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1. Introduction

The well-known Jensen’s inequality for convex function is given as follows.

Theorem 1.1. If (Ω,A, μ) is a probability space and if f ∈ L1(μ) is such that a ≤ f(t) ≤ b for all
t ∈ Ω, −∞ ≤ a < b ≤ ∞,

φ

(∫
Ω
f(t)dμ(t)

)
≤
∫
Ω
φ
(
f(t)

)
dμ(t) (1.1)

is valid for any convex function φ : [a, b] → R. In the case when φ is strictly convex on [a, b] one
has equality in (1.1) if and only if f is constant almost everywhere on Ω.

Here and in the whole paper we suppose that all integrals exist. By considering the
difference of (1.1) for functional in [1] Anwar and Pečarić proved an interesting result of
log-convexity. We can define this result for integrals as follows.
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Theorem 1.2. Let (Ω,A, μ) be a probability space and f ∈ L1(μ) is such that a ≤ f(t) ≤ b for all
t ∈ Ω, −∞ ≤ a < b ≤ ∞. Define

Λs =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s(s − 1)

(∫
Ω

(
f(t)

)s
dμ(t) −

(∫
Ω
f(t)dμ(t)

)s)
, s /= 0, 1,

log
(∫

Ω
f(t)dμ(t)

)
−
∫
Ω
log

(
f(t)

)
dμ(t), s = 0,

∫
Ω

(
f(t)

)
log

(
f(t)

)
dμ(t) −

(∫
Ω
f(t)dμ(t)

)
log

(∫
Ω
f(t)dμ(t)

)
, s = 1,

(1.2)

and let Λs be positive. Then Λs is log-convex, that is, for −∞ < r < s < u < ∞, the following is valid

(Λs)u−r ≤ (Λr)u−s(Λu)s−r . (1.3)

The following improvement of (1.1)was obtained in [2].

Theorem 1.3. Let the conditions of Theorem 1.1 be fulfilled. Then

∫
Ω
φ
(
f(t)

)
dμ(t) − φ

(∫
Ω
f(t)dμ(t)

)

≥
∣∣∣∣
∫
Ω

∣∣∣φ(f(t)) − φ
(
f
)∣∣∣dμ(t) − ∣∣∣φ′

+

(
f
)∣∣∣
∫
Ω

∣∣∣f(t) − f
∣∣∣dμ(t)

∣∣∣∣,
(1.4)

where φ′
+(x) represents the right-hand derivative of φ and

f =
∫
Ω
f(t)dμ(t). (1.5)

If φ is concave, then left-hand side of (1.4) should be φ(
∫
Ωf(t)dμ(t)) −

∫
Ωφf(t)dμ(t).

In this paper, we give another proof and extension of Theorem 1.2 as well as
improvements of Theorem 1.3 for monotone convex function with some applications. Also
we give applications of the Jensen inequality for divergence measures in information theory
and related Cauchy means.

2. Another Proof and Extension of Theorem 1.2

In fact, Theorem 1.2 for Ω = [a, b] and 0 < r < s < u, r, s, u /= 1 was first of all initiated by
Simić in [3].
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Moreover, in his proof, he has used convex functions defined on I = (−∞, 0) ∪ (0, 1) ∪
(1,+∞) (see [3, Theorem 1]). In his proof, he has used the following function:

λ(x) = v2 xs

s(s − 1)
+ 2vw

xr

r(r − 1)
+w2 xu

u(u − 1)
, (2.1)

where r = (s + u)/2 and v, w, r, s, u are real with r, s, t ∈ I.
In [1] we have given correct proof by using extension of (2.1), so that it is defined on

R.
Moreover, we can give another proof so that we use only (2.1) but without using

convexity as in [3].

Proof of Theorem 1.2. Consider the function λ(x) defined, as in [3], by (2.1).
Now

λ′′(x) =
(
vxs/2−1 +wxu/2−1

)2 ≥ 0, for x > 0, (2.2)

that is, λ(x) is convex. By using (1.1) we get

v2Λs + 2vwΛr +w2Λu ≥ 0. (2.3)

Therefore, (2.3) is valid for all s, r, u ∈ I. Now since left-hand side of (2.3) is quadratic form,
by the nonnegativity of it, one has

Λ2
(s+u)/2 = Λ2

r ≤ ΛsΛu. (2.4)

Since we have lims→ 0Λs = Λ0 and lims→ 1Λs = Λ1, we also have that (2.4) is valid for r, s, u ∈
R. So s 	→ Λs is log-convex function in the Jensen sense on R.

