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This paper studies the exponential stability of a class of periodically time-switched nonlinear
systems. Three cases of such systems which are composed, respectively, of a pair of unstable
subsystems, of both stable and unstable subsystems, and of a pair of stable systems, are considered.
For the first case, the proposed result shows that there exists periodically switching rule
guaranteeing the exponential stability of the whole system with (sufficient) small switching period
if there is a Hurwitz linear convex combination of two uncertain linear systems derived from
two subsystems by certain linearization. For the second case, we present two general switching
criteria by means of multiple and single Lyapunov function, respectively. We also investigate the
stability issue of the third case, and the switching criteria of exponential stability are proposed.
The present results for the second case are further applied to the periodically intermittent control.
Several numerical examples are also given to show the effectiveness of theoretical results.
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1. Introduction

In the recent years, motivated by the fact that many practical systems are inherently
multimodal in the sense of that several dynamical systems are required to describe their
behavior which may depend on various environmental factors [1, 2], and by the fact that the
methods of intelligent control design are based on switching between different controllers
[2, 3], the study of switched systems has been received an increasing attention in control
theory and applications [2, 4–13]. It is also worth noting that the switching rule is naturally
identified as two classes. One is known as state-switched system, and another is time-
switched system. So far, most contributions to switched systems were made for the state-
switched system. For example, the stability properties for state-dependent switched systems
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have been characterized in [4–7], and the switched control synthesis designs have been
presented in [2, 8, 9]. For the time-switched systems, we refer the readers to [14–16]. One
can see that the study of time-switched systems is almost limited to the linear subsystems, at
most with the nonlinear perturbations. In [14], the switched system consists of only Hurwitz
stable subsystems. The papers [15, 16] deal with the switched systems with both stable and
unstable subsystems by means of average dwell time approach.

In the present paper, we study the exponential stability of time-periodically
switched systems composed of a pair of nonlinear subsystems with neural-type Lipstchiz
nonlinearities (i.e., the nonlinear vector-valued function f(x) is of the form f(x) =
[f1(x1), f2(x2), . . . , fn(xn)]

T ). Three cases of such systems will be dealt with.

Case 1. Periodically switched system with a pair of unstable nonlinear subsystems.

Case 2. Periodically switched system with both stable and unstable nonlinear subsystems.

Case 3. Periodically switched system with a pair of stable nonlinear subsystems.

For the first case, a linearization transformation is introduced to shift the exponential
stability issue of the original system into the robustly exponential stability of the transformed
system with a pair of linear time-varying subsystems, and we will use the average-system
approach to analyze the robustly exponential stability of the transformed systems. For the
second and third cases, the general theoretical frameworks based on the multiple Lyapunov
functions will be established. We also suggest that if there exists a common Lyapunov
function V (x) such that (i) for the second case, V̇ (x) ≤ −λ1V (x) for the first subsystem
and V̇ (x) ≤ λ2V (x) for the second subsystem, then the system as a whole will be globally
exponentially stable for any switching period T and any switching rate α satisfying 1 >
α > λ2/(λ1 + λ2); (ii) for the third case, V̇ (x) ≤ −λiV (x), i = 1, 2, for the ith subsystem,
then the system as a whole will be globally exponentially stable for any switching period
T and any switching rate α satisfying 1 > α > 0. Note also that for the first case because
both subsystems are unstable there is no such common Lyapunov function V (x) that V̇ (x)
is negative definite for any subsystem. Based on the stability analysis of the second case,
we address the periodically intermittent output feedback control problem. Several numerical
examples will be presented to show the validity of the theoretical results.

The rest of the paper is organized as follows. In the next section, the problem to be
dealt with is formulated and the necessary preliminaries are presented. Then, the theoretical
results for three cases of time-switched systems are established in Sections 3–5, respectively.
Section 6 deals with the stabilization problem by means of periodically intermittent control.
In Section 7, several examples are given to verify the effectiveness of the theoretical results.
Finally, conclusions are drawn in Section 8.

2. Problem Formulation and Preliminaries

Consider a class of periodically time-switched systems with m subsystems

ẋ(t) = Aix(t) + Bifi(x(t)), kT + τi−1 ≤ t < kT + τi,

i=1, 2, . . . , m, k = 1, 2, . . . ,
(2.1)
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where x ∈ Rn denotes the state vector, Ai = (a(i)
kl ) ∈ Rn×n and Bi = (b(i)kl ) ∈ Rn×n, i = 1, 2, . . . , m,

are all constant matrices, T > 0 is called the switching period, Δτi = τi − τi−1 is called the time
duration of the ith subsystem with 0 = τ0 < τ1 < · · · < τm−1 < τm = T . It is clear that the
system (2.1) is a class of periodically time-switched systems with m nonlinear subsystems.
Throughout this paper, we also assume that fi(x) = [fi1(x1), fi2(x2), . . . , fin(xn)]

T with fi(0) =
0 are continuous functions satisfying the following condition.

(H1) There exist constant scalar numbers αij (i = 1, 2, . . . , m; j = 1, 2, . . . , n) such that

∣
∣fij

(

y
)∣
∣ ≤ αij

∣
∣y

∣
∣, for any y ∈ R. (2.2)

In order to linearize system (2.1), we define m × n functions sij (i = 1, 2, . . . , m; j = 1, 2, . . . , n)
as follows:

sij(t) :=

⎧

⎪⎨

⎪⎩

fij
(

xj(t)
)

xj(t)
, xj(t)/= 0,

0, xj(t) = 0.

