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1. Introduction

The investigation for stochastic partial differential equations with delays has attracted the
considerable attention of researchers and many qualitative theories for the solutions of this
kind have been derived. Many important results have been reported in [1–20]. For example,
Caraballo, in [1], extended the results from Haussmann [7] to the delay equations of the
same kind; Mao, in [15, 21], proved the exponential stability in mean-square sense about
the strong solutions of linear stochastic differential equations with finite constant delay; by
using the method in [7, 8], Caraballo and Real, in [4], considered the stability for the strong
solutions of semilinear stochastic delay evolution equations; Govindan, in [5, 6], has studied
the existence and stability of mild solutions for stochastic partial differential equations by the
comparison theorem; Caraballo and Liu, in [2], discussed the exponential stability for mild
solution of stochastic partial differential equations with delays by employing the well-known
Gronwall inequality and stochastic analysis technique under the Lipschitz condition, but the
requirement of the monotone decreasing behaviors of the delays should be imposed; Liu and
Truman in [9] and Liu and Mao in [10] analyzed the exponential stability for mild solution
of stochastic partial functional differential equations by establishing the corresponding
Razuminkhin-type theorem.
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In the case of delay differential equations, in the particular case whenwe are concerned
with themild solution of stochastic partial differential equations, Lyapunov’s secondmethod,
although it is usually regarded as an important tool to study the stability and boundedness,
is not suitable to consider such problem. A crucial problem is that mild solutions do not
have stochastic differentials, so that the Itô formula fails to deal with this problem. Very
recently, Burton has successfully utilized the fixed point theorem to investigate the stability
for deterministic systems in [22]; Luo in [23] and Appleby in [22] have applied this valuable
method into dealing with the stability for stochastic differential equations. Following the
ideas of Burton in [22], Luo in [23], and Appleby in [24], by employing the contraction
mapping principle and stochastic analysis, some sufficient conditions ensuring the trivial
solution of exponential stability in p (p ≥ 2)-moment and almost sure exponential stability
for mild solution of stochastic partial differential equations with delays were obtained in [13],
which did not comprise the monotone decreasing behavior of the delays.

However, comparing with stochastic partial differential equations with delays, there
are only a few results about neutral stochastic partial differential equations. Precisely, Liu
[11] considered a linear neutral stochastic differential equations with constant delays and
some stability properties of the mild solutions in a similar way as Datko [25] in the
deterministic case. Caraballo et al., in [3], have studied the almost sure exponential stability
and ultimate boundedness of the solutions to a class of neutral stochastic semilinear partial
delay differential equations; Mahmudov, in [14], has discussed the existence and uniqueness
for mild solution of neutral stochastic differential equations by constructing a new iterative
scheme under the non-Lipschitz conditions.

It should be pointed out that there exist a number of difficulties encountered in the
study of the stability for mild solution to neutral stochastic partial differential equations
with delays since the neutral item is present. And many methods used frequently fail to
consider the exponential stability of mild solution for neutral stochastic partial differential
equations with delays, for example, the comparison theorem in [5, 6], the Gronwall inequality
in [2], the analytic technique in [9], and the semigroup method in [16]. The methods
proposed in [1, 3, 8, 10, 18, 20] are also ineffective in dealing with this problem since
mild solutions do not have stochastic differentials. So, the technique and the method dealt
with such problems are in need of being developed and explored. On the other hand, to
the best of our knowledge, there is no paper which investigates the exponential stability
in p (p ≥ 2)-moment and almost surely exponential stability for mild solution of such
problems. Thus, we will make the first attempt to study such problem to close this gap in
this paper.

The content of this paper is arranged as follows. In Section 2, some necessary
definitions, notations, and lemmas used in this paper will be introduced. In Section 3, by
establishing a lemma, some sufficient conditions about the exponential stability in p (p ≥ 2)-
moment and almost sure exponential stability are derived. Finally, one example is provided
to illustrate the obtained results.