Moreover, continuity of Λs implies log-convexity, that is, the following is valid for
−∞ < r < s < u < ∞:

(Λs)u−r ≤ (Λr)u−s(Λu)s−r . (2.5)

Let us note that it was used in [4] to get corresponding Cauchy’s means. Moreover, we
can extend the above result.

Theorem 2.1. Let the conditions of Theorem 1.2 be fulfilled and let pi (i = 1, 2, . . . , n) be real
numbers. Then

∣∣∣Λpij

∣∣∣
k
≥ 0 (k = 1, 2, . . . , n), (2.6)

where |aij |k define the determinant of order k with elements aij and pij = (pi + pj)/2.
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Proof. Consider the function

f(x) =
n∑

i,j=1

uiuj
xpij

pij
(
pij − 1

) (2.7)

for x > 0 and ui ∈ R and pij ∈ I.
So, it holds that

f ′′(x) =
n∑

i,j=1

uiujx
pij−2 =

(
n∑
i=1

uix
pi/2−1

)2

≥ 0. (2.8)

So f(x) is convex function, and as a consequence of (1.1), one has

n∑
i,j=1

uiujΛpij ≥ 0. (2.9)

Therefore, [Λpij ] ([aij] denote the n×nmatrix with elements aij) is nonnegative semi definite
and (2.6) is valid for pij ∈ I. Moreover, since we have continuity ofΛpij for all pij , (2.6) is valid
for all pi ∈ R (i = 1, 2, . . . , n).

Remark 2.2. In Theorem 2.1, if we set n = 2, we get Theorem 1.2.

3. Improvements of the Jensen Inequality for Monotone
Convex Function

In this section and in the following section, we denote x =
∑n

i=1 pixi and PI =
∑

i∈I pi.

Theorem 3.1. If (Ω,A, μ) is a probability space and if f ∈ L1(μ) is such a ≤ f(t) ≤ b for t ∈ Ω, and
if f(t) ≥ f for t ∈ Ω′ ⊂ Ω (Ω′ is measurable, i.e., Ω′ ∈ A), −∞ < a < b ≤ ∞, then

∫
Ω
φ
(
f(t)

)
dμ(t) − φ

(∫
Ω
f(t)dμ(t)

)

≥
∣∣∣∣
∫
Ω
sgn

(
f(t) − f

)[
φ
(
f(t)

) − φ′
+

(
f
)
f(t)

]
dμ(t) +

[
φ
(
f
)
− fφ′

+

(
f
)][

1 − 2μ
(
Ω′)]∣∣∣∣,

(3.1)

where

f =
∫
Ω
f(t)dμ(t), (3.2)

for monotone convex function φ : [a, b] → R. If φ is monotone concave, then the left-hand side of
(3.1) should be φ(

∫
Ωf(t)dμ(t)) −

∫
Ωφ(f(t))dμ(t).
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Proof. Consider the case when φ is nondecreasing on [a, b]. Then

∫
Ω

∣∣∣φ(f(t)) − φ
(
f
)∣∣∣dμ(t)

=
∫
Ω′

(
φ
(
f(t)

) − φ
(
f
))

dμ(t) +
∫
Ω\Ω′

(
φ
(
f
)
− φ

(
f(t)

))
dμ(t)

=
∫
Ω′
φ
(
f(t)

)
dμ(t) −

∫
Ω\Ω′

φ
(
f(t)

)
dμ(t) − φ

(
f
)
μ
(
Ω′) + φ

(
f
)
μ
(
Ω \Ω′)

=
∫
Ω
sgn

(
f(t) − f

)
φ
(
f(t)

)
dμ(t) + φ

(
f
)(

μ
(
Ω \Ω′) − μ

(
Ω′)).

(3.3)

Similarly,

∫
Ω

∣∣∣f(t) − f
∣∣∣dμ(t) =

∫
Ω
sgn

(
f(t) − f

)
f(t)dμ(t) + f

(
μ
(
Ω \Ω′) − μ

(
Ω′)). (3.4)

Now from (1.4), (3.3), and (3.4) we get (3.1).
The case when φ is nonincreasing can be treated in a similar way.

Of course a discrete inequality is a simple consequence of Theorem 3.1.