(2.3)

Let Si = diag(si1, si2, . . . , sin), i = 1, 2, . . . , m. Then, system (2.1) can be rewritten as

ẋ(t) = (Ai + BiSi(t))x(t), kT + τi−1 ≤ t < kT + τi,

i = 1, 2, . . . , m, k = 1, 2, . . . .
(2.4)

Notice that assumption (H1) implies that |sij | ≤ αij (i = 1, 2, . . . , m; j = 1, 2, . . . , n). Therefore,
we have, for any t ≥ t0 and i = 1, 2, . . . , m,

−Li ≤ Si ≤ Li = diag(αi1, αi2, . . . , αin). (2.5)

Furthermore, let, for i = 1, 2, . . . , m, be

|Bi| =
(∣
∣
∣b

(i)
kl

∣
∣
∣

)

n×n
, Ci =

(

c
(i)
kl

)

n×n
≡ Ai − |Bi|Li, Ci =

(

c
(i)
kl

)

n×n
≡ Ai + |Bi|Li,

M
[

Ci, Ci

]

=
{

C =
(

c
(i)
kl

)

n×n
: c(i)kl ≤ c

(i)
kl ≤ c

(i)
kl , k, l = 1, 2, . . . , n

}

.

(2.6)

Then, for any t ≥ t0, we have

Ai + BiSi(t) ∈ M
[

Ci, Ci

]

. (2.7)
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In order to formulate the transformation, we still need the following quantities:

Ci =
Ci + Ci

2
= A1, Hi =

Ci − Ci

2
= |Bi|Li, i = 1, 2, . . . , m. (2.8)

Because the entries of matrix Hi = (h(i)
kl ) ∈ Rn×n (i = 1, 2, . . . , m) are nonnegative, we further

define
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(2.9)

Simple computation yields, for i = 1, 2, . . . , m,

EiE
T
i = diag

⎛

⎝

n∑

j=1

h
(i)
1j ,

n∑

j=1

h
(i)
2j , . . . ,

n∑

j=1

h
(i)
nj

⎞

⎠,

FT
i Fi = diag

⎛

⎝

n∑

j=1

h
(i)
j1 ,

n∑

j=1

h
(i)
j2 , . . . ,

n∑

j=1

h
(i)
jn

⎞

⎠.

(2.10)

We then have the following lemma which is of key importance for our results.
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Lemma 2.1 (See [17, 18]). Let

Σ∗ =
{

Σ ∈ Rn2×n2 | Σ = diag(ε11, . . . , ε1n, . . . , εn1, . . . , εnn),
∣
∣εij

∣
∣ ≤ 1, for i, j = 1, 2, . . . , n

}

,

N
[

Ci, Ci

]

= {Di = Ci + EiΣiFi | Σi ∈ Σ∗}.
(2.11)

Then, M[Ci, Ci] = N[Ci, Ci].

Proof. A proof of this lemma is presented in the appendix.

Now, we consider the following uncertain linear system with Σi ∈ Σ∗, i = 1, 2,

ẋ(t) = (Ci + EiΣiFi)x(t), kT + τi−1 ≤ t < kT + τi. (2.12)

It follows from Lemma 2.1 that the parameter uncertainties in (2.4) and (2.12) are identical,
which implies that (2.12) is equivalent to system (2.4). It is also observed that the robust
stability property of (2.4) implies the stability property of system (2.1). Therefore, in order to
derive the sufficient conditions for stability of system (2.1), we consider the robust stability
of system (2.12).

Remark 2.2. If the nonlinear function fi(x) satisfies the assumption

(H2) for xj /= 0 and i = 1, 2, . . . , m; j = 1, 2, . . . , n, 0 ≤ fij(xj)/xj ≤ αij .

Then, 0 ≤ sij ≤ αij and Ci = Ai + (min{0, b(i)
kl
αil}), Ci = Ai + (max{0, b(i)

kl
αil}). This implies that

Ci = Ai + (1/2)(b(i)
kl
αil), Hi = (1/2)(|b(i)

kl
|αil), where (dkl) denotes a matrix with dkl as the kth

line and lth column entry.

For briefness, we mainly focus on system (2.1) with two subsystems in the sequel, that
is, m = 2. In this case, we rewrite, respectively, systems (2.1) and (2.12) as

ẋ(t) = A1x(t) + B1f(x(t)), kT ≤ t < kT + αT,

ẋ(t) = A2x(t) + B2g(x(t)), kT + αT ≤ t < (k + 1)T,
(2.13)

ẋ(t) = (C1 + E1Σ1F1)x(t), kT ≤ t < kT + αT,

ẋ(t) = (C2 + E2Σ2F2)x(t), kT + αT ≤ t < (k + 1)T,
(2.14)

where 0 < α < 1 is called the switching rate. The results for (2.13) and/or (2.14) are easily
extended to the general systems (2.1) and/or (2.12) with m subsystems.

The following two lemmas are useful in the sequel.

Lemma 2.3 (Sanchez and Perez [19]). Given any real matricesΣ1,Σ2,Σ3 of appropriate dimensions
and a scalar ε > 0 such that 0 < Σ3 = ΣT

3 . Then, the following inequality holds:

ΣT
1Σ2 + ΣT

2Σ1 ≤ εΣT
1Σ3Σ1 + ε−1ΣT

2Σ
−1
3 Σ2, (2.15)

where the superscript T means the transpose of a matrix.
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Lemma 2.4 (Schur complement, Boyd et al. [20]). The following LMI:

[

Q(x) S(x)

ST (x) R(x)

]

> 0, (2.16)

where Q(x) = QT (x), R(x) = RT (x), and S(x) depend affinely on x, is equivalent to

R(x) > 0, Q(x) − S(x)R−1(x)ST (x) > 0. (2.17)

Throughout this paper, we denote by PT the transpose of matrix P ; λmin(P) and
λmax(P) the minimal and maximal eigenvalues of a real symmetric matrix P , respectively;
P > 0 (≥, <,≤ 0) the symmetrical and positive (semipositive, negative, seminegative) definite
matrix P , and ‖P‖ the Euclidian norm of the square matrix.

