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1. Introduction and Main Definitions

Letn € Nand C" = {z = (z1,...,2a) : 2k € C, 1 < k < n} be the n-dimensional space of
complex coordinates. We denote the unit polydisk by

U'={zeC": |z <1, 1<k <n}, (1.1)
and the distinguished boundary of U" by
T"={zeC":|zx| =1, 1<k <n}. (1.2)

We use my, to denote the volume measure on U" and m,, to denote the normalized Lebesgue
measure on T". Let H(U") be the space of all holomorphic functions on U”. When n = 1, we
simply denote U! by U, T' by T, my, by my, m, by m. We refer to [1, 2] for further details. We
denote the expanded disk by

Ul ={z=(rg,...,m¢) eU": ¢ €T, r;€(0,1), j=1,...,n}, (1.3)
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and the subframe by
Ur={zeU":|zj|=r,re(1],j=1,..,n}. (1.4)

The Hardy spaces, denoted by HP (U")(0 < p < o), are defined by

Hrm) = {f e HU") : sup M, (f,r) < oo}, (1.5)

0<r<1

where My (f,7) = [1lf (ré1, ..., r&)Pdmu(2), Meo(f,7) = maxger|f (ré1,...,rén)l, 1 € (0,1),
feHU").

Fora; > -1,j=1,...,n 0 < p < oo, recall that the weighted Bergman space A%(LI")
consists of all holomorphic functions on the polydisk satisfying the condition

||f||’i,,? = fu" |f(z1,...,zn)|P1;[(1 - |zl~|2> 'dmmon(z) < 0. (1.6)

Fora;>-1, j=1,...,n, p € (0,00], the Bergman class on expanded disk is defined by

A%(Uf) - {f e HU") : "f”iﬁa,(uf)
(1.7)

1 1 n a
[ [ 1z o PTI( - 121P) a2l am < oo},
0 o) T j=1
and similarly the Bergman class on subframe denoted by A (U") is defined by

~ 1 a
AL(ar) = {f e HU" :[|fI gy = anfolmzml,...,|z|§n)|”(1 ~ |21) dma(@)dlz| < oo},
(1.8)

where p € (0,00), a > -1.

Throughout the paper, we write C (sometimes with indexes) to denote a positive
constant which might be different at each occurrence (even in a chain of inequalities) but
is independent of the functions or variables being discussed.

The notation A < B means that there is a positive constant C such that (B/C) < A <
CB. We will write for two expressions A < B if there is a positive constant C such that A < CB.

This paper is organized as follows. In first section we collect preliminary assertions.
In the second section we present several new results connected with so-called operator of
diagonal map in polydisk. Namely, we define two new maps (Sb)(f) and (Ed)(f) from
subframe U and expanded disk U” to unit disk U and, in particular, completely describe
traces of Bergman classes Aﬁ(fl") and ALUM), p € (0,00] defined on subframe and



Journal of Inequalities and Applications 3

expanded disk on usual unit disk U on the complex plane. Proofs are based among other
things on new projection theorems for these classes.

A separate section will be devoted to the study of R* differential operator in polydisk.
It is based in particular on results from the recent paper [3]. We will use the dyadic
decomposition technique to explore connections between analytic classes on subframe,
polydisk, and expanded disk. We also prove new sharp embedding theorems for classes
on subframe and expanded disk. Last assertions of the final section generalize some one-
dimensional known results to polydisk and to the case of R® operators simultaneously.

2. Preliminaries
We need the following assertions.

Lemma A (see [4]). Let a be a fixed n-tuple of nonnegative numbers and let { B}, be an arbitrary
family of a-boxes in R" lying in the cube Q" = [-2ur,2or]". There exists a set | C I such that
BiNB; =0, i,i' € ] and for all i € I there exists j € J such that B; C 5B;.

The following proposition is heavily based on ideas from [4].

Proposition 2.1. (a) Let f be a nonnegative summable function on T" = T x --- x T. Let
frxi,...,x,) = f(e™,...,e™). Let aj € N, rj € (0,1),j = 1,...,n,x € R", g(r,x) =
supp.;(1/mu(B))[pf*dmu,Z = ZNZ,, where Z = {B = B(x,y) 1 y; > 1-1j, 1 < j < n,
B(¢,Y) = {t e R" : |t — ;| < yi, 1 < i < n}, and where Z, is a family of all B(¢,y) boxes such
that (y1,...,Yn) is proportional to (27*,...,27%), a; € N, i = 1,...,n for some fixed «. Then the
following statements hold:

WEw@) = plz = e Uz ga(r,0) > a} < S f()ma(y),
TY[

wm(EL(a)) = p{z = (ne™, ..., me™) eUr : gz(r1,...,10,x) > a} < %anf*((p)dmn((p),
2.1)

where p and py are any positive Borel measures on U and U} such that

u(AE) NU) = p(AE)) <CI", 1€ (0,1), (€T, -
(M@ NUT) <Cly -1, 1 €(0,1), EeT", '

where A)(§) = {z € U" : 1-1; < |zj| < 1,|arg(z;) —arg(;)| < 1;/2,j = 1,...,n}. (b) Let
u(z) = (1-12)"? dma(z), 1 (2) = [Tiey (1= |26) ™" dlza - d|zaldm(&), n > 1. Then

C C
H(Eq()) < ;Lnf*(w)dmn(w)r i (Ek(@)) < ;Lnf*(tp)dmn(w)- (2.3)