2. Preliminaries

Let X and Y be two real, separable Hilbert spaces and let L(Y,X) be the space of bounded
linear operators from Y to X. For the sake of convenience, we shall use the same notation
‖ · ‖ to denote the norms in X, Y and L(Y,X). Let (Ω, I, P) be a complete probability space
equipped with some filtration It (t ≥ 0) satisfying the usual conditions; that is, the filtration
is right continuous and I0 contains all P -null sets.
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In this paper, we consider the following neutral stochastic partial differential equations
with delays:

d[x(t) −D(t, x(t − δ(t)))]

=
[
Ax(t) + f(t, x(t − r(t)))

]
dt + g

(
t, x
(
t − ρ(t)

))
dw(t), t ∈ [0,+∞),

x0(·) = ϕ ∈ Cb
I0
,

(2.1)

where ϕ is I0-measurable and δ, r, ρ : [0,+∞) → [0, τ] (τ > 0) are bounded and continuous
functions. Let C([−τ, 0], X) be the space of all right-continuous functions with left-hand limit
ϕ from [−τ, 0] to X with the sup-norm ‖ · ‖C = sup−τ≤θ≤0 ‖ϕ(θ)‖ and let Cb

It
≡ Cb

It
([−τ, 0], X)

be the family of all almost surely bounded, It (t ≥ 0)-measurable, and C([−τ, 0], X)-valued
random variables. −A is a closed, densely defined linear operator generating an analytic
semigroup S(t) (t ≥ 0) on the Hilbert space X; then it is possible under some circumstances
(we refer the readers to [26] for a detailed presentations of the definition and relevant
properties of (−A)α) to define the fractional power (−A)α : D((−A)α) → X which is a
closed linear operator with its domain D((−A)α), for α ∈ (0, 1]. Let f : [0,+∞) × X → X,
(−A)αD : [0,+∞) × X → X, and g : [0,+∞) × X → L0

2(Y,X) be three suitable measurable
mappings, where L0

2(Y,X) is introduced in detail as follows.
Let βn(t) (n = 1, 2, . . .) be a sequence of real-valued one-dimensional standard

Brownian motions mutually independent over (Ω, I, P). Set w(t) =
∑+∞

n=1

√
λnβn(t)en, t ≥ 0,

where λn ≥ 0 (n = 1, 2, . . .) are nonnegative real numbers and {en} (n = 1, 2, . . .) is a complete
orthonormal basis in Y . Let Q ∈ L(Y, Y ) be an operator defined by Qen = λnen with a finite
trace trQ =

∑+∞
n=1 λn < +∞. Then, the above Y -valued stochastic process w(t) is called a Q-

Wiener process.

Definition 2.1. Let σ ∈ L(Y,X) and define

‖σ‖2
L0
2
:= tr(σQσ∗) =

{
+∞∑

n=1

∥∥∥
√
λnσen

∥∥∥
2
}

. (2.2)

If ‖σ‖2
L0
2
< +∞, then σ is called aQ-Hilbert-Schmidt operator and let L0

2(Y,X) denote the space
of all Q-Hilbert-Schmidt operators σ : Y → X.

Now, for the definition of an X-valued stochastic integral of an L0
2(Y,X)-valued and

It-adapted predictable process Φ(t) with respect to the Q-Wiener process w(t), the readers
can refer to [26].

Definition 2.2. An X-value stochastic process x(t), t ∈ [−τ,+∞), is called a mild solution of
the system (2.1), if

(i) x(t) is a It (t ≥ 0) adapted process;

(ii) x(t) ∈ X has a continuous paths on t ∈ [0,+∞) almost surely, and f or arbitrary
t ∈ [0,+∞),
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x(t) = S(t)(x(0) −D(0, x(−δ(0)))) +D(t, x(t − δ(t))) +
∫ t

0
AS(t − s)D(s, x(s − δ(s)))ds

+
∫ t

0
S(t − s)f(s, x(s − r(s)))ds +

∫ t

0
S(t − s)G

(
s, x

(
s − ρ(s)

))
dw(s),

(2.3)

where x0(·) = ϕ ∈ Cb
I0
.

Definition 2.3. Themild solution of system (2.1) is said to be exponentially stable in p (p ≥ 2)-
moment, if there exists a pair of positive constants γ > 0 and M1 > 0, for any initial value
ϕ ∈ Cb

I0
such that

E‖x(t)‖p ≤ M1E
∥∥ϕ
∥∥p
Ce

−γt, t ≥ 0, p ≥ 2. (2.4)

Definition 2.4. The mild solution of (2.1) is said to be almost surely exponential stability if
there exists a positive constant α > 0, for any initial value ϕ ∈ Cb

I0
, such that

lim
t→+∞

sup
1
t
ln(‖x(t)‖) < −α, P − a.s. (2.5)

Lemma 2.5 (see [26]). Suppose that −A is the infinitesimal generator of an analytic semigroup
S(t)(t ≥ 0), on the separable Hilbert space X. If 0 ∈ ρ(−A), then one has the following.