3. Stability Analysis for the First Case

In this section, we consider system (2.13) composed of a pair of unstable subsystems with
neural-type nonlinearities. Since the robust stability property of system (2.14) implies the
stability property of the original system (2.13), we will derive a sufficient condition of
globally exponential stability. The theoretical result shows that similar switching criterion
guaranteeing the exponential stability of the origin of time-switched LTI systems still holds
for time-switched nonlinear systems with neural-type nonlinearities.

The main result in this section is as follows.

Theorem 3.1. Suppose that there exist symmetric and positive definite matrix P , positive constants
q1, q2, and α (0 < α < 1) such that

Ω1 = P(αC1 + (1 − α)C2) + (αC1 + (1 − α)C2)TP + αq−1
1 PE1E

T
1P + αq1F

T
1 F1

+ (1 − α)q−1
2 PE2E

T
2P + (1 − α)q2F

T
2 F2 < 0,

(3.1)

where Ci, Ei, and Fi (i = 1, 2) are defined, respectively, in (2.8). Then, there exists (small) switching
period T such that the origin of time-switched system (2.14) is globally robustly exponentially stable,
and therefore system (2.13) is globally exponentially stable.

Proof. We only need to show that inequality (3.1) implies the robustly exponential stability
of system (2.14) with small switching period. Without loss of generality, we assume that the
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initial value is x0 = x(t0) with the starting time t0 ∈ [0, αT). Then, by piecewise integration,
we have

x(αT) = exp((C1 + E1Σ1F1)(αT − t0))x0,

x(T) = exp((C2 + E2Σ2F2)(1 − α)T) exp((C1 + E1Σ1F1)(αT − t0))x0

= exp((C2 + E2Σ2F2)(1 − α)T) exp((C1 + E1Σ1F1)αT) exp(−(C1 + E1Σ1F1)t0)x0

=
[

I + (C2 + E2Σ2F2)(1 − α)T +
1
2!
(C2 + E2Σ2F2)2(1 − α)2T2 + · · ·

]

×
[

I + (C1 + E1Σ1F1)αT +
1
2!
(C1 + E1Σ1F1)2α2T2 + · · ·

]

× exp(−(C1 + E1Σ1F1)t0)x0

= {I + [(C1 + E1Σ1F1)α + (C2 + E2Σ2F2)(1 − α)]T +O(T)}
× exp(−(C1 + E1Σ1F1)t0)x0.

(3.2)

Along this idea and omitting the terms O(T) when T tends to zero, one observes that if we let
T tend to zero, on any fixed time interval the solution of (2.14) will tend to the solution (with
the same initial condition) of the following “averaged” system (see [21] for more details), for
any Σ1, Σ2 ∈ Σ∗,

ẋ(t) = [(C1 + E1Σ1F1)α + (C2 + E2Σ2F2)(1 − α)]x(t). (3.3)

In particular, the stability properties of the switched system (2.14) will for sufficiently small
T be determined by the robust stability properties of the averaged system (3.3). Note that
system (3.3) is globally exponentially stable if and only if there exists 0 < α < 1 such that
Ae = (C1+E1Σ1F1)α+(C2+E2Σ2F2)(1−α) is Hurwitz for any Σ1, Σ2 ∈ Σ∗, which is equivalent
to the fact that there exists symmetric and positive definite matrix P such that AT

e P +PAe < 0.
A sufficient condition for this inequality is just Ω1 < 0, that is, inequality (3.1). This is because,
for x /= 0,

xT
[

AT
e P + PAe

]

x = xT
{

[(C1 + E1Σ1F1)α + (C2 + E2Σ2F2)(1 − α)]TP

+P
[

(C1 + E1Σ1F1)α + (C2 + E2Σ2F2)(1 − α)
]}

x

= xT
{

[αC1 + (1 − α)C2]TP + P[αC1 + (1 − α)C2]
}

x

+ 2αxTPE1Σ1Fx + 2(1 − α)xTPE2Σ2F2x

≤ xT
{

[αC1 + (1 − α)C2]TP + P[αC1 + (1 − α)C2]
}

x + αq−1
1 xTPE1E

T
1Px

+ αq1x
TFT

1 F1x + (1 − α)q−1
2 xTPE2E

T

2Px + (1 − α)q2x
TFT

2 F2x
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= xT
{

[αC1 + (1 − α)C2]TP + P[αC1 + (1 − α)C2] + αq−1
1 PE1E

T
1 P + αq1F

T
1 F1

+(1 − α)q−1
2 PE2E

T
2P + (1 − α)q2F

T
2 F2

}

x

= xTΩ1x < 0.

(3.4)

This concludes the proof.

Remark 3.2. This result is seen as the natural extension of that of time-switched linear systems
[16].

4. Stability Analysis for the Second Case

In this section, we consider system (2.13) composed of both stable and unstable subsystems
with neural-type nonlinearities. By means of, respectively, multiple and single Lyapunov
function, we propose two general criteria, together with simple but effective sufficient
conditions guaranteeing the globally exponential stability.

Reconsider the time-switched system (2.13). Here we assume that the first subsystem
is globally exponentially stable at the origin, while the second one unstable. It is natural that
the system as a whole will be globally exponentially stable for any given 0 < α < 1 when
the switching period T approaches to infinite and t0 ∈ [kT, kT + αT). Our interest here is to
determine a region of the binary (T, α) composed of the switching period T and switching
rate α such that the system as a whole is globally exponentially stable therein.

Theorem 4.1. Suppose that there exist two scalar functions Vi : Rn → R+, i = 1, 2, a continuous
and monotonously increasing function γ with γ(0) = 0 and constants λ1 > 0, λ2 > 0 and β ≥ 1 such
that the following conditions hold:

(i) γ(‖x‖) ≤ V1(x);

(ii) for any k = 0, 1, 2, . . ., when t ∈ [kT, kT + αT), V̇1(x) ≤ −λ1V1(x), and when t ∈ [kT +
αT, (k + 1)T), V̇2(x) ≤ λ2V2(x);

(iii) Vi(x) ≤ βVj(x), for any x ∈ Rn and i, j ∈ {1, 2};

(iv) ε = αλ1 − (1 − α)λ2 − (2/T) ln β > 0.