Proof. Proofs of all parts are similar. The first part of the lemma connected with y measure
and unit disk can be found in [4]. We will give the complete proof of the second part. To
prove the second part let E)(a) = {z = re’* e U" : g3(7,x) > a}.
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Fix a point z in the E}(a) and associate an a- box B; such that

1
|B:|

B.,

J’ f*dm, > a, B.=B., x - xB., |B.|=|B.,|--|B,|, >1-7. (2.4)
B

We use standard covering Lemma A to construct a set | C Eg(a) such that a- boxes B,, z € |
pairwise disjoint, we have

SB[ F@dm@< | gim, @5)

ze] ze]

So the lemma will be proved if p (EL(a)) < C 2y Bzl Let

1<<eiso,z) - {g eu: |g—ef¢| < z}, 1>0, El(a)= {z =7 ey : gz (7,x) > a}-
(2.6)

Let w € EY(a), then we will show w € ,; K(e",I;,) x --- x K(e,1.,),¢p; = arg(z;).
So Ej(a) C ULy K(e, 1) x -+ x K(e,1.,) = U,y Ki, where I, = C|B;|, j = 1,...,n,
and constant C will be specified later. Hence we will have p;(ES(a) N U") = pi(EL(a) <
CZZG] ‘ul(Kf nuy) < CZZE] |Bz|.

The last estimate follows from inclusion Ki N U} C Ay, () nUY,

L
AL(G)nUL = {z ely:|zj| € [1 —lzj,1>, larg(¢;) —arg(z)| < 5] = 1,...,11}. (2.7)

It remains to show the inclusion E%(a) € U, ; K7. To show this inclusion we note if
&=(&,...,&n) € ES(a) then we have |Bg| > 1—-|&|, i =1,...,n. Using covering Lemma A we
have By, cCB.,,i=1,...,n, z=(z1,...,24) € J. Hence

|6 = e | < [& - e/ re®)| 4 |efore® —eitr| < (1~ ) + [arg(@) - gu| <2CIB2 ). (28)

It remains to note that we put above I, = |B.,|2C.
(b) Note that for the case of U} we can step by step repeat the same procedure with
El(a) instead of EY(a) and the condition on y; will be replaced by weaker condition

pi(Ai@) NUY) <Cly---1,, 1;€(0,1), {€T. (2.9)

Note for¢ €T

minl;
5 ,j=1,...,np.  (2.10)

A(@)nUT = {z euy:1-1; < |zj| <1, |arg(zj) —arg(é)| <

Now part (b) can be obtained by direct calculation. O
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Remark 2.2. In Proposition 2.1(b) [Tj_, (1 - |ze|) V" can be replaced by TT¢_, (1 - |z«|) 7%, tj €
0,1), Sht=1.

Lemma23. Letz;eU, j=1,...,n, 0<p<1, s>(1/p)-2, f € HU) and F(zy,...,z,) =
(Cfuf (@A - |2))°dmy(2)) /(T}y (1 - 22)*P'™) . Then

|f (@) |P (1 - @)~ dm (@)

u T -2

|F(z1,...,z0)f < cf (2.11)

Estimate (2.11) for n = 1 can be found in [5] and in [1] for general case. The following
lemma is well known.

Lemma 24. Let s > 0. Then for I(s),I(s) = [Z(tP-2-2dt)/(t + 1)"*F one has (a) I(s) ~ sP+,
p<l+a,s — 0;(b)I(s) ~Inl/s,1+a=p, s —= 0;(c) I(s) <C, 1+a<p, s — 0.

Lemma 2.5 (see [3]). Let w = |w|é, w,z € U",1 -wz = []}_;(1 - wizx),s e NU{0},>0,p €
(0, 0). Then one has

P
1 L 1 1
RS — | dm,(¢) <C < >,p>.—.
.[ m| (1-golz)f| a]-zo%a,:s H (1 — [t |zie| )P (@)1 ming ay + f
(2.12)
Corollary 2.6. Let 0 <p < 0,5 € NU {0}, € (0,00),y >1/p+1,w € U". Then
1 P -1 L C
R ———=| (1-|z)P" dman(z) < : 2.1
’[U" (1 - wz)y ’ ujZO%a;‘:sg (1 - |wk|)(M+Y)p_lgl_1 ( 3)
We will need the following Theorems A and B.
Theorem A (see [3]). (a) Let f e HU"), p€ (0,0), aj>-1,j=1,...,n, n€N. Then
>t aj+n-1
f |f(z,...,z)|”(1 - |z|2> S Ay (2)
u
(2.14)

< CJ‘TJ‘[OJ]" |f(|Zl|§, ceey, Iang) |pg<1 _ |Zk|2> d|Z1| o d|Zn|dm(§)
(b) Let f € H(U"), p € (0,00),a> -1, n €N. Then

| G2 (1= 1) amaz) < CLJ:Iﬂlzléu- g (1-12P) dma @)z,
(2.15)
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Theorem B (see [3]). (a) Let f €e HU"), p€ (0,0), aj>-1,j=1,...,n, n € N. Then

f f |zl |zal®) PT T = 126 )™ @D |z |- d|z, | dim (&)
TJ [01]" k=1

(2.16)
< Cf |f(zl,...,zn)|pH<l - |zk|2>akdm2n(z).
ur k=1
(b) Let f e HU"), p€ (0,00), a>-1, n € N. Then
1 ) N
foan|f(|Z|§lr'--/lzlén” (1— |z| ) dm, (8)d)z|
Pl _ 5\ (@/m)=1+(1/n) (1 5\ (@/m)=1+(1/n)
< CJ‘un |f(zl,~ . '/Zn)l <1 |le > (1 |Zn| ) dm2n(Z).
(2.17)

3. Analytic Classes on Subframe and Expanded Disk

Let us remind the main definition.