Theorem 3.2. Let φ : [a, b] → R be a monotone convex function, xi ∈ [a, b], pi > 0,
∑n

i=1 pi = 1.
If xi ≥ x for i ∈ I ⊂ {1, 2, . . . , n}(= In), then

n∑
i=1

piφ(xi) − φ

(
n∑
i=1

pixi

)

≥
∣∣∣∣∣

n∑
i=1

pi sgn(xi − x)
[
φ(xi) − xiφ

′
+(x)

]
+
[
φ(x) − xφ′

+(x)
]
[1 − 2PI]

∣∣∣∣∣.
(3.5)

If φ is monotone concave, then the left-hand side of (3.5) should be

φ

(
n∑
i=1

pixi

)
−

n∑
i=1

piφ(xi). (3.6)

The following improvement of the Hermite-Hadamard inequality is valid [5].
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Corollary 3.3. Let φ : [a, b] → R be a differentiable convex. Then

(i) the inequality

1
b − a

∫b

a

φ(t)dt − φ

(
a + b

2

)
≥
∣∣∣∣∣

1
b − a

∫b

a

∣∣∣∣φ(t) − φ

(
a + b

2

)∣∣∣∣dt

−
(
b − a

4

)∣∣∣∣φ′
(
a + b

2

)∣∣∣∣
∣∣∣∣

(3.7)

holds.
If φ is differentiable concave, then the left-hand side of (3.7) should be φ((a + b)/2) −
(1/(b − a))

∫b
aφ(t)dt;

(ii) if φ is monotone, then the inequality

1
b − a

∫b

a

φ(t)dt − φ

(
a + b

2

)

≥
∣∣∣∣∣

1
b − a

∫b

a

sgn
(
t − a + b

2

)(
φ(t) − tφ′

(
a + b

2

))
dt

∣∣∣∣∣
(3.8)

holds. If φ is differentiable and monotone concave then the left-hand side of (3.8) should be
φ((a + b)/2) − (1/(b − a))

∫b
aφ(t)dt.

Proof. (i) Setting Ω = [a, b], f(t) = t, dμ(t) = dt/(b − a) in (1.4), we get (3.7).
(ii) Setting f(t) = t, dμ(t) = dt/(b − a), and Ω = [a, b] in (3.1), we get (3.8).

4. Improvements of the Levinson Inequality

Theorem 4.1. If the third derivative of f exist and is nonnegative, then for 0 < xi < a, pi > 0 (1 ≤
i ≤ n),

∑n
i=1 pi = 1 and Pk =

∑k
i=1 pi (2 ≤ k ≤ n − 1) one has

(i)

n∑
i=1

pif(2a − xi) − f(2a − x) −
n∑
i=1

pif(xi) + f(x)

≥
∣∣∣∣∣

n∑
i=1

pi
∣∣f(2a − xi) − f(xi) − f(2a − x) + f(x)

∣∣

−∣∣f ′(2a − x) + f ′(x)
∣∣ n∑
i=1

pi|xi − x|
∣∣∣∣∣,

(4.1)
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(ii) if φ(x) = f(2a − x) − f(x) is monotone and xi ≥ x for i ∈ I ⊂ {1, 2, . . . , n} = In, then

n∑
i=1

pif(2a − xi) − f(2a − x) −
n∑
i=1

pif(xi) + f(x)

≥
∣∣∣∣∣

n∑
i=1

pi sgn(xi − x)
[
f(2a − xi) − f(xi) + xi

(
f ′(2a − x) + f ′(x)

)]

+
[
f(2a − x) − f(x) + x

(
f ′(2a − x) + f ′(x)

)]
[1 − 2PI]

∣∣∣∣∣.

(4.2)

Proof. (i) As for 3-convex function f : [0, 2a] → R the function φ(x) = f(2a − x) − f(x) is
convex on [0, a], so by setting φ = f(2a − x) − f(x) in the discrete case of [2, Theorem 2], we
get (4.1).

(ii) As f(2a−x)− f(x) is monotone convex, so by setting φ = f(2a−x)− f(x) in (3.5),
we get (5.16).