Then, the origin of the time-switched system (2.13) is globally exponentially stable.

Proof. When t ∈ [kT, kT + αT), it follows from condition (ii) that

V1(x) ≤ exp{−λ1(t − kT)}V1(kT). (4.1)

Similarly, when t ∈ [kT + αT, (k + 1)T), the differential inequality V̇2(x) ≤ λ2V (x) implies

V2(x) ≤ exp{λ2(t − kT − αT)}V2(kT + αT). (4.2)
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From (4.1)-(4.2) and condition (iii), we have the following

(a) When t ∈ [0, αT), V1(x) ≤ exp{−λ1t}V1(0).

(b) When t ∈ [αT, T),

V2(x) ≤ exp{λ2(t − αT)}V2(αT)

≤ β exp{λ2(t − αT)}V1(αT)

≤ β exp{λ2(t − αT) − λ1αT}V1(0)

= β exp{−(λ1 + λ2)αT + λ2t}V1(0).

(4.3)

(c) When t ∈ [T, T + αT),

V1(x) ≤ exp{−λ1(t − T)}V1(T)

≤ β exp{−λ1(t − T)}V2(T)

≤ β2 exp{−λ1(t − T) − (λ1 + λ2)αT + λ2T}V1(0)

= β2 exp{(λ1 + λ2)(1 − α)T − λ1t}V1(0).

(4.4)

(d) When t ∈ [T + αT, 2T),

V2(x) ≤ exp{λ2(t − T − αT)}V2(T + αT)

≤ β exp{λ2(t − T − αT)}V1(T + αT)

≤ β3 exp{λ2(t − T − αT) + (λ1 + λ2)(1 − α)T − λ1(T + αT)}V1(0)

= β3 exp{−2(λ1 + λ2)αT + λ2t}V1(0).

(4.5)

By induction, we have the following.

(e) When t ∈ [kT, kT + αT) which implies k ≤ t/T ,

V1(x) ≤ β2k exp{k(λ1 + λ2)(1 − α)T − λ1t}V1(0)

≤ exp
{
[

(λ1 + λ2)(1 − α)T + 2 ln β
] t

T
− λ1t

}

V1(0)

≤ exp
{[

(λ1 + λ2)(1 − α) +
2
T

ln β

]

t

}

V1(0)

= exp
{

−
[

αλ1 − (1 − α)λ2 −
2
T

ln β − λ1

]

t

}

V1(0).

(4.6)
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(f) When t ∈ [kT + αT, (k + 1)T) which implies k + 1 ≥ t/T ≥ k,

V2(x) ≤ β2k+1 exp{−(k + 1)(λ1 + λ2)αT + λ2t}V1(0)

≤ β exp
{
[

−(λ1 + λ2)αT + 2 ln β
] t

T
+ λ2t

}

V1(0)

≤ β exp
{

−
[

(λ1 + λ2)α − 2
T

ln β − λ2

]

t

}

V1(0)

= β exp
{

−
[

αλ1 − (1 − α)λ2 −
2
T

ln β

]

t

}

V1(0).

(4.7)

Therefore, we can conclude the proof from (e)-(f) and conditions (i) and (iv).

Based on Theorem 4.1, if we choose the quadratic Lyapunov function Vi(x) =
xTPix2 (i = 1, 2) for the ith subsystem, the following result is immediate.

Corollary 4.2. Suppose that there exist symmetric and positive definite matrices P1 and P2, the
positive constants λ1, λ2, μ1, and μ2 such that

(i) P1(A1 + 0.5λ1I) + (A1 + 0.5λ1I)
TP1 + μ−1

1 P1B1B
T
1 P1 + μ1L

2
1 ≤ 0,

(ii) P2(A2 − 0.5λ2I) + (A2 − 0.5λ2I)
TP2 + μ−1

2 P2B2B
T
2 P2 + μ2L

2
2 ≤ 0,

(iii) ε = αλ1 − (1 − α)λ2 − (2/T) ln β > 0,

where β = sup1≤i /= j≤2 (λmax(Pi)/λmin(Pj)). Then, by the switching period T with switching rate
α, the origin of time-switched system (2.13) with both stable and unstable subsystems is globally
exponentially stable. Moreover, the norm of state vector satisfies the following inequality:

‖x(t)‖ ≤
√

βλmax(P1)
λmin(P1)

‖x0‖ exp
{

−1
2

[

αλ1 − (1 − α)λ2 −
2
T

ln β

]

t

}

. (4.8)

Proof. Consider the Lyapunov function Vi(x) = xTPix (i = 1, 2). When t ∈ [kT, kT +αT), from
condition (i) and Lemma 2.3 the derivative of V1 along the trajectories of the first subsystem
is calculated and estimated as follows:

V̇1(x) = 2xTP1
[

A1x(t) + B1f(x(t))
]

= xT (t)
[

P1A1 +AT
1P1

]

x(t) + 2xT (t)P1B1f(x(t))

≤ xT (t)
[

P1A1 +AT
1P1

]

x(t) + μ−1
1 xT (t)P1B1B

T
1 P1x(t) + μ1f

T (x(t))f(x(t))

≤ xT (t)
[

P1A1 +AT
1P1 + μ−1

1 P1B1B
T
1 P1

]

x(t) + μ1x
T (t)L2

1x(t)

= xT (t)
[

P1A1 +AT
1P1 + μ−1

1 P1B1B
T
1 P1 + μ1L

2
1

]

x(t)

= −λ1V1(x) + xT (t)
[

P1A1 +AT
1P1 + μ−1

1 P1B1B
T
1 P1 + μ1L

2
1 + λ1P1

]

x(t)

≤ −λ1V1(x).