(a) There exist a constantM ≥ 1 and a real number β > 0 such that ‖S(t)h‖ ≤ Me−βt‖h‖, t ≥
0, for any h ∈ X.

(b) The fractional power (−A)α satisfies that ‖(−A)αS(t)h‖ ≤ Mαe
−βtt−α‖h‖, t > 0, for any

h ∈ X, where Mα ≥ 1, α ∈ (0, 1].

(c) ‖(S(t) − I)h‖ ≤ Nαt
α‖(−A)αh‖, h ∈ D((−A)α), Nα ≥ 1, t ≥ 0.

Lemma 2.6 (see [21, 27]). Let p ∈ [1,+∞) and ν ∈ (0, 1). For any two real positive numbers
a, b > 0, then

(a + b)p ≤ ν1−pap + (1 − ν)1−pbp. (2.6)

Lemma 2.7 (see [28]). For any r ≥ 1 and for arbitrary L0
2(Y,X)-valued predictable process Φ(·),

sup
s∈[0,t]

E

∥∥∥∥

∫s

0
Φ(u)dw(u)

∥∥∥∥

2r

≤ Cr

(∫ t

0

(
E‖Φ(s)‖2r

L0
2

)1/r
ds

)r

, t ∈ [0,+∞), (2.7)

where Cr = (r(2r − 1))r .
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Lemma 2.8 (see [2]). Let ‖S(t)‖ ≤ M. For all t ≥ 0 let Φ : [0,+∞) → L0
2 be a predictable, It-

adapted process such that
∫ t
0E‖Φ(s)‖p

L0
2
ds < +∞ for some integer p > 2 and any t ≥ 0. Then, there

exists a constant c(p) > 0 such that for any fixed natural number N > t0,

E

{

sup
N≤t≤N+1

∥∥∥∥∥

∫ t

N

S(t − s)Φ(s)dw(s)

∥∥∥∥∥

p}

≤ c
(
p
)
∫N+1

N

E‖Φ(s)‖p
L0
2
ds. (2.8)

Lemma 2.9 (see [2]). Let A be the infinitesimal generator of a contraction semigroup. Let Φ :
[0,+∞) → L0

2(Y,X) be a predictable It-adapted process such that
∫ t
0E‖Φ(s)‖2

L0
2
ds < +∞, for any

t ≥ 0. Then there exists a constant K0 > 0, independent of N, such that for any fixed natural number
N > 0,

E

⎧
⎨

⎩
sup

N≤t≤N+1

∥∥∥∥∥

∫ t

N

S(t − s)Φ(s)dw(s)

∥∥∥∥∥

2
⎫
⎬

⎭
≤ K0

∫N+1

N

E‖Φ(s)‖2
L0
2
ds. (2.9)

Furthermore, one imposes the following important assumptions.

(H1) The mappings f(t, ·) and g(t, ·) satisfy the uniformly Lipschitz condition: there exist two
positive constants C1, C2 > 0, for any x, y ∈ X and t ≥ 0 such that

∥∥f(t, x) − f
(
t, y
)∥∥ ≤ C1

∥∥x − y
∥∥, f(t, 0) = 0,

∥∥g(t, x) − g(t, y)
∥∥
L0
2
≤ C2

∥∥x − y
∥∥, g(t, 0) = 0.

(2.10)

(H2) The mapping (−A)αD(t, ·) also satisfies the uniformly Lipschitz condition: there exists one
positive constant C3 > 0, for any x, y ∈ X such that

∥∥(−A)αD(t, x) − (−A)αD
(
t, y
)∥∥ ≤ C3

∥∥x − y
∥∥, D(t, 0) = 0, t ≥ 0, (2.11)

for α ∈ (1/p, 1] (p ≥ 2) and D(t, ·) ∈ D((−A)α).

(H3) For α ∈ (1/p, 1] (p ≥ 2), κ = ‖(−A)−α‖C3 < 1.

Remark 2.10. Under the condition: (H1)–(H3), the existence and uniqueness of mild solution
to the neutral stochastic partial differential equations with delays (2.1) is easily shown by
using the proposed method in [14] and the proof of this problem is very similar to the proof
of [14, Theorem 6]. Here, we omit it. In particular, the system (2.1) obviously has a trivial
mild solution when ϕ = 0.

