined by

RA
M,λ(x) = (A + λM)−1(x), ∀x ∈ H. (2.8)

We also need the following result obtained by Verma [2].

Lemma 2.5. Let A : H → H be a γ-strongly monotone operator and let M : H → 2H be an
A-monotone operator. Then, the resolvent operator RA

M,λ
: H → H is Lipschitz continuous with

constant 1/(γ −mλ) for 0 < λ < γ/m, that is,

∥∥∥RA
M,λ(x) − RA

M,λ

(
y
)∥∥∥ ≤ 1

γ −mλ

∥∥x − y
∥∥, ∀x, y ∈ H. (2.9)

One needs the following new notions.
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Definition 2.6. Let H1,H2, . . . ,Hp be Hilbert spaces and ‖ · ‖1 denote the norm of H1, also let
A1 : H1 → H1 and N1 :

∏p

j=1Hj → H1 be two single-valued mappings:

(i) N1 is said to be ξ-Lipschitz continuous in the first argument if there exists a constant
ξ > 0 such that

∥
∥N1

(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)∥∥
1 ≤ ξ

∥
∥x1 − y1

∥
∥
1,

∀x1, y1 ∈ H1, xj ∈ Hj

(
j = 2, 3, . . . , p

)
;

(2.10)

(ii) N1 is said to be monotone with respect to A1 in the first argument if

〈
N1

(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)
, A1(x1) −A1

(
y1
)〉 ≥ 0,

∀x1, y1 ∈ H1, xj ∈ Hj

(
j = 2, 3, . . . , p

)
;

(2.11)

(iii) N1 is said to be β-strongly monotone with respect toA1 in the first argument if there
exists a constant β > 0 such that

〈
N1

(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)
, A1(x1) −A1

(
y1
)〉 ≥ β

∥∥x1 − y1
∥∥2
1,

∀x1, y1 ∈ H1, xj ∈ Hj

(
j = 2, 3, . . . , p

)
;

(2.12)

(iv) N1 is said to be γ-cocoercive with respect to A1 in the first argument if there exists
a constant γ > 0 such that

〈
N1

(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)
, A1(x1) −A1

(
y1
)〉

≥ γ
∥∥N1

(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)∥∥2
1, ∀x1, y1 ∈ H1, xj ∈ Hj

(
j = 2, 3, . . . , p

)
;

(2.13)

(v) N1 is said to be γ-relaxed cocoercive with respect toA1 in the first argument if there
exists a constant γ > 0 such that

〈
N1

(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)
, A1(x1) −A1

(
y1
)〉

≥ −γ∥∥N1
(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)∥∥2
1, ∀x1, y1 ∈ H1, xj ∈ Hj

(
j = 2, 3, . . . , p

)
;

(2.14)

(vi) N1 is said to be (γ, r)-relaxed cocoercive with respect to A1 in the first argument if
there exists a constant γ > 0 such that

〈
N1

(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)
, A1(x1) −A1

(
y1
)〉

≥ −γ∥∥N1
(
x1, x2, . . . , xp

) −N1
(
y1, x2, . . . , xp

)∥∥2
1 + r

∥∥x1 − y1
∥∥2
1,

∀x1, y1 ∈ H1, xj ∈ Hj

(
j = 2, 3, . . . , p

)
.

(2.15)
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In a similar way, we can define the Lipschitz continuity and the strong monotonicity
(monotonicity), relaxed cocoercivity (cocoercivity) of Ni :

∏p

j=1Hj → Hi with respect to
Ai : Hi → Hi in the ith argument (i = 2, 3, . . . , p).

3. A System of Set-Valued Variational Inclusions

In this section, we will introduce a new system of nonlinear variational inclusions in Hilbert
spaces. In what follows, unless other specified, for each i = 1, 2, . . . , p, we always suppose
that Hi is a Hilbert space with norm denoted by ‖ · ‖i, Ai : Hi → Hi, Fi :

∏p

j=1Hj → Hi

are single-valued mappings, and Mi : Hi → 2Hi is a nonlinear mapping. We consider the
following problem of finding (x1, x2, . . . , xp) ∈

∏p

i=1Hi such that for each i = 1, 2, . . . , p,

0 ∈ Fi

(
x1, x2, . . . , xp

)
+Mi(xi). (3.1)

Below are some special cases of (3.1).
If p = 2, then (3.1) becomes the following problem of finding (x1, x2) ∈ H1 ×H2 such

that

0 ∈ F1(x1, x2) +M1(x1),

0 ∈ F2(x1, x2) +M2(x1).
(3.2)

However, (3.2) is called a system of set-valued variational inclusions introduced and
researched by Fang and Huang [1, 9] and Verma [2, 6].