Definition 3.1. Let X ¢ H(U), Y ¢ H(U") be subspaces of H(U) and H(U"). We say that the
diagonal of Y coincides with X if for any function f, f € Y, f(z,...,z) € X, and the reverse
is also true for every function g from X there exists an expansion f(z,...,z,) € Y, such that
f(z,...,z) = g(z). Then we write Diag(Y{) = X.

Note when Diag(¥) = X, then

171l = infl@CA) ]y, (3.1)

where @(f) is an arbitrary analytic expansion of f from diagonal of polydisk to polydisk.

The problem of study of diagonal map and its applications for the first time was also
suggested by Rudin in [2]. Later several papers appeared where complete solutions were
given for classical holomorphic spaces such as Hardy, Bergman classes; see [1, 4, 6, 7] and
references there. Recently the complete answer was given for so-called mixed norm spaces in
[8]. Partially the goal of this paper is to add some new results in this direction. Theorems on
diagonal map have numerous applications in the theory of holomorphic functions (see, e.g.,
[9, 10]).

In this section we concentrate on the study of two maps closely connected with
diagonal mapping Sb from subframe into disk Sb : f(z1,...,z,) — f(z,...,z) where all
|zj| = |z| € (0,1) and another map Ed : f(zi,...,z,) — f(z,...,z) from expanded disk
into disk where z; = |z11¢,...,2, = |z4|é, ¢ € T, and f function is from a functional class on
subframe U" or expanded disk U7.

Note that the study of maps which are close to diagonal mapping was suggested by
Rudin in [2] and previously in [11] Clark studied such a map.
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Theorem 3.2. Let 0 < p < 0. If

(a)0<p<1 and p>-1,0r

(b) p>1 and B > max((n/p) —1,(n - 1)(p — 1) — 1), then for every function g €
AZ(U"),g(lzlg, ..., |zl¢) € Azm_l(u) and for every function f € Azm_l(u) there exist

g€ Ag(fﬁ) such that g(|zI¢, ... ,|zI¢) = f(z).

Proof. Note that one part of the theorem was proved in [3] and follows from Theorem A. Let
us show the reverse. Let first p < 1. Consider the following g function:

£ (@) (1 = [w])*dma (w)
u [Ty (1 - régao) 7

g(réy, ..., réy) =Cq , z=(ré1,...,ré&), (3.2)

where a > 0 can be large enough, C, is a constant of Bergman from representation formula
(see [1]), obviously g(r¢,...,r¢) = f(ré) by Bergman representation formula in the unit disk.
It remains to note that the following estimate hold by Lemma 2.3:

1
[ [ Istetes el (1 = =t 2
(3.3)

<6f1f f |f @) [P (1 = [wo)P***2 (1 = )P drdma (w)dma(§)
~ 0/ T/ U

11— r§15|((“+2)P)/n - rénw|((a+2)lﬂ)/n

where a can be large enough. Using Fubini’s theorem and calculating the inner integral we
get what we need.
We consider now 1 < p < oo case. Let f € Azm_l(ll), p > 1. Then

f@w)(1 - Jw)*

u (1-wz)™?

f(z) =Cq dmy(w), zel, (3.4)

by Bergman representation formula. Obviously (Sb)(g) = f, as

f(w)( - [w])”

u (1= r&@) A" (= ) A

g(réy, ... rt) = Ca f dma(w), (3.5)

where (Sb)(g) = g(¢,...,r¢), ré € U is a map from subframe u = {zelU": |z = |z|} to
diagonal. Using duality arguments and Fubini’s theorem we have

. Y(Oh(ré,... rE) (1 -1)Pdrdm, ()
Il gar = e 1 =lol If(w>|‘ J ] e

dmy(w),
(3.6)

wherea=p+n-1, a>-1, he Lg' @, a/p)+Q/p) =1.
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We will need the following assertion. Let h € LZ/(CI"), pe(-1,0), p (1, 00).
Then let

— B
2wy, .., wn) = f : j Tnh<ré1,---,r§n>(1 D) dr dma(d)

15, (1 - réw;) (B+14n) /n (3.7)

where w; € U, w; = |wl|p;, j=1,...,n. We assert that g belongs to Azl(lﬁ:l").
Indeed using Holder’s inequality we get

1 ’
[ [ Istoucswnl @ - ol cm, )

11 P1—~\PP (1 — B+(p'/p)(n(ep+1))
scf f f f h(rés, - rén) P (1= )P (1= ool (3.8)
oJoJ 1nJ 1

[Tial1 - rézoy|(Frnt)/n-2-e)p+2

x dr dmy, (&)dm, (¢)d|w| < C”h”L;'(ﬁn)' 1<p <oo,
where € > 0. We used above the estimate
f (= [aol) 0O D) don () o] _ C(1-r)f (39)
o TIE 1 = recaoy @ D/m Dz = '

re©1), p> (n-1(p/p)-1, p> (n/p)-1.
Returning to estimate for || gl apwe have by Holder’s inequality

lsllg(@)e( [ Iraa- o ma))
(3.10)

, vy
([ 10w, P 0= ) ) ) S ClfLy,

We used the fact that for all @ € AZ,, 1<p <o, (Sb)D € Az;n_l proved before. O

The complete analogue of Theorem 3.2 is true for Bergman classes on expanded disk
we defined previously.