(4.9)
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Similarly, based on condition (ii) and Lemma 2.3, for t ∈ [kT + αT, (k + 1)T), we have

V̇2(x) = 2xTP2
[

A2x(t) + B2g(x(t))
]

= xT (t)
[

P2A2 +AT
2P2

]

x(t) + 2xT (t)P2B2g(x(t))

≤ xT (t)
[

P2A2 +AT
2P2

]

x(t) + μ−1
2 xT (t)P2B2B

T
2 P2x(t) + μ2g

T (x(t))g(x(t))

≤ xT (t)
[

P2A2 +AT
2P2 + μ−1

2 P2B2B
T
2 P2

]

x(t) + μ2x
T (t)L2

2x(t)

= xT (t)
[

P2A2 +AT
2P2 + μ−1

2 P2B2B
T
2 P2 + μ2L

2
2

]

x(t)

= λ2V2(x) + xT (t)
[

P2A2 +AT
2P2 + μ−1

2 P2B2B
T
2 P2 + μ2L

2
2 − λ2P2

]

x(t)

≤ λ2V2(x).

(4.10)

Therefore, conditions (i)-(ii) in Theorem 4.1 hold. Obviously, the definition of β implies
Vi(x) ≤ βVj(x) which leads to condition (iii) in Theorem 4.1. Thus, we complete the proof.

Remark 4.3. Condition (iv) in Theorem 4.1 and condition (iii) in Corollary 4.2 hold for large
enough switching period T if αλ1−(1−α)λ2 > 0. This is completely consistent with the extreme
case that only the stable system is activated, that is, T = ∞.

Remark 4.4. Condition (iii) in this theorem can help to derive an estimated region Ω of period
T and switching rate α, where each binary (α, T) ∈ Ω can guarantee the exponential stability
of system (2.13). For computational consideration, we suggest the following steps.

(a) Find the maximum λ1 and the corresponding P1 from condition (i) which is
equivalent to the following linear matrix inequality with respect to P1 and μ1 (this
follows from Lemma 2.4):

[

P1A1 +AT
1P + λ1P + μ1L

2
1 −PB1

−BT
1 P −μ1I

]

≤ 0. (4.11)

(b) Therefore, this step is changed into solving the optimization problem

maxλ1

s.t.,

[

P1A1 +AT
1P + λ1P + μ1L

2
1 −PB1

−BT
1 P −μ1I

]

≤ 0.
(4.12)
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(c) Find the minimum λ2 and the corresponding P2 from condition (ii) by solving the
optimization problem

minλ2

s.t.,

[

P2A2 +AT
2P2 + μ2L

2
2 − λ2P2 −P2B2

−BT
2 P2 −μ2I

]

≤ 0.
(4.13)

(d) Estimate the region of (α, T)

Ω =
{

(α, T) : αλ1 − (1 − α)λ2 > 0, T >
2 ln β

αλ1 − (1 − α)λ2

}

. (4.14)

Then, for any (α, T) ∈ Ω, system (2.13) is globally exponentially stable.

Similarly, following the idea of the proof of Theorem 4.1, we have the simpler result
when a common Lyapunov function is chosen.

Theorem 4.5. Suppose that there exist a Lyapunov function V : Rn → R+, a continuous and
monotonously increasing function γ with γ(0) = 0, and constants λ1 > 0, λ2 > 0, and β ≥ 1 such that
the following conditions hold:

(i) γ(‖x‖) ≤ V (x);

(ii) for any k = 0, 1, 2, . . ., when t ∈ [kT, kT + αT), V̇ (x) ≤ −λ1V (x), and when t ∈ [kT +
αT, (k + 1)T), V̇ (x) ≤ λ2V (x);

(iii) ε = αλ1 − (1 − α)λ2 > 0.

Then, the origin of the time-switched system (2.13) is globally exponentially stable for any switching
period T > 0.

Proof. The proof is similar with that of Theorem 4.1, and omitted here.

From this theorem, a standard Lyapunov function V (x) = xTPx will yield the
following corollary.

Corollary 4.6. Suppose that there exist symmetric and a positive definite matrix P , four positive
constants λ1, λ2, μ1, and μ2 such that

(i) P(A1 + 0.5λ1I) + (A1 + 0.5λ1I)
TP + μ−1

1 PB1B
T
1 P + μ1L

2
1 ≤ 0,

(ii) P(A2 − 0.5λ2I) + (A2 − 0.5λ2I)
TP + μ−1

2 PB2B
T
2 P + μ2L

2
2 ≤ 0,

(iii) ε = αλ1 − (1 − α)λ2 > 0.

Then, for any switching period T > 0, the origin of time-switched system (2.13) is globally
exponentially stable. Moreover, the norm of state vector satisfies the following inequality:

‖x(t)‖ ≤
√

λmax(P)
λmin(P)

‖x0‖ exp
{

−1
2
[αλ1 − (1 − α)λ2]t

}

. (4.15)
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We now study this problem by using the linearization system (2.14) and Theorem 4.5.
A simpler sufficient condition for exponential stability of system (2.13) with both stable and
unstable subsystems is established.

Corollary 4.7. Suppose that there exist symmetric and positive definite matrix P , positive constants
λ1, λ2, μ1, and μ2 such that

(i) PC1 + CT
1 P + μ−1

1 PE1E
T
1P + μ1F

T
1 F1 + λ1P ≤ 0,

(ii) PC2 + CT
2 P + μ−1

2 PE2E
T
2P + μ2F

T
2 F2 − λ2P ≤ 0,

then, for arbitrary T > 0, if 1 > α > λ2/(λ1 + λ2), the origin of time-switched system (2.13) with both
stable and unstable subsystems is globally exponentially stable.

Proof. Consider the common Lyapunov function V (x) = xTPx for both subsystems. The rest
of the proof is similar to that of Theorem 4.1, and hence omitted.

Remark 4.8. In Corollaries 4.6 and 4.7, condition (i) is to guarantee the exponential stability of
the first subsystem, while the instability of the second subsystem follows condition (ii).

Remark 4.9. For computational consideration, we suggest the following algorithm.