If p = 1, then (3.1) becomes the following variational inclusion with an A-monotone
operator, which is to find x1 ∈ H1 such that

0 ∈ F1(x1) +M1(x1), (3.3)

problem (3.3) is introduced and studied by Fang and Huang [8]. It is easy to see that the
mathematical model (2) studied by Verma [7] is a variant of (3.3).

4. Existence of Solutions and Convergence of an Iterative Algorithm

In this section, we will prove existence and uniqueness of solution for (3.1). For our main
results, we give a characterization of the solution of (3.1) as follows.

Lemma 4.1. For i = 1, 2, . . . , p, let Ai : Hi → Hi be a strictly monotone operator and let Mi :
Hi → 2Hi be an Ai-monotone operator. Then (x1, x2, . . . , xp) ∈

∏p

i=1Hi is a solution of (3.1) if and
only if for each i = 1, 2, . . . , p,

xi = RAi

Mi,λi

(
Ai(xi) − λiFi

(
x1, x2, . . . , xp

))
, (4.1)

where λi > 0 is a constant.
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Proof. It holds that (x1, x2, . . . , xp) ∈
∏p

i=1Hi is a solution of (3.1)

⇐⇒ θi ∈ Fi

(
x1, x2, . . . , xp

)
+Mi(xi), i = 1, 2, . . . , p,

⇐⇒ Ai(xi) − λiFi

(
x1, x2, . . . , xp

) ∈ (Ai + λiMi)(xi), i = 1, 2, . . . , p,

⇐⇒ xi = RAi

Mi,λi

(
Ai(xi) − λiFi

(
x1, x2, . . . , xp

))
, i = 1, 2, . . . , p.

(4.2)

Let Γ = {1, 2, . . . , p}.

Theorem 4.2. For i = 1, 2, . . . , p, let Ai : Hi → Hi be γi-strongly monotone and let τi-
Lipschitz continuous, Mi : Hi → 2Hi be an Ai-monotone operator with a constant mi, let
Fi :

∏p

j=1Hj → Hi be a single-valued mapping such that Fi is (θi, ri)-relaxed cocoercive monotone
with respect to Ai and si-Lipschitz continuous in the ith argument, Fi is lij-Lipschitz continuous in
the jth arguments for each j ∈ Γ, j /= i. Suppose that there exist constants λi > 0 (i = 1, 2, . . . , p) such
that

1
γ1 −m1λ1

√
τ21θ

2
1 − 2λ1r1 + 2λ1θ1s21 + λ1

2s21 +
p∑

k=2

lk1λk
γk −mkλk

< 1,

1
γ2 −m2λ2

√
τ22θ

2
2 − 2λ2r2 + 2λ2θ2s22 + λ2

2s22 +
∑

k∈Γ, k /= 2

lk2λk
γk −mkλk

< 1,

. . . ,

1
γp −mpλp

√
τ2pθ

2
p − 2λprp + 2λpθps2p + λp

2s2p +
p−1∑

k=1

lk,pλk

γk −mkλk
< 1.

(4.3)

Then, (3.1) admits a unique solution.