Theorem 3.3. Let 0 < p < 0. If

—

(@pel01], =B, ..., P>-Lk=1,....n, |pl = Xi P or

(b)yp > 1, ? =(,....05),p >0, p>((1/n)-1)(p/p') — 1, then the following assertion
holds. For every function f, f € A%(LI;’), (Edf)(z) = f(z,...,2), z € U belongs to

Alr;‘ 1 and the reverse is also true, for any function f from A

g€ A%(Uf) such that g(z,...,z) = f(z), forall z € U.

P

\Bln-1 there exists a function
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Proof. We give a short sketch of proof of Theorem 3.3 and omit details. Note that the half of
the theorem the inclusion EdA%(LIf) C A";l +n_1 Was proved in [3] and follows directly from
Theorem A.

For p < 1 we have to use again Lemma 2.3 and Fubini’s theorem. For p > 1 we first
prove g(wy, ..., wy) € A%(Uf) if h € A%(Uf) and if |B|p/n > sup, fr > mingfx > ((1/n) -

Dp/p) -1

gl =C| | B [ iz ) T (1= ) Pl (311)
’ y Wn ) 0 HZ:1|1_Z_kwk|(|ﬂ|+1+n)/n

Indeed by Holder’s inequality we have

lg@r, ..., wa)|" < C<-[ Jl Hh(zy, - zn)PTTRe (1 - |2k|)|ﬂ|p/nd|2k|d§>
~ T/ 0

0 szlll _ Z—kwk|((|ﬂ|+1+n)/n)p—(2+s)p+2

" ”lf dlzildg v
1o 0]_[;(’:1|1—z_kwk|2+5”/

g p/p'
< A(h
: ()<anzl|1—§|wk¢||“*’>

a 1
S A<h>< : :
g 1- |wk|)(1+€P -(1/m) (p/p)

(3.12)

>, where ¢ > 0.

Hence calculating integrals we finally have ||g|| A%(LI:’) < C||h|| A%(u*n).

We used the estimate

1 _ 1 / )
f f o [ T (O o) PO IPY djaogdg < Cﬁ(l — |z]) el /) b (3.13)
Jo 0 HZ:1|1 _zkw—kl(|ﬂ|+1+n)/np—(2+5)p+2 - i

which is true under the conditions on indexes we have in formulation of theorem and can
be obtained by using Holder’s inequality for n functions. Using this projection theorem

and repeating arguments of proof of the previous theorem we will complete the proof of
Theorem 3.3. O
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Remark 3.4. Note that Theorems 3.2 and 3.3 are obvious for n = 1.

Remark 3.5. Note that estimates between expanded disk, unit disk, and polydisk can be also
obtained directly from Liuville’s formula

1 1 n
f f (P(vl...vn)H(l_Uk)Pk—lvglvglJer PP g L d,
0 0 k=1

_ ITiiT(pr)

1
= ﬁj‘ p(u)(1- u)z"=1 Pildy, p; >0, ¢ is continuous function on (0,1).
pl e pn 0

(3.14)

Remark 3.6. The complete description of traces of classes with ||f|l 4oy and ||fll ger(izm
quasinorms on the unit disk can be obtained similarly by small modification of the proof
of Theorem 3.2,

1
”f”pzo(an) = IO (Moo o Moo (f’r))p(l - r)adr/ a> _1/ p € (O/ OO),

141
||f| ngg(ut}) = fofo(Moo(f,rl,...,rn))p(l 1) (L=ry)%dry---drn, a>-1, p€(0,0)

(3.15)

Let

A UM = {f eHU"): sup |f(r1§,...,rn§)|ﬁ(1 -1)% < oo}, a>0,
r;€(0,1),¢€T k=1 (3 16)

A,,(l:I"):{feH(LI") sup |f(r§1,...,r§n)|(1—r)”<oo}, a>0.
€T

re(0,1)¢

We formulate complete analogues of Theorems 3.2 and 3.3 for classes A, (U}) and A (UM).

Theorem 3.7. Let « > O and f € Aa(CI”). Then (Sb)(f) = f(z,...,2) is in Ag(U) and any
g € Ay (U) can be expanded to f, f € Aa(lNI") such that f(z,...,z) = g(z). The same statement is
true for pairs (Ed, Ax(U?)), Ed(A(U?) = Ao (U).

Note that one part of statement is obvious. If, for example, f € A,(U?}), then Edf €
Apua(U). On the other side, let g € Ay (U). Then define as above that

g(z)(1-z))’
ITi (1= Zng) P27

Frie .. rad) = cﬂju dms(2), (3.17)

p is big enough, Cy is a Bergman constant of Bergman representation formula.
Obviously f(r¢,...,r¢) = g(r¢), z = r¢, z € U. Using Holder’s inequality for n
functions we get || fl ) < Cillglla,, - Similarly [|fll5_ iy < C2llglla, @)
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It is natural to question about discrete analogues of operators we considered
previously.
LetCy >0, e \\1, k = oo, f>0. Let

Y [ee) n 1
Buconp=13 fEHUD : f(z1,...,z0) = D,Ci] | T <
= e (e - z))
(3.18)
|zi| =1zl € (0,1), zjeU,j = 1,...,n}.
We have for such a function
1 1
f (1-r)""(My(f,7))dr :f (1-n"" sup |f(z)|dr

0 0 |z1|=1, |20 |=T

(3.19)

1 _ 1+a e} s} p-a-2
%dr = > Cr(ri - 1)“‘ﬁ+1j t—ldt.
o(re—r)tP Py -1 (£ + 1)1P

= ch
k=1

As a consequence of these arguments and using Lemma 2.4 we have the following
proposition, a discrete copy of assertions we proved above.