Ky Fan Inequality

Let xi ∈ (0, 1/2] be such that x1 ≥ x2 ≥ · · · ≥ xk ≥ x ≥ xk+1 · · · ≥ xn. We denote Gk and Ak, the
weighted geometric and arithmetic means, respectively, that is,

Ak =
1
Pk

(
k∑
i=1

pixi

)
(= x), Gk =

(
k∏
i=1

x
pi
i

)1/Pk

, (4.3)

and also by A′
k and G′

k, the arithmetic and geometric means of 1 − xi, respectively, that is,

A′
k =

1
Pk

k∑
i=1

pi(1 − xi)(= 1 −Ak), G′
k =

(
k∏
i=1

(1 − xi)pi
)1/Pk

. (4.4)

The following remarkable inequality, due to Ky Fan, is valid [6, page 5],

Gn

G′
n
≤ An

A′
n
, (4.5)

with equality sign if and only if x1 = x2 = · · · = xn.
Inequality (4.5) has evoked the interest of several mathematicians and in numerous

articles new proofs, extensions, refinements and various related results have been published
[7].

The following improvement of Ky Fan inequality is valid [2].
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Corollary 4.2. LetAn, Gn andA′
n, G

′
n be as defined earlier. Then, the following inequalities are valid

(i)

An/A
′
n

Gn/G
′
n

≥ exp

(∣∣∣∣∣
n∑
i=1

pi

∣∣∣∣ln
(
(1 − xi)An

xiA
′
n

)∣∣∣∣ − 1
AnA

′
n

n∑
i=1

pi|xi −An|
∣∣∣∣∣
)
, (4.6)

(ii)

An/A
′
n

Gn/G
′
n
≥ exp

[∣∣∣∣∣2Pk

{
ln

(
G′

k
An

GkA
′
n

)
+
Ak −An

AnA
′
n

}
+ ln

(
GnA

′
n

AnG
′
n

)∣∣∣∣∣
]
. (4.7)

Proof. (i) Setting a = 1/2, f(x) = lnx in (4.1), we get (4.6).
(ii) Consider a = 1/2 and f(x) = lnx, then φ(x) = ln(1 − x) − lnx is strictly monotone

convex on the interval (0, 1/2) and has derivative

φ′(x) = − 1
x(x − 1)

. (4.8)

Then the application of inequality (4.2) to this function is given by

n∑
i=1

pi ln
1 − xi

xi
− ln

1 − x

x

≥
∣∣∣∣∣

n∑
i=1

pi sgn(xi − x)
[
ln

1 − xi

xi
+

xi

x(1 − x)

]
+
[
ln

1 − x

x
+

1
1 − x

]
(1 − 2Pk)

∣∣∣∣∣.
(4.9)

From (4.9)we get (4.7).

5. On Some Inequalities for Csiszár Divergence Measures

Let (Ω,A, μ) be a measure space satisfying |A| > 2 and μ a σ-finite measure on Ω with values
in R∪ {∞}. Let P be the set of all probability measures on the measurable space (Ω,A)which
are absolutely continuous with respect to μ. For P,Q ∈ P, let p = dP/dμ and q = dQ/dμ
denote the Radon-Nikodym derivatives of P and Q with respect to μ, respectively.

Csiszár introduced the concept of f-divergence for a convex function, f : [0,∞) →
(−∞,∞) that is continuous at 0 as follows (cf. [8], see also [9]).

Definition 5.1. Let P,Q ∈ P. Then

If(Q,P) =
∫
Ω
p(s)f

(
q(s)
p(s)

)
dμ(s), (5.1)

is called the f-divergence of the probability distributions Q and P .
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We give some important f-divergences, playing a significant role in Information
Theory and statistics.

(i) The class of χ-divergences: the f-divergences, in this class, are generated by the
family of functions:

fα(u) = |u − 1|α u ≥ 0, α ≥ 1,

Ifα(Q,P) =
∫
Ω
p1−α(s)|q(s) − p(s)|αdμ(s).

(5.2)

For α = 1, it gives the total variation distance:

V (Q,P) =
∫
Ω

∣∣q(s) − p(s)
∣∣dμ(s). (5.3)

For α = 2, it gives the Karl pearson χ2-divergence:

Iχ2(Q,P) =
∫
Ω

[q(s) − p(s)]2

p(s)
dμ(s). (5.4)

(ii)The α-order Renyi entropy: for α ∈ R \ {0, 1}, let

f(t) = tα, t > 0. (5.5)

Then If gives α-order entropy

Dα(Q,P) =
∫
Ω
qα(s)p1−α(s)dμ(s). (5.6)

(iii)Harmonic distance: let

f(t) =
2t

1 + t
, t > 0. (5.7)

Then If gives Harmonic distance

DH(Q,P) =
∫
Ω

2p(s)q(s)
p(s) + q(s)

dμ(s). (5.8)

(iv) Kullback-Leibler: let

f(t) = t log t, t > 0. (5.9)
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Then f-divergence functional gives rise to Kullback-Leibler distance [10]

DKL(Q,P) =
∫
Ω
q(s) log

(
q(s)
p(s)

)
dμ(s). (5.10)

The one parametric generalization of the Kullback-Leibler [10] relative information studied
in a different way by Cressie and Read [11].