Proof. For i = 1, 2, . . . , p and for any given λi > 0, define a single-valued mapping Ti,λi :
∏p

j=1Hj → Hi by

Ti,λi
(
x1, x2, . . . , xp

)
= RAi

Mi,λi

(
Ai(xi) − λiFi

(
x1, x2, . . . , xp

))
, (4.4)

for any (x1, x2, . . . , xp) ∈
∏p

i=1Hi.
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For any (x1, x2, . . . , xp), (y1, y2, . . . , yp) ∈
∏p

i=1Hi, it follows from (4.4) and Lemma 2.5
that for i = 1, 2, . . . , p,

∥
∥Ti,λi

(
x1, x2, . . . , xp

) − Ti,λi
(
y1, y2, . . . , yp

)∥∥
i

=
∥
∥
∥RAi

Mi,λi

(
Ai(xi) − λiFi

(
x1, x2, . . . , xp

)) − RAi

Mi,λi

(
Ai

(
yi

) − λiFi

(
y1, y2, . . . , yp

))∥∥
∥
i

≤ 1
γi −miλi

∥
∥Ai(xi) −Ai

(
yi

) − λi
(
Fi

(
x1, x2, . . . , xp

) − Fi

(
y1, y2, . . . , yp

))∥∥
i

≤ 1
γi −miλi

∥
∥Ai(xi) −Ai

(
yi

)

−λi
(
Fi

(
x1, x2, . . . , xi−1, xi, xi+1, . . . , xp

) − Fi

(
x1, x2, . . . , xi−1, yi, xi+1, . . . , xp

))∥∥
i

+
λi

γi −miλi

⎛

⎝
∑

j∈Γ,j /= i

∥∥Fi

(
x1, x2, . . . , xj−1, xj , xj+1, . . . , xp

)

−Fi

(
x1, x2, . . . , xj−1, yj , xj+1, . . . , xp

)∥∥
i

⎞

⎠.

(4.5)

For i = 1, 2, . . . , p, since Ai is τi-Lipschitz continuous, Fi is (θi, ri)-relaxed cocoercive
with respected to Ai and si-Lipschitz continuous in the ith argument, we have

∥∥Ai(xi) −Ai

(
yi

)

−λi
(
Fi

(
x1, x2, . . . , xi−1, xi, xi+1, . . . , xp

) − Fi

(
x1, x2, . . . , xi−1, yi, xi+1, . . . , xp

))∥∥2
i

≤ ∥∥Ai(xi) −Ai

(
yi

)∥∥2
i

− 2λi
〈
Fi

(
x1, x2, . . . , xi−1, xi, xi+1, . . . , xp

)

−Fi

(
x1, x2, . . . , xi−1, yi, xi+1, . . . , xp

)
, Ai(xi) −Ai

(
yi

)〉

+ λi
2∥∥Fi

(
x1, x2, . . . , xi−1, xi, xi+1, . . . , xp

) − Fi

(
x1, x2, . . . , xi−1, yi, xi+1, . . . , xp

)∥∥2
i

≤ τ2i
∥∥xi − yi

∥∥2
i − 2λiri

∥∥xi − yi

∥∥2
i + 2λiθis2i

∥∥xi − yi

∥∥2
i + λi

2s2i
∥∥xi − yi

∥∥2
i

≤
(
τ2i − 2λiri + 2λiθis2i + λi

2s2i

)∥∥xi − yi

∥∥2
i .

(4.6)

For i = 1, 2, . . . , p, since Fi is lij-Lipschitz continuous in the jth arguments (j ∈ Γ, j /= i),
we have

∥∥Fi

(
x1, x2, . . . , xj−1, xj , xj+1, . . . , xp

) − Fi

(
x1, x2, . . . , xj−1, yj , xj+1, . . . , xp

)∥∥
i
≤ lij

∥∥xj − yj

∥∥
j
,

(4.7)
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It follows from (4.5)–(4.7) that for each i = 1, 2, . . . , p,

∥
∥Ti,λi

(
x1, x2, . . . , xp

) − Ti,λi
(
y1, y2, . . . , yp

)∥∥
i

≤ 1
γi −miλi

√
τ2i − 2λiri + 2λiθis2i + λi

2s2i
∥
∥xi − yi

∥
∥
i +

λi
γi −miλi

⎛

⎝
∑

j∈Γ,j /= i

lij
∥
∥xj − yj

∥
∥
j

⎞

⎠.