Proposition 3.8. Let f € By ¢, p and a > —1. Then J’(l)(l — )My (f,7))dr < oo if and only

if3° Ch<oo if 1+a> 32, Ceilnl/(re-1) < oo ifl+a =32, C/(n - 1P <
o ifl+a<p.

4. Sharp Embeddings for Analytic Spaces in Polydisk with
R° Operators and Inequalities Connecting Classes on
Polydisk, Subframe, and Expanded Disk

The goal of this section is to present various generalizations of well-known one-dimensional
results providing at the same time new connections between standard classes of analytic
functions with quazinorms on polydisk and R® differential operator with corresponding
classes on subframe and expanded disk.

In this section we also study another two maps connected with the diagonal mapping
from polydisk to subframe and expanded disk using, in particular, estimates for maximal
functions from Lemma 2.3 which are of independent interest. Note that for the first time the
study of such mappings which are close to diagonal mapping was suggested by Rudin in [2].
Later Clark studied such a map in [11].

In this section we also introduce the R® differential operator as follows (see
[3, 12, 13]). RSf = D kso (ki +ky+ 1) ak, k22, s € R, where f(z) =
Dk k30 ki, knzll<l ~--z,’§" e HU").

Note it is easy to check that R* acts from H(U") into H(U").



12 Journal of Inequalities and Applications

In the case of the unit ball an analogue of R* operator is a well-known radial derivative
which is well studied. We note that in polydisk the following fractional derivative is well
studied (see [1]):

a _ a a k1 kn
(2f)(2) - Zk>0(k1+1) o (ke + D) %ak,, 2y 20 (4.1)

wherea € R, f € H(U"),and ® : H(U") — H(U"). Apparently the R® operator was studied
in [12] for the first time. Then in [13], the second author studied some properties of this
operator. In this section we also continue to study the R® operator. We need the following
simple but vital formula which can be checked by easy calculation:

1 s—1
f(rér,..., m&) = Csfoksf(Tglp, e TEnp) <log %) dp, (4.2)

where s > 0,7 € (0,1),Cs > 0,¢; € T,j = 1,...,n. This simple integral representation of
holomorphic f(z),z € U" functions in polydisk will allow us to consider them in close
connection with functional spaces on subframe un.

The following dyadic decomposition of subframe and polydisk was introduced in [1]
and will be also used by us:

.., = Uy x - x Uiy,
1 1
= {(Tél,...,rgn) T E (1— Z—k,l - %],

k=0,1,2,...; F<§jST’]

¥ rl; a(li+1 -
m(Ik,1j> = m<§ eT: 2—k’ <¢j < %> =27% m,, <Uk,11,...,1,,> = p2kn

ukl,..‘,kn,ll,...,ln = ukl/ll Xoeee X ukn/ln

1 1
= {(Tlél,...,Tnén)ZTj € (1‘%,1_W]/

! I+1
T e T ),l~——zkf,...,zkf—1,j=1,...,n},

kj:0,1,2,...; 2k]- ]_T i=

(4.3)

My(f,r), 0 < p < oo averages in analytic spaces in polydisk can obviously have a mixed
form, for example, M, My (f,11,72), r; € (0,1), j =1,2, p < 0. In [8] Ren and Shi described
the diagonal of mixed norm spaces, but the above mentioned mixed case was omitted there.
Our approach is also different. It is based on dyadic decomposition we introduced previously.

Theorem 4.1. Let p € (0,) and Hiyw = (f € HU") : [y [of¢(Mo -+ Mu(f,
P AT, (1 =)™ dpy .. dr, < oo, a > —-1). Then DiagHhy = AL (U).
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Proof. Using diadic decomposition of polydisk we have

M = f |f(z,....2)|]" Q- |z])*dma(z) = ZI |f(z,....2)|" (A - |z])*dmy(z)
u ik 7 Ujk

<CY max|f(z,...,z)|["27 227
j,k Uj,k

2mmk] 1
<CZ Z Z maX |f(21, . ,Zn)|p27(’”2)k1/"--'2’(”2)""/” 4
k20 k20 mink; (4.4)

pminkj 4 1-2-(k1+2) 1-2-(kn+2)
x5 s ( f -

k120 k20 j__pminkj ~(ki-1) 1-2-(kn-1)
14 kit k,T [ Amin k; n _ a+2
x |f(z1,...,za)|dry - - drpdé ) 297 .. 2807 (200K ) = - - +1.
Liky,..kn

We used above the following estimate which can be found, for example, in [1]

sup |f(z1,. ..,zn)|p<2mi“kf>n2k1+“'k"f * |f(z1,...,z0)|["dmon(z), O0<p<oo,

Zeukll---,kn,l'

Kk j
(4.5)
where Uk, are enlarged dyadic cubes (see [1]) and 0 < p < o0, f € H(U"), and
7j 7(j+1)
Ifrkl,--.,kn = {é Lz = Té € uklr---rkn']" omink; < é < omink; 4
( ) ( )| o
. x(j—(1/2) ax(j+(1/2)
I] ki,.. {é z= Té € u Jeorkin 7 omink; < é < pmink;
Note further since m, (Ijx,,. k,) = (2-mymink;
| CJ oo Mo (7)) dg (270D,
Ly LT (4.7)
Lyog = I}/kwkn xeox Iy, 0<p<oco.
We have
ominkj 1 11-p-(k1+2) 1-2-(kn+2)
MoCS [
,é) kn>0 Z ].:_%n:mk,- 1—p-(ky-1) 1-2-(kn-1) I},kl,...,kn (4.8)

(Mo, - Mo (f, r))Pdngkl((uH)/n)fl) ... kn(((at1)/m)=1/m).