(v) The Dichotomy class: this class is generated by the family of functions gα :
[0,∞) → R,

gα(u) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u − 1 − logu, α = 0,

1
α(1 − α)

[αu + 1 − α − uα], α ∈ R \ {0, 1},

1 − u + u logu, α = 1.

(5.11)

This class gives, for particular values of α, some important divergences. For instance, for
α = 1/2, we have Hellinger distance and some other divergences for this class are given by

Igα(Q,P) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Q − P +DKL(P,Q), α = 0,

α(Q − P) + P −Dα(Q,P)
α(1 − α)

, α ∈ R \ {0, 1},

DKL(Q,P) + P −Q, α = 1,

(5.12)

where p(x) and q(x) are positive integrable functions with
∫
Ωp(s)dμ(s) = P,

∫
Ωq(s)dμ(s) =

Q.
There are various other divergences in Information Theory and statistics such as

Arimoto-type divergences, Matushita’s divergence, Puri-Vincze divergences (cf. [12–14])
used in various problems in Information Theory and statistics. An application of Theorem 1.1
is the following result given by Csiszár and Körner (cf. [15]).

Theorem 5.2. Let f : [0,∞) → R be convex, and let p and q be positive integrable function with∫
Ωp(s)dμ(s) = P,

∫
Ωq(s)dμ(s) = Q. Then the following inequality is valid:

If(P,Q) ≥ Qf

(
P

Q

)
, (5.13)

where If(P,Q) =
∫
Ωq(s)f(p(s)/q(s))dμ(s).

Proof. By substituting φ(s) = f(s), f(s) = p(s)/q(s) and dμ(s) = q(s)dμ(s) in Theorem 1.1
we get (5.13).

Similar consequence of Theorems 1.2 and 2.1 in information theory for divergence
measures discussed above is the following result.
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Theorem 5.3. Let p and q be positive integrable functions with
∫
Ωp(s)dμ(s) = P,

∫
Ωq(s)dμ(s) =

Q. Define the function

Φt =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
t(1 − t)

(
PtQ1−t −Dt(P,Q)

)
, t /= 0, 1,

DKL(Q,P) +Q log
P

Q
, t = 0,

DKL(P,Q) + P log
Q

P
, t = 1,

(5.14)

and let Φt be positive. Then

(i) it holds that

∣∣∣Φpij

∣∣∣
k
≥ 0 (k = 1, 2, . . . , n), (5.15)

where |aij |k define the determinant of order n with elements aij and pij = (pi + pj)/2,

(ii) Φt is log-convex.

As we said in [4] we define new means of the Cauchy type, here we define an
application of these means for divergence measures in the following definition.

Definition 5.4. Let p and q be positive integrable functions with
∫
Ωp(s)dμ(s) =

P,
∫
Ωq(s)dμ(s) = Q. The mean Ms,t is defined as

Ms,t =
(
Φs

Φt

)1/(s−t)
, s /= t /= 0, 1,

Ms,s = exp

(
PsQ1−s log(P/Q) −D′

s(P,Q)
PsQ1−s −Ds(P,Q)

− 1 − 2s
s(1 − s)

)
, s /= 0, 1,

M0,0 = exp

(
Q
(
log(P/Q)

)2 −D′′
0(P,Q)

2
(
Q log(P/Q) −D′

0(P,Q)
) + 1

)
,

(5.16)

where D′
0(P,Q) =

∫
Ωq(s) log(p(s)/q(s))dμ(s) and D′′

0(P,Q) =
∫
Ωq(s) log (p(s)/q(s))

2dμ(s),

M1,1 = exp

(
Q
(
log(P/Q)

)2 −D′′
1(P,Q)

2
(
P log(P/Q) −D′

1(P,Q)
) − 1

)
, (5.17)

where D′
1(P,Q) =

∫
Ωp(s) log(q(s)/p(s))dμ(s) and D′′

1(P,Q) =
∫
Ωp(s) log (q(s)/p(s))

2dμ(s).