(a) Find the maximum λ1 and the corresponding P from condition (i) in Corollary 4.6
(or Corollary 4.7) by using the convex optimization algorithm.

(b) Find the minimum λ2 from condition (ii) in Corollary 4.6 (or Corollary 4.7) by using
the convex optimization algorithm. Note that the matrix P is solved in (a).

(c) Calculate the low bound of α, λ2/(λ1+λ2). Then, for any T > 0, if 1 > α > λ2/(λ1+λ2),
system (2.13) is globally exponentially stable.

5. Stability Analysis for the Third Case

In this section, we consider the time-switched system (2.13) with a pair of stable subsystems.
The contribution is twofold. Firstly, for the linear case, we characterize the stability properties
in four aspects. Secondly, we extend the results for the linear case to the nonlinear system with
neural-type nonlinearities.

5.1. Linear Case

Consider the following time-switched system with a pair of stable linear subsystems:

ẋ(t) = A1x(t), kT ≤ t < kT + αT,

ẋ(t) = A2x(t), kT + αT ≤ t < (k + 1)T,

x(0) = x0,

(5.1)

where x ∈ Rn denotes the state vector, Ai = (a(i)
kl ) ∈ Rn×n, i = 1, 2, are Hurwitz.

We have the following results.
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Theorem 5.1. System (5.1) with a pair of stable subsystems is globally exponentially stable for any
switching rule if there exists a symmetric and positive definite matrix P such that both the following
inequalities hold:

(i) PA1 +AT
1P < 0,

(ii) PA2 +AT
2P < 0.

Proof. Consider the common Lyapunov function V (x) = xTPx. Integrating by part V(x) with
respect to time t along the trajectories of the system (5.1), we have, for any t > 0,

V (x) ≤ KxT
0 Px0 exp{−[αλ1 + (1 − α)λ2]t}, (5.2)

where K = exp{α(1 − α)λ2T}, and λi is positive constant and satisfies PAi + AT
i P + λiP <

0, i = 1, 2. Note that for any 0 < α < 1, αλ1 + (1 − α)λ2 > 0, and therefore, (5.2) concludes the
proof.

When the condition in Theorem 5.1 does not hold, we suggest the following claim.

Theorem 5.2. Let

λi = sup
P=PT>0

{

λ : PAi +AT
i P + λP < 0, λ > 0

}

, (5.3)

Pi = arg

(

sup
P=PT>0

{

λ : PAi +AT
i P + λP < 0, λ > 0

}
)

, i = 1, 2. (5.4)

Then, system (5.1) is globally exponentially stable if the switching period T satisfies

T >
2 ln β

αλ1 + (1 − α)λ2
, (5.5)

where β = max1≤i /= j≤2{λmax(Pi)/λmin(Pj)}.

Proof. Consider the multiple Lyapunov function

V1(x) = xTP1x, t ∈ [kT, kT + αT),

V2(x) = xTP2x, t ∈ [kT + αT, (k + 1)T).
(5.6)

Note that PiAi +AT
i Pi +λiPi ≤ 0. We calculate the derivatives of Vi with respect to time t along

the trajectories of the system (5.1) as follows:

V̇i(x) ≤ −λiVi(x), for i = 1, 2. (5.7)
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Therefore, we have

(a) for any t ∈ [kT, kT + αT),

V (x) ≤ V1(0) exp
{

−
[

αλ1 + (1 − α)λ2 −
2 ln β

T

]

kT

}

, (5.8)

(b) for any t ∈ [kT + αT, (k + 1)T),

V (x) ≤ β exp{−αλ1T}V1(0) exp
{

−
[

αλ1 + (1 − α)λ2 −
2 ln β

T

]

kT

}

. (5.9)

Hence, if αλ1 + (1 − α)λ2 − 2 ln β/T > 0, that is, T > 2 ln β/(αλ1 + (1 − α)λ2), system (5.1) is
globally exponentially stable. The proof is thus completed.

5.2. Nonlinear Case

Consider again the nonlinear time-switched system (2.13) and the “linearization” system
(2.14), but in this section we assume that both subsystems in (2.14) are robust Hurwitz-stable.

Arguing similarly with the previous subsection, we have the analogs of the results
described by Theorems 5.1 and 5.2.

Theorem 5.3. Assume that, for i = 1, 2,

λi = sup
P=PT>0
Σi∈Σ∗

{

λ : P(Ci + EiΣiFi) + (Ci + EiΣiFi)TP + λP < 0, λ > 0
}

,

Pi = arg

⎛

⎜
⎝ sup

P=PT>0
Σi∈Σ∗

{

λ : P(Ci + EiΣiFi) + (Ci + EiΣiFi)TP + λP < 0, λ > 0
}

⎞

⎟
⎠,

(5.10)

exist. Then, the origin of system (2.13) is globally exponentially stable if any one of the following
conditions holds.

(i) There exists a symmetric and positive definite matrix P such that

P(Ci + EiΣiFi) + (Ci + EiΣiFi)TP < 0, i = 1, 2, (5.11)

is satisfied for any Σi ∈ Σ∗.

(ii) The switching period T satisfies

T >
2 ln β

αλ1 + (1 − α)λ2
, (5.12)

where β = max1≤i /= j≤2{λmax(Pi)/λmin(Pj)}.
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Notice that, for any μi > 0,

P(Ci + EiΣiFi) + (Ci + EiΣiFi)TP ≤ PCi + CT
i P + μ−1

i PEiE
T
i P + μiF

T
i Fi. (5.13)

Then, the following corollary is immediate.

Corollary 5.4. System (2.13) is globally exponentially stable if any one of the following conditions
holds.