We used the fact that 2minkj < pki++kn) /n
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Hence using the fact that I}k1 . is a finite covering of T, finally we have for all 0 <
p <o M 5 C|fllyr=. One part of theorem is proved.
To get the reverse statement we use the estimate from Lemma 2.3. Then we have

f(z)(l - |Z|)adm2(z)
ulTi (1-z2z)) (@ 2)/mp |/

|F(z1,...,22)| = C zjel, (4.9)

for any a > —1. Hence F(z,...,z) = f(z) and for p < 1 by Lemma 2.3

i £ = |2l 2y (2)
e o,

= (@) /m)
ITja |1 -2z

x [T - D™ dry - drydéy - dé,
k=1

<[ rora-perer( [ - Malom @ dn
~ n1q _ (@*2)/mp (1 _ (ar2)/myp1 412\
u oo [Tz (1 —|zlrk) (1 —r4lz])

SI £ (2) [P (1= |2)P22(1 = |]) (@D /m p(an/m)a-D
u

x(1 - |Z|)((—(a+2)/n)P+((vf+1)/n))+1dm2(Z)

< I lf(2)|P(1-|z))*dma(z), a>-1, 0<p<1, fe Al
u
(4.10)

Let 1 < p < oo. Then we may assume that again s is large enough. Let 1/p + 1/q =
1,y:,>0,i=1,2,11+7 = (s+1)/n. Then

f f@)| (1~ [P dma(e)
u

H;l:1 | 1- Z]w| (s+1)/n

(4.11)
s-1
|f(w)|p<1 - |w|2> dmy(w) Yip—((s+1)/n)
<c| T (1~ |5) -
u [T} |1 - zw| j=1
We used estimate
(1- o) dmataey
— |lw my(w n
j n — <c[JC- |z e, (412)
u H;’:lll - zjw| j=1
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Choosing appropriate y;, y» we repeat now arguments that we presented for p < 1 above to
get what we need. The proof is complete. O

Remark 4.2. The case of k, 1 < k < n, M), averages can be considered similarly. Note in
Theorem 4.1k = 1. Thus our Theorem 4.1 extends known description of diagonal of classical
Bergman classes (see [1, 7]).

In [14] Carleson as Rudin and Clark showed that in the case of the polydisk one cannot
expect so simple description of Carleson measures as one has for measures defined in the
disk. We would like to study embeddings of the type

1/p
(f |f(z)|'”dy(z)) <C|R°flly, s20, (4.13)
un

where y is a positive Borel measure on U” and X is a Bergman class on polydisk or subframe.

Theorem 4.3. Let y1 + 1 = (s—-Dp+(n+1)(p-1), 1 >0, >-1, 0<p <1, s> (1 +
1)/n) +n—pn)/p, s,n € N, and p is a positive Borel measure on U". If

fN @ Q-2 du@IR |y @y t>-1, (4.14)
un 1
then
1 t
(1 - |w|) du(w) -
qn = Su ————(1-|w)" < oo, (4.15)
Il = sup (] e - )
and conversely if
1 t
(1-|wl|) dp(w) JUNO
n = Su —— e (1@ <0 4.16
lkllg @eaﬁjrrtfoﬂ’izlll—wkwklp (1-1a@|) (4.16)

holds for some & > 0 where @ = (|%0|&y, .. .,|w|¢,), |w] € (0,1), & €T, j=1,...,nthen
fN |f(2)|"(1- Izl)tdy(z)”RSf”A;; any t>-1 (4.17)
un 1

Remark 4.4. With another “e-sharp” embedding theorem, the complete analogue of
Theorem 4.3 is true also when we replace the left side by Ju" If(2)PTTe (1 - |zk|)tkdy(z), t >
-1, k =1,...,n. The proof needs small modification of arguments we present in the proof of
Theorem 4.3.

Remark 4.5. For n =1 and s = 1 Theorem 4.3 is known (see [15]).
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Proof of Theorem 4.3. It can be checked by direct calculations based on formula (4.2) that the
following integral representation holds:

dpdm,, (&)
[Ti (1 - poprrée)”

f(z1,...,2z0) = CSITHI:RSf(pél,. o Pén) <log %)Sl (4.18)

s>0,zk =¢rr, k=1,...,n, v € (0,1),(z1,...,24) € ur. Using the fact that M,(f,r) in
increasing by r, r € (0,1) and M;(f,7%) < C(1 —T)n(l_(l/p))Mp(f,T),T € (0,1) (see [1]) we
get from above by using the estimate

<f: (f(p)) (1~ P)“dp>p S f:(f ()’ (1- )"+ dp, (4.19)

where f is growing measurable, p <1, a > -1,

1
f |f(w)|p(1—|w|)td#(w)SC”MgnJ‘J‘ IR ()P (1 - [w))Prdmy (&)dlw|.  (4.20)
un 0J T