(4.8)

Hence,

p∑

i=1

∥
∥Ti,λi

(
x1, x2, . . . , xp

) − Ti,λi
(
y1, y2, . . . , yp

)∥∥
i

≤
p∑

i=1

⎡

⎣ 1
γi −miλi

√
τ2i − 2λiri + 2λiθis2i + λi

2s2i
∥∥xi − yi

∥∥
i +

λi
γi −miλi

⎛

⎝
∑

j∈Γ,j /= i

lij
∥∥xj − yj

∥∥
j

⎞

⎠

⎤

⎦

=

(
1

γ1 −m1λ1

√
τ21θ

2
1 − 2λ1r1 + 2λ1θ1s21 + λ1

2s21 +
p∑

k=2

lk1λk
γk −mkλk

)
∥∥x1 − y1

∥∥
1

+

⎛

⎝ 1
γ2 −m2λ2

√
τ22θ

2
2 − 2λ2r2 + 2λ2θ2s22 + λ2

2s22 +
∑

k∈Γ,k /= 2

lk2λk
γk −mkλk

⎞

⎠
∥∥x2 − y2

∥∥
2

+ · · · +
(

1
γp −mpλp

√
τ2pθ

2
p − 2λprp + 2λpθps2p + λp

2s2p +
p−1∑

k=1

lk,pλk

γk −mkλk

)
∥∥xp − yp

∥∥
p

≤ ξ

(
p∑

k=1

∥∥xk − yk

∥∥
k

)

,

(4.9)

where

ξ = max

{
1

γ1 −m1λ1

√
τ21θ

2
1 − 2λ1r1 + 2λ1θ1s21 + λ1

2s21 +
p∑

k=2

lk1λk
γk −mkλk

,

1
γ2 −m2λ2

√
τ22θ

2
2 − 2λ2r2 + 2λ2θ2s22 + λ2

2s22 +
∑

k∈Γ,k /= 2

lk2λk
γk −mkλk

,

. . . ,

1
γp −mpλp

√
τ2pθ

2
p − 2λprp + 2λpθps2p + λp

2s2p +
p−1∑

k=1

lk,pλk

γk −mkλk

}

.

(4.10)



Journal of Inequalities and Applications 9

Define ‖ · ‖Γ on
∏p

i=1Hi by ‖(x1, x2, . . . , xp)‖Γ = ‖x1‖1 + ‖x2‖2 + · · · + ‖xp‖p, for all

(x1, x2, . . . , xp) ∈ ∏p

i=1Hi. It is easy to see that
∏p

i=1Hi is a Banach space. For any given
λi > 0 (i ∈ Γ), define WΓ,λ1,λ2,...,λp :

∏p

i=1Hi →
∏p

i=1Hi by

WΓ,λ1,λ2,...,λp
(
x1, x2, . . . , xp

)

=
(
T1,λ1

(
x1, x2, . . . , xp

)
, T2,λ2

(
x1, x2, . . . , xp

)
, . . . , Tp,λp

(
x1, x2, . . . , xp

))
,

(4.11)

for all (x1, x2, . . . , xp) ∈
∏p

i=1Hi.
By (4.3), we know that 0 < ξ < 1, it follows from (4.9) that

∥
∥
∥WΓ,λ1,λ2,...,λp

(
x1, x2, . . . , xp

) −WΓ,λ1,λ2,...,λp
(
x1, x2, . . . , xp

)∥∥
∥
Γ

≤ ξ
∥∥(x1, x2, . . . , xp

) − (
y1, y2, . . . , yp

)∥∥
Γ.

(4.12)

This shows that WΓ,λ1,λ2,...,λp is a contraction operator. Hence, there exists a unique

(x1, x2, . . . , xp) ∈
∏p

i=1Hi, such that

WΓ,λ1,λ2,...,λp
(
x1, x2, . . . , xp

)
=
(
x1, x2, . . . , xp

)
, (4.13)

that is, for i = 1, 2, . . . , p,

xi = RAi

Mi,λi

(
Ai(xi) − λiFi

(
x1, x2, . . . , xp

))
. (4.14)

By Lemma 4.1, (x1, x2, . . . , xp) is the unique solution of (3.1). This completes this proof.