(i) There exist a symmetric and positive definite matrix P and positive constants μi such that

PCi + CT
i P + μ−1

i PEiE
T
i P + μiF

T
i Fi < 0, i = 1, 2, hold. (5.14)

(ii) If, for i = 1, 2, there exist symmetric and positive definite matrices Pi and positive constants
λi satisfying

λi = sup
P=PT>0
μi>0

{

λ : PCi + CT
i P + μ−1

i PEiE
T
i P + μiF

T
i Fi + λP < 0, λ > 0

}

,

Pi = arg

⎛

⎜
⎝ sup

P=PT>0
μi>0

{

λ : PCi + CT
i P + μ−1

i PEiE
T
i P + μiF

T
i Fi + λP < 0, λ > 0

}

⎞

⎟
⎠,

(5.15)

and further the switching period T and switching rate α satisfy T > 2 ln β/(αλ1 + (1 − α)λ2), where
β = max1≤i /= j≤2{λmax(Pi)/λmin(Pj)}.

6. Intermittent Control with Time Duration

Intermittent control is a straightforward engineering approach to process control of any
type. As a special form of switching control, intermittent control is also divided into two
classes: state-dependent switching rule and time-switching rule. The former implies that the
control operation is activated only when the states enter the certain region which is often
pregiven; while the later activates the control only in some finite time intervals; the system
evolves freely when the time goes out of those intervals. Therefore, these intermittent control
systems are open-loop. Intermittent control has been used for a variety of purposes in such
engineering fields as manufacturing, transportation, air-quality control, and communication,
and so on. In the chaos control context, Carr and Schwartz [22–24] demonstrated a method to
control unstable steady states in high-dimensional flows using the duration of time for which
feedback control was applied as an addition parameter. Starrett [25] proposed the so-called
“occasional bang-bang” method to stabilize a periodic saddle point in a strange attractor.
The main idea of occasional bang-bang is to apply control only at regular intervals and for
fixed durations. An application of intermittent control in air-quality control was reported in
[26] where the authors reported a kind of intermittent control system which was designed
to achieve ambient air quality standards constantly by varying emission rates in response
to changing atmospheric dispersion conditions. Recently, the authors in [27] proposed a
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scheme to decouple neighboring qubits in quantum computers through bang-bang pulse
control and demonstrated that two similar sequence of pulses with different time intervals
not only suppress decoherence but entirely or selectively decouple two neighboring qubits.
The authors in [27–31] suggested to controlling the evolution of a system by using strong,
short pulses as a new means for quantum error prevention. Also, the authors in [32] discussed
chaotic synchronization by using intermittent control.

An extreme case of intermittent control is impulsive control which has been gained
increasing interest and intensively researched [33, 34]. The prominent characteristic of
impulsive control is that the states of controlled system will “jump” at certain discrete time
moments, namely, the control is with zero duration of time. Because the states of controlled
systems are changed directly, impulsive control is an effective approach when the states are
observable, but it seems to be invalid when the states of controlled systems are unobservable.

Our interest focuses on the class of intermittent control with time duration, namely,
the control is activated in certain nonzero time intervals, and off in other time intervals.
Specifically, the control law is of the form

u(t) =

⎧

⎨

⎩

u1(t), t ∈ [tk, tk + τ),

0, t ∈ [tk + τ, tk+1).
(6.1)

Consider the nonlinear system described by

ẋ(t) = Ax(t) + Bf(x(t)) + u(t),

y(t) = Cx(t),

x(t0) = x0,

(6.2)

where x = [x1, x2, . . . , xn]
T ∈ Rn denotes the state vector, A = (aij) ∈ Rn×n and B = (bij) ∈ Rn×n

are constant matrices, and the nonlinear function, f(x) = [f1(x1), . . . , fn(xn)]
T : Rn → Rn,

is continuous with f(0) = 0, and satisfies the Lipstchitz condition with the Liptchiz constant
αi, namely, |fi(xi)| ≤ αi|xi|, i = 1, 2, . . . , n. y(t) presents the output of the system with the
coefficient matrix C = (cij) ∈ Rm×n, and u(t) is the external input with the form of (6.1). For
analytical simplification, we assume in this paper the input u(t) is periodical switching with
the fixed duration of time. Specifically, we take u(t), in the sequel, as the form

u(t) = k(t)y(t), (6.3)

with

k(t) =

⎧

⎨

⎩

Kn×m, 0 ≤ t < αT,

0, αT ≤ t < T, 0 < α < 1,

k(t + T) = k(t).

(6.4)

Our object is to find the appropriate K, α, and T such that system (6.2) is stabilized
exponentially at the origin under the periodically intermittent control (6.3) with (6.4).
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Note that the controlled system (6.2) with (6.3)-(6.4) can be rewritten as

ẋ(t) = (A +KC)x(t) + Bf(x(t)), t ∈ [kT, kT + αT),

ẋ(t) = Ax(t) + Bf(x(t)), t ∈ [kT + αT, (k + 1)T),

x(t0) = x0, k = 0, 1, 2, . . . .

(6.5)

According to (2.8), it is not difficult to obtain C1 = A+KC, C2 = A and H1 = H2 = |B|L, where
|B| = (|bij |)n×n and L = diag(α1, . . . , αn). Because H1 = H2 = |B|L, both the equalities E1 = E2

and F1 = F2 hold. For notational simplification, let us define H ≡ H1 = H2, E ≡ E1 = E2, and
F ≡ F1 = F2. From Corollary 4.7, we have the following result.

Theorem 6.1. There exist a matrix Q ∈ Rn×m, and a symmetric, positive definite matrix P, and
positive constants λ1, λ2, and μ such that

(i) QC + CTQT + (λ1 + λ2)P ≤ 0,

(ii) PA +ATP + μ−1PEETP + μFTF − λ2P ≤ 0,

(iii) 1 > α > λ2/(λ1 + λ2).

Then, the origin of system (6.5) is exponentially stable for any T > 0, and the corresponding control
gain matrix is determined by K = P−1Q.

Proof. We only need to show that the conditions in Corollary 4.7 are satisfied. The proof is
trivial, and therefore omitted here.