To obtain the reverse implication we use standard test function g.(w) = 1/}, (1 - wkzk)?,
zi,weeU, k=1,...,n,z,wel”, y>1and Lemma 2.5

1
||R5gz<w>||A;1(an)jo<1—|w|>ﬂ1 S Gewdlwl, (421)

a;>0,> aj=s

where G(z,w) = [T, 1/ (1 = [wil|ze )P 7, y > 1, p>1/y.
The rest is clear. The proof is complete. O

Below we continue to study connections between standard classes in polydisk and
corresponding spaces on subframe and expanded disk.
Let

(RAY, = {f e HU™ :R*f e AL(T")},
(4.22)

(@AY, = {fe HUM : D fe ALum}, & =928, Yy =7, 1, 20.
: <

Let us note that Theorems 3.2 and 3.7 of [3] show that under some restrictionsony, a, s, v
the following assertion is true.

For every function f, f € (%A)’YJ,“, 0 < p < oo f(zl&,...,|z|én) belongs to
(RA)Y,, 0 < p < o0, and the reverse is also true, for any function f, f € (RA)%, there exists
“an extension” F such that

F(|zl1, ..., |2I&0) = f(I2lé1, -, |2I&n),  F € (AN 4 (4.23)
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The following Theorem 4.6 gives an answer for the same map from polydisk to expanded
disk

F(z1,eezn) — f(21E, - |2zald), €T, |z €(0,1), j=1,...,n, (4.24)

for f functions from HP(U"), 1 <p < co.
We will develop ideas from [4] to get the following sharp embedding theorem for
classes on expanded disk.

Theorem 4.6. Let n>1, 1 <p < oo, p be a positive Borel measure on UZ}. Then

1 1
IO . J‘OJ‘Tlf(T’léz . ,rné) |Pd#(7§) < ”f”HP(un) (4.25)

if and only ifﬁ_l1 ”'J.i—ln-‘:(minjlj)/Zdnu(?é) <Ch---1,, 1;>0, j=1,...,n.

Proof. Obviously if K = fuflf(z)lpdﬂz < C|IfII};, then by putting

1/p

7 ’[j:l—lj,’[je(o,l),jzll_..,n, (426)

n 1- T
F=1lh = ——=
j=1

<1 - Zjlj)z

we have || f||m» < const and K > 1/(11---1,1)[1_11-~.ﬁ_,njdey(rlg,...,rng),r = min;l;, |1 -
Ejl~]~| =1-1zjl, |zj| € (1-1;,1), arg(z;) € (-7, 7). Hence we get what we need. Now we will
show the sufficiency of the condition.

Let N>0: 2N(1-r) <o <2N(1-71), j=1,...,n

Let z = 7el? € U,z = (re',...,r,e). Let also BX = {t = (t1,...,t,) : Itj — ¢l <
2K(1-7j),1<j<n}and Wik, = Ix, x -+ x I,, where

Ly ={t:29Q-n) < |t-g| <25 (1-r)}, 0<k<N-1,
(4.27)
In={t:2A-r) <|t-g| <2V (1-7), H <z}, Li={t:<1-7}.

In what follows we will use notations of Proposition 2.1. Consider the Poisson integral of a
function f, f € HY(T),u(z) = C[,,P(z,¢) f(§)dm,(§), z € U" (see [2]).
Let E(a) = {z e U? : (Ed)u(z) > a}. We will show now as in [4] that

pE@) < S| rwdmo. (428)
.
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Indeed, this will be enough, since the operator f — (Ed)[,P(z,¢)f(&)dm,(¢) is (L=, L)
operator we can apply the Marcinkiewicz interpolation theorem (see [16, Chapter 1]) to assert
that

1 1
o= [ | [ @PauE <Cllfllpeny 1<p<oe (429)

We have as in [4] for z € U"

Ed)u(z) = [Pz, 0) fe)dm, ) =

Kiporkn=—17 Wiy,

p) 1 > )

< Co f fhdt<C s 8k(r, e T,
k1,...,kn:04k1+w+kw szl (1 - rk) B k& kn:02|k| n

N
< 2 2Mg(7,9) < Cisup 298k (7, ),
Kt ek =0

(4.30)

where we used the standard partition of Poisson integral. Hence E(a) C Uz E«(C22%a),
and so using Proposition 2.1 we finally get y(E(a)) < C/ aan ftd(t).
Indeed by Proposition 2.1 we have

W(E@) < Y, (#(Ea(C:27%) )

acZl
(4.31)
<03 o [ pwan < S fwao
- 3aezzzla‘/2a T T alp '
Theorem 4.6 is proved. O
Theorem 4.7. Let f € H(U"). Then
sup |27 (z1,..., z) | [ [ (1 - 2™
|z]<1 k=1 (432)

1
: C.[Tn folksf(p§1, s PEn) |P(1 -p) sp+n(p_l)_ldmn (&)dp,

wheres >0, a>0, p<1, sp+n(p-1)>0;

%ﬂf(zl,...,zn)

sup
zel"

-1
< Z H ﬂ-lkak—(Zs—a)/n> S C SuP |R5f(z) | (1 - |z|)a’

20,5 ap=s k=1 (1 = |z« [) zelln
(4.33)
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where2s —a >0, p>1, a>0, s>0,

sup [ R f(Izalor, - -, 1zalgn) [Pdma(p) D, <ﬁ 1 >

|zel<1/ " 0205 0 =25 \ ket (1= |z )PrsrDt
(4.34)