3. Main Results

In this section, in order to establish some sufficient conditions ensuring the exponential
stability in p (p ≥ 2)-moment and almost sure exponential stability for mild solution of
system (2.1), we are in need of establishing the following integral-inequality to overcome
the difficulty when the neutral item is present.
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Lemma 3.1. For γ > 0, there exist three positive constants: λi > 0 (i = 1, 2, 3) and a function
y : [−τ,+∞) → [0,+∞). If λ2 + (λ3/γ) < 1, the following inequality

y(t) ≤

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1e
−γt + λ2 sup

θ∈[−τ,0]
y(t + θ) + λ3

∫ t

0
e−γ(t−s) sup

θ∈[−τ,0]
y(s + θ)ds, t ≥ 0,

λ1e
−γt, t ∈ [−τ, 0]

(3.1)

holds. Then one has: y(t) ≤ M2e
−μt (t ≥ −τ), where μ is a positive root of the algebra equation:

(λ2 + (λ3/γ − μ))eμτ = 1 and M2 = max{λ1(γ − μ)/λ3eμτ , λ1} > 0.

Proof. Letting F(λ) = (λ2 + (λ3/γ − λ))eλτ − 1, we have F(0) F(γ−) < 0 holds. That is, there
exists a positive constant μ ∈ (0, γ), such that F(μ) = 0.

For any ε > 0 let

Cε = max

{

(ε + λ1)

(
γ − μ

)

λ3eμτ
, λ1 + ε

}

. (3.2)

Now, in order to show this lemma, we only claim that (3.1) implies

y(t) ≤ Cεe
−μt, t ≥ −τ. (3.3)

Easily, for any t ∈ [−τ, 0], (3.3) holds. Assume, for the sake of contradiction, that there exists
a t1 > 0 such that

y(t) < Cεe
−μt, t ∈ [−τ, t1), y(t1) = Cεe

−μt1 . (3.4)

Then, (3.1) implies

y(t1) ≤ λ1e
−γt1 + λ2Cε sup

θ∈[−τ,0]
e−μ(t1+θ) + λ3Cε

∫ t1

0
e−γ(t1−s) sup

θ∈[−τ,0]
e−μ(s+θ)ds

≤ λ1e
−γt1 + λ2Cεe

−μt1eμτ + λ3Cεe
−γt1
∫ t1

0
e(γ−μ)sdseμτ

= λ1e
−γt1 − λ3Cεe

μτ

γ − μ
e−γt1 +

(
λ2 +

λ3
γ − μ

)
Cεe

μτe−μt1 .

(3.5)

From the definitions of μ and Cε, we have

(
λ2 +

λ3
γ − μ

)
eμτ = 1,

λ1e
−γt1 − λ3Cεe

μτ

γ − μ
e−γt1 ≤ λ1e

−γt1 − λ3e
μτ

γ − μ
e−γt1(ε + λ1)

(
γ − μ

)

λ3eμτ
< 0.

(3.6)



Journal of Inequalities and Applications 7

Thus, (3.5) yields

y(t1) < Cεe
−μt1 , (3.7)

which contradicts (3.4); that is, (3.3) holds.
As ε > 0 is arbitrarily small, in view of (3.3), it follows

y(t) ≤ M2e
−μt, t ≥ −τ, (3.8)

where M2 = max{λ1((γ − μ)/λ3eμτ), λ1} > 0. The proof of this lemma is completed.

Theorem 3.2. Supposed that the conditions (H1)–(H3) are satisfied, then the mild solutionto system
(2.1) is exponential stability in p(p ≥ 2)-moment, if the following inequality

6p−1
(
qβ
)pα−(p/q)

M
p

1−α
(
Γ
(
1−q(1−α)))q/pCp

3

(1 − κ)p

+
3p−1Mp

(
β1−pCp

1+C
p

2

(
p(p−1)/2)p/2(2β(p−1)/(p − 2)

)1−(p/2))

(1 − κ)p
< β

(3.9)

holds, where (1/p) + (1/q) = 1 (p ≥ 2, 1 < q ≤ 2).