To end this section, we consider a special external input of the form u(t) = k(t)y(t)
where

k(t) =

⎧

⎨

⎩

k0, t ∈ [kt, kT + αT),

0, t ∈ [kt + αT, (k + 1)T), k = 1, 2, . . . ,
(6.6)

in which k0 is a constant scalar. Then, from Theorem 6.1, the following corollary is immediate.

Corollary 6.2. Let λ0 = infμ>0{λmax(A + AT + μ−1EET + μFTF)}, and λc = λmax(C + CT ). The
origin of controlled system (6.5) is exponentially stable for any T > 0 if 1 > α > −λ0/λck0.

7. Illustrating Examples

In this section, we will give two examples to show the validity of the proposed results.

Example 7.1. Consider system (2.13) with

A1 =

[

−0.5 1

100 −1

]

, A2 =

[

−1 −100

−0.5 −1

]

, B1 = B2 =

[

−1 0

0 −1

]

,

f(x) = g(x) =
[

1
2
(|x1 + 1| − |x1 − 1|), 0

]T

.

(7.1)
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Both subsystems are unstable, as shown in Figure 1(a). Note that

C1 =

[

−1 1

100 −2

]

, C2 =

[

−1.5 −100

−0.5 −1.5

]

,

E1E
T
1 = E2E

T
2 = FT

1 F1 = FT
2 F2 =

[

0.5 0

0 0.5

]

.

(7.2)

Taking P = I (identity matrix) and q1 = q2 = 1, we have, when α = 0.5, Ω1 =
[ −1.5 0.25

0.25 −2

]

with
the eigenvalues −2.104 and −1.396. Hence, it follows from Theorem 3.1 that when α = 0.5
the system in this example is globally exponentially stable for some small enough T > 0, as
shown in Figure 1(b).

Example 7.2. Consider system (2.13) with

A1 =

[

−2 1

1 −2

]

, A2 =

[

2 2

1 3

]

, B1 =

[

1 0.5

−0.4 1

]

, B2 =

[

0.5 0

0 0.5

]

,

f(x) =
[

1
2
(|x1 + 1| − |x1 − 1|), 0

]T

, g(x) =
[

0,
1
2
(|x1 + 1| − |x1 − 1|)

]T

.

(7.3)

Based on Corollary 4.2, solving the linear matrix inequalities by LMI ToolBox involved in the
engineering software MATLAB, we obtain

λ1 = 0.3092, λ2 = 1.675 with μ1 = 17.190433, μ2 = 44.332956,

P1 =

[

11.3808 2.14237

2.14237 5.92472

]

, P2 =

[

39.37458 −3.427225

−3.427225 89.11437

]

.
(7.4)

Therefore, β = 17.235 and an estimated region of Ω is

Ω =
{

(α, t) : 1.9842α − 1.675 − 5.6939
T

> 0, T > 0, α < 1
}

, (7.5)

which covers the whole region above the curve 1.9842α− 1.675− 5.6939/T = 0 with T > 0 and
α < 1.

We also obtain the switching law by using Corollary 4.6. Solving condition (i) in
Corollary 4.6, we get the maximum λ1 = 0.3092 and the corresponding P; then solving the
condition (ii) yields λ2 = 9.8519; finally, we calculate the feasible interval of switching rate,
α ∈ (0.96057, 1). It follows from Corollary 4.6 that the system described in Example 7.2 is
globally exponentially stable for any switching period T > 0, if the switching rate satisfies
1 > α > 0.96057. For the simulation, we choose α = 0.965 and T = 1. The convergence behavior
of this system is shown in Figure 2.
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Figure 1: (a) Time response curves of norm of solution vectors of two subsystems in Example 7.1. (b) Phase
diagram of the switched system in Example 7.1. The switching period T = 0.02, switching rate α = 0.5, the
initial value x(0) = [0.1, 0.1].

8. Conclusions

Globally exponential stability of a class of periodically time-switched systems with two
nonlinear subsystems has been investigated in this paper. Based on the stability property
of subsystems, we divided the considered systems into three subclasses, namely, system
composed of a pair of unstable subsystems; system composed of both stable and unstable
subsystems; system composed of a pair of stable subsystems. A least one sufficient condition
guaranteeing global exponential stability of each of three subclasses was derived by different
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Figure 2: Time response curves of states of the system in Example 7.2.

method including the “averaged” system approach, multiple and single Lyapunov function,
and robust analysis of linear time-variant systems. The periodically intermittent control
design problem was also addressed. This paper focuses on only the neural-type Lipstchitz
nonlinearity, therefore, the further work may deal with the general nonlinear subsystems.
Also, the effect of short and strong control strength on the reduction of the control cost in the
presence of output noise seems to be an interesting topic.

Appendix

A Proof of Lemma 2.1

For any A ∈ N[A,A], it is easy to see that there exist real constants εij , |εij | ≤ 1, such that

A = A0 +
n∑

i,j=1

εijHij , (A.1)

where Hij = (hkl) ∈ Rn×n satisfies

hkl =

⎧

⎨

⎩

h1,i,j , k = i, l = j,

0, otherwise.
(A.2)

Since rank(Hij) ≤ 1, it can be decomposed as

Hij =
√

h1,i,jei ×
√

h1,i,je
T
j , (A.3)

where ei is the ith column-vector of n × n identity matrix.
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From (A.1) and (A.3), we have

A = A0 +
n∑

i,j=1

εij ×
√

h1,i,jei ×
√

h1,i,je
T
j . (A.4)

From (4.1) and (4.2), we can see that there exists a ΣA ∈ Σ∗ such that A = A0 + EAΣAFA, that
is, A ∈ M[A,A]. Hence, N[A,A] ⊆ M[A,A]. Noting that the process above is inverse, we
can also derive the relation N[A,A] ⊇ M[A,A]. Therefore, N[A,A] = M[A,A]. Similarly,
one can show M[B, B] = N[B, B]. The proof is thus completed.
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