Corollary 4.3. For i = 1, 2, . . . , p, let Hi : Hi → Hi be γi-strongly monotone and τi-Lipschitz
continuous, let Mi : Hi → 2Hi be an Hi-monotone operator, let Fi :

∏p

j=1Hj → Hi be a single-
valued mapping such that Fi is ri-strongly monotone with respect to Hi and si-Lipschitz continuous
in the ith argument, Fi is lij -Lipschitz continuous in the jth arguments for each j ∈ Γ, j /= i. Suppose
that there exist constants λi > 0 (i = 1, 2, . . . , p) such that

1
γ1

√
τ21 − 2λ1r1 + λ1

2s21 +
p∑

k=2

lk1λk
γk

< 1,

1
γ2

√
τ22 − 2λ2r2 + λ2

2s22 +
∑

k∈Γ,k /= 2

lk2λk
γk

< 1,

...

1
γp

√
τ2p − 2λprp + λp

2s2p +
p−1∑

k=1

lk,pλk

γk
< 1.

(4.15)

Then, problem (3.1) admits a unique solution.
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Remark 4.4. Theorem 4.2 and Corollary 4.3 unify, extend, and generalize the main results in
[1, 2, 6–8].

5. Iterative Algorithm and Convergence

In this section, we will construct some multistep iterative algorithm for approximating the
unique solution of (3.1) and discuss the convergence analysis of these Algorithms.

Lemma 5.1 (see [8, 9]). Let {cn} and {kn} be two real sequences of nonnegative numbers that satisfy
the following conditions:

(1) 0 ≤ kn < 1, n = 0, 1, 2, . . . and lim sup
n

kn < 1,

(2) cn+1 ≤ kncn, n = 0, 1, 2, . . . ,

then cn converges to 0 as n → ∞.

Algorithm 5.2. For i = 1, 2, . . . , p, let Ai,Mi, Fi be the same as in Theorem 4.2. For any given
(x0

1, x
0
2, . . . , x

0
p) ∈

∏p

j=1Hj , define a multistep iterative sequence {(xn
1 , x

n
2 , . . . , x

n
p)} by

xn+1
i = αnx

n
i + (1 − αn)

[
RAi

Mi,λi

(
Ai

(
xn
i

) − λiFi

(
xn
1 , x

n
2 , . . . , x

n
p

))]
, (5.1)

where

0 ≤ αn < 1, lim sup
n

αn < 1. (5.2)

Theorem 5.3. For i = 1, 2, . . . , p, let Ai,Mi, Fi be the same as in Theorem 4.2. Assume that all
the conditions of theorem 4.1 hold. Then {(xn

1 , x
n
2 , . . . , x

n
p)} generated by Algorithm 5.2 converges

strongly to the unique solution (x1, x2, . . . , xp) of (3.1).

Proof. By Theorem 4.2, problem (3.1) admits a unique solution (x1, x2, . . . , xp), it follows from
Lemma 4.1 that for each i = 1, 2, . . . , p,

xi = RAi

Mi,λi

(
Ai(xi) − λiFi

(
x1, x2, . . . , xp

))
. (5.3)

It follows from (4.3), (5.1) and (5.3) that for each i = 1, 2, . . . , p,

∥∥∥xn+1
i − xi

∥∥∥
i
=
∥∥∥αn

(
xn
i − xi

)
+ (1 − αn)

[
RAi

Mi,λi

(
Ai

(
xn
i

) − λiFi

(
xn
1 , x

n
2 , . . . , x

n
p

))

−RAi

Mi,λi

(
Ai(xi) − λiFi

(
x1, x2, . . . , xp

))]∥∥∥
i
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≤ αn

∥
∥xn

i − xi

∥
∥
i + (1 − αn)

1
γi −miλi

×
∥
∥
∥Ai

(
xn
i

) −Ai(xi) − λi
(
Fi

(
xn
1 , x

n
2 , . . . , x

n
i−1, x

n
i , x

n
i+1, . . . , x

n
p

)

−Fi

(
xn
1 , x

n
2 , . . . , x

n
i−1, xi, x

n
i+1, . . . , x

n
p

))∥∥
∥
i

+
λi

γi −miλi

⎛

⎝
∑

j∈Γ,j /= i

∥
∥
∥Fi

(
xn
1 , x

n
2 , . . . , x

n
j−1, x

n
j , x

n
j+1, . . . , x

n
p

)

−Fi

(
xn
1 , x

n
2 , . . . , x

n
j−1, xj , x

n
j+1, . . . , x

n
p

)∥∥
∥
i

⎞

⎠.