Theorem 5.5. Let r, s, t, u be nonnegative reals such that r ≤ t, s ≤ u, then

Mr,t ≤ Ms,u. (5.18)
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Proof. By using log convexity of Φt, we get the following result for r, s, t, u ∈ R such that
r ≤ t, s ≤ u and r /= s, t /=u

(
Φs

Φr

)1/(s−r)
≤
(
Φu

Φt

)1/(u−t)
. (5.19)

Also for r = s, t = u, we consider limiting case and the result follows from continuity of
Ms,u.

An application of Theorem 1.3 in divergence measure is the following result given in
[16].

Theorem 5.6. Let f : I ⊆ R → R be differentiable convex function on
o

I, then

If(P,Q) −Qf

(
P

Q

)
≥
∣∣∣∣∣
∣∣∣∣If(P,Q) −Qf

(
P

Q

)∣∣∣∣ −
∣∣f ′(P/Q)

∣∣
Q

Q

∣∣∣∣∣, (5.20)

where

Q =
∫
Ω

∣∣Qp(s) − Pq(s)
∣∣dμ(s). (5.21)

Proof. By substituting φ(s) = f(s), f(s) = p(s)/q(s), and dμ(s) 	→ q(s)dμ(s) in Theorem 1.3,
we get (5.20).

Theorem 5.7. Let f : I ⊆ R → R be differentiable monotone convex function on
o

I and let
p(s) /q(s) > P/Q for s ∈ Ω′ ⊂ Ω

If(P,Q) −Qf

(
P

Q

)
≥
∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)
f

(
p(s)
q(s)

)
q(s)dμ(s)

− f ′
(
P

Q

)∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)
p(s)dμ(s)

+Q

[
f

(
P

Q

)
− P

Q
f ′
(
P

Q

)][
1 − 2

Q′

Q

]
,

(5.22)

where

Q′ =
∫
Ω′
q(s)dμ(s), (5.23)

and Ω′ as in Theorem 5.7.

Proof. By substituting φ(s) = f(s), f(s) = p(s)/q(s) and dμ(s) 	→ q(s)dμ(s) in
Theorem 3.1(ii)we get (5.22).
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Corollary 5.8. It holds that

DHα(P,Q) − 2PQ
P +Q

≥
∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)
2p(s)q(s)
p(s) + q(s)

dμ(s)

− 2Q2

(P +Q)2

∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)
p(s)dμ(s)

+

[
2PQ
P +Q

− 2PQ2

(P +Q)2

][
1 − 2Q′

Q

]
,

(5.24)

where

Q′ =
∫
Ω′
q(s)dμ(s), (5.25)

and Ω′ as in Theorem 5.7.

Proof. The proof follows by setting f(t) = 2t/(1 + t), t > 0 in Theorem 5.7.

Corollary 5.9. Let gα : R+ → R be as given in (5.11), then

(i) for α = 0 one has

DKL(Q,P) +Q log
(
P

Q

)

≥
∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)(
p(s)
q(s)

− 1 − log
(
p(s)
q(s)

))
q(s)dμ(s)

− P −Q

P

∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)
p(s)dμ(s) +Q log

(
P

Q

)(
1 − 2Q′

Q

)
,

(5.26)

(ii) for α ∈ R \ {0, 1} one has

PαQ1−α −Dα(P,Q)
α(1 − α)

≥
∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)(
α
p(s)
q(s)

+ 1 − α − p(s)αq(s)−α
)
q(s)dμ(s)

− α
(
1 − Pα−1Q1−α

)∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)
p(s)dμ(s)

+

[
α P + Q − α Q + P Q(1−α) − α P/Q

(
1 − P(1−α) Q(1−α)

)]
(1 − 2Q′/Q)

α(1 − α)
,

(5.27)
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(iii) for α = 1 one has

DKL(P,Q) +
P

Q
log

(
P

Q

)
≥
∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)(
1 − p(s)

q(s)
+
p(s)
q(s)

log
p(s)
q(s)

)
q(s)dμ(s)

− log
(
P

Q

)∫
Ω
sgn

(
p(s)
q(s)

− P

Q

)
p(s)dμ(s)

+ [Q − P]
[
1 − 2Q′

Q

]
,

(5.28)

where

Q′ =
∫
Ω′
q(s)dμ(s), (5.29)

and Ω′ as in Theorem 5.7.

Proof. The proof follows be setting f = gα to be as given in (5.11), in Theorem 3.1.
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