1
<cf | 1o sl -l deldm o),
") 0

wheres >0, 1/(s+1)<p<1, t=p(s-1H+(n+1)(p-1)> -1

Proof. We use systematically the integral representation (4.18), Lemma 2.5, and it is corollary.
The proof of the estimate (4.32) follows from equality

1 1 s-1 n 1
D see,zn) = Cg R® oo, pén) | log = — _dpdm, (¢),
S zn) .[Tnfo flo P )< OgP> k1 (1 - Epepi) ™ pir (&)
(4.35)
zk = prpr,k=1,...,n, s>0,a >0, f e HU"), and estimate
1 P
<ijOIRSf<p§1, pt)|(1- p)“dpdmn@))
(4.36)

1
< CLJOIRSf (P&, pta) | (1= p) "V D dpdm,, (2),

p<1l, a>0, s>0, f € H(U"), obtained during the proof of Theorem 4.3.

The proof of the estimate (4.33) follows from Lemma 2.5 and its corollary and integral
representation (4.35).

The proof of the estimate (4.34) follows from equality (z; = pj¢;, j=1,...,n)

|R°f(z1,...,2n)|

n

— dpdm,(2)|.
=t (1-Epxppr )

s+1

- CSL"J‘:(QSf) (PS1, - pn) (log %)s_lkl"k

(4.37)

Indeed using (4.36) integrating both sides of (4.37) by T" and using Lemma 2.5 we arrive at
(4.34). O
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Remark 4.8. All estimates in Theorem 4.7 for n = 1 are well known (see [1, Chapter1]).

We present below a complete analogue of Theorems 3.2 and 3.3 for a map from
polydisk to expanded disk. Note the continuation of f function is done again from diagonal
(z,...,z).LetzjelU, j=1,...,nand

f(Z,...,z)(] _ |Z|)s
S d , |
uJTeo (1 - ziz) D/ my(z) (4.38)

f(z1,...,z4) =C

where C; is a constant of Bergman representation formula (see [1]).

Proposition 4.9. (1) (a) Let neN, pe (0,0), a> -1, f € HU"). Then

1 1 n
fj~jmewwmmqﬁquW“WWMmmmwﬁ>
T/ 0 0 k=1
(4.39)

<cf f(z)|pH 1|zl ) Ay, (z).

And reverse is also true:
(b) Let 0 <p < oo, a>-1and

1 1 n
de~LUWquM£WFHFhw“@”mmm~dMMm®<w, (4.40)
k=1

then for all functions f such that condition (4.38) holds for s > max(((a +2)n)/p) —2,-1) we have
f e Abu).
(2) (a) Let f e HP(U™), 1 <p <oo,n> 1. Then

1 A1 n
ImmMm=fffmmmmwmwrm—mwwmawmmm%km
" T70/0 k=1
(4.41)

and the reverse is also true:
(b) For any function f with a finite quasinorm | f|| ,» ) such that condition (4.38) holds
-1/n *

fors =2n-2onehas f € HP(U"),p > 1.

Proof. (1) (a) Proof of estimate (4.39) follows directly from Theorem B.

(b) Indeed from (4.38) and results of [1] on diagonal map in Bergman classes we have
”f”Aﬁ(un) < C||Diag(f)||A,ta(u),t = an + 2n - 2. It remains to apply Theorem A.

(2) For the proof of (a) we use Theorem 4.6 and get the result we need.

For the proof of (b) we use the same argument as in the proof of part (1). Namely first
from (4.38) and from a Diagonal map theorem on H? classes from [1] we get || fllyqny <
Clifll A7+ It remains to apply Theorem A.
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Remark 4.10. Note Proposition 4.9 is obvious for n = 1.

We give only a sketch of the proof of the following result. It is based completely on a
technique we developed above.

Proposition 4.11. (a) Leta >0, n € N, n > 1, s > na then the following assertions are true: If
D*f € HP(U") then

1
Tpas(f) = fnfolef(IZIQw-, 2180 |7 (1 = [21)P 7" d|z|dm, (§) < oo, p 2 2. (4.42)

If Dpas(f) <oothend*f € HP(U"), 1/(a+1)<p< 1.
(b) Let @ f € HP(U"), p 22.1f s > na, a >0, then 2y 4s(f) < oo. Moreover the reverse is

also true if condition (4.38) holds for s = 2n — 2 then | D ||, < Cpas(f)-

The proof of first part of Proposition 4.11 follows from (4.35), (4.36) and Lemma 2.5
directly. The reverse assertion follows from Theorem B (b) and estimate

f |2 f@) T = 12" dman(2) < Cl fll s > 0,k =1, im, p22, (443
ur k=1

which can obtained from one dimensional result by induction.

The proof of second part of Proposition 4.11 can be obtained from Theorem A and
results on diagonal map on Hardy classes HP(U") from [1] similarly as the proof of
Proposition 4.9. For n = 1 part (a) is well known (e.g., see [1]) and (b) follows from (a)
since for n = 1 condition (4.38) vanishes by Bergman representation formula.

Remark 4.12. Theorem 4.6, Propositions 4.9 and 4.11 give an answer to a problem of Rudin
(see [2]) to find traces of HP (U") Hardy classes on subvarieties other than diagonal (z, ..., z).
Note that in [11] Clark solved this problem for subvarietes of U" based on finite Blaschke
products.
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