(5.4)

For i = 1, 2, . . . , p, since Ai is τi-Lipschitz continuous, Fi is (θi, ri)-relaxed cocoercive
with respected to Ai, and si-Lipschitz is continuous in the ith argument, we have

∥∥∥Ai

(
xn
i

) −Ai(xi)

−λi
(
Fi

(
xn
1 , x

n
2 , . . . , x

n
i−1, x

n
i , x

n
i+1, . . . , x

n
p

)
− Fi

(
xn
1 , x

n
2 , . . . , x

n
i−1, xi, x

n
i+1, . . . , x

n
p

))∥∥∥
2

i

≤
(
τ2i − 2λiri + 2λiθis2i + λi

2s2i

)∥∥xn
i − xi

∥∥2
.

(5.5)

For i = 1, 2, . . . , p, since Fi is lij-Lipschitz continuous in the jth arguments (j ∈ Γ, j /= i),
we have

∥∥∥Fi

(
xn
1 , x

n
2 , . . . , x

n
j−1, x

n
j , x

n
j+1, . . . , x

n
p

)
− Fi

(
xn
1 , x

n
2 , . . . , x

n
j−1, xj , x

n
j+1, . . . , x

n
p

)∥∥∥
i
≤ lij

∥∥∥xn
j − xj

∥∥∥
j
.

(5.6)

It follows from (5.4)–(5.6) that for i = 1, 2, . . . , p,

∥∥∥xn+1
i − xi

∥∥∥
i
≤ αn

∥∥xn
i − xi

∥∥
i + (1 − αn)

1
γi −miλi

√
τ2i − 2λiri + 2λiθis2i + λi

2s2i
∥∥xn

i − xi

∥∥
i

+ (1 − αn)
λi

γi −miλi

⎛

⎝
∑

j∈Γ,j /= i

lij
∥∥∥xn

j − xj

∥∥∥
j

⎞

⎠.

(5.7)
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Hence,

p∑

i=1

∥
∥
∥xn+1

i − xi

∥
∥
∥
i
≤

p∑

i=1

⎡

⎣αn

∥
∥xn

i − xi

∥
∥
i + (1 − αn)

1
γi −miλi

√
τ2i − 2λiri + 2λiθis2i + λi

2s2i
∥
∥xn

i − xi

∥
∥
i

+(1 − αn)
λi

γi −miλi

⎛

⎝
∑

j∈Γ,j /= i

lij
∥
∥
∥xn

j − xj

∥
∥
∥
j

⎞

⎠

⎤

⎦

≤ αn

(
p∑

i=1

∥
∥xn

i − xi

∥
∥
i

)

+ (1 − αn)ξ

(
p∑

i=1

∥
∥xn

i − xi

∥
∥
i

)

= (ξ + (1 − ξ)αn)

(
p∑

i=1

∥
∥xn

i − xi

∥
∥
i

)

,

(5.8)

where

ξ = max

{
1

γ1 −m1λ1

√
τ21θ

2
1 − 2λ1r1 + 2λ1θ1s21 + λ1

2s21 +
p∑

k=2

lk1λk
γk −mkλk

,

1
γ2 −m2λ2

√
τ22θ

2
2 − 2λ2r2 + 2λ2θ2s22 + λ2

2s22 +
∑

k∈Γ,k /= 2

lk2λk
γk −mkλk

,

. . . ,

1
γp −mpλp

√
τ2pθ

2
p − 2λprp + 2λpθps2p + λp

2s2p +
p−1∑

k=1

lk,pλk

γk −mkλk

}

.

(5.9)

It follows from hypothesis (4.3) that 0 < ξ < 1.
Let an =

∑p

i=1 ‖xn
i − xi‖i, ξn = ξ+(1−ξ)αn. Then, (5.8) can be rewritten as an+1 ≤ ξnan, n =

0, 1, 2, . . . . By (5.2), we know that lim supn ξn < 1, it follows from Lemma 5.1 that

an =
p∑

i=1

∥∥xn
i − xi

∥∥
i converges to 0 as n −→ ∞. (5.10)

Therefore, {(xn
1 , x

n
2 , . . . , x

n
p)} converges to the unique solution (x1, x2, . . . , xp) of (3.1).

This completes the proof.
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