Proof. By virtue of the inequality (3.9) and the condition (H3), we can always find a number
ε > 0 small enough such that

κ +

⎡

⎢⎢
⎣

p−1(1 + ε)p−1
(
qβ
)pα−(p/q)

M
p

1−α
(
Γ
(
1 − q(1 − α)

))q/p
C

p

3

+3p−1Mp

(

β1−pCp

1 + C
p

2

(
p(p − 1)

2

)p/2(2β(p − 1)
p − 2

)1−(p/2))]

/(1 − κ)p−1β < 1.

(3.10)

Based on an elementary inequality, for any real numbers a, b, c, d, and e, it follows

(a + b + c + d + e)p ≤ 3p−1(a + b + c)p + 3p−1dp + 3p−1ep

≤ 3p−1
[(

1 +
1
ε

)p−1
ap + (1 + ε)p−1(b + c)p

]

+ 3p−1dp + 3p−1ep

≤ 3p−1
(
1 +

1
ε

)p−1
ap + 6p−1(1 + ε)p−1(bp + cp) + 3p−1dp + 3p−1ep.

(3.11)
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From (2.3), the condition (H3), and Lemma 2.6, we have

E‖x(t)‖p ≤ E‖D(t, x(t − δ(t)))‖p
κp−1 +

1

(1 − κ)p−1
E‖S(t)(x(0) −D(0, x(−δ(0))))

+
∫ t

0
AS(t − s)D(s, x(s − δ(s)))ds +

∫ t

0
S(t − s)f(s, x(s − r(s)))ds

+
∫ t

0
S(t − s)g

(
s, x

(
s − ρ(s)

))
dw(s)

∥∥∥∥∥

p

≤ E‖D(t, x(t − δ(t)))‖p
κp−1 +

3p−1

(1 − κ)p−1

(
1 +

1
ε

)p−1
E‖S(t)x(0)‖p

+
6p−1

(1 − κ)p−1
(1 + ε)p−1E‖−S(t)D(0, x(−δ(0)))‖p

+
6p−1

(1 − κ)p−1
(1 + ε)p−1Mp

1−α

(∫ t

0
e−β(t−s)(t − s)−q(1−α)ds

)p/q

×
∫ t

0
e−pβ(t−s)E

∥∥(−A)αD(s, x(s − δ(s)))
∥∥pds

+
3p−1

(1 − κ)p−1
E

∥∥∥∥∥

∫ t

0
S(t − s)f(s, x(s − r(s)))ds

∥∥∥∥∥

p

+
3p−1

(1 − κ)p−1
E

∥∥∥∥∥

∫ t

0
S(t − s)g

(
s, x

(
s − ρ(s)

))
dw(s)

∥∥∥∥∥

p

=
E‖D(t, x(t − δ(t)))‖p

κp−1 +
3p−1

(1 − κ)p−1

(
1 +

1
ε

)p−1
‖S(t)x(0)‖p

+
6p−1

(1 − κ)p−1
(1 + ε)p−1E‖−S(t)D(0, x(−δ(0)))‖p

+
6p−1

(1 − κ)p−1
(1 + ε)p−1Mp

1−α
(
qβ
)pα−(p/q)(Γ

(
1 − q(1 − α)

))p/q

×
∫ t

0
e−β(t−s)E

∥∥(−A)αD(s, x(s − δ(s)))
∥∥pds

+
3p−1

(1 − κ)p−1
E

∥∥∥∥∥

∫ t

0
S(t − s)f(s, x(s − r(s)))ds

∥∥∥∥∥

p

+
3p−1

(1 − κ)p−1
E

∥∥∥∥∥

∫ t

0
S(t − s)g

(
s, x

(
s − ρ(s)

))
dw(s)

∥∥∥∥∥

p

.

(3.12)
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Then, Lemma 2.7 and (3.12) imply that

E‖x(t)‖2 ≤ κ sup
θ∈[−τ,0]

E‖x(t + θ)‖p + 3p−1Mp

(1 − κ)p−1

((
1 +

1
ε

)p−1
+ 2p−1(1 + ε)p−1κp

∥∥(−A)−α
∥∥p
)

× sup
θ∈[−τ,0]

E
∥∥ϕ(θ)

∥∥2e−βt +
6p−1

(1 − κ)p−1
(1 + ε)p−1

(
qβ
)pα−(p/q)(Γ

(
1 − q(1 − α)

))p/q
C

p

3

×
∫ t

0
e−β(t−s) sup

θ∈[−τ,0]
E‖x(s + θ)‖pds

+
3p−1

(1 − κ)p−1
MpC

p

1β
1−p
∫ t

0
e−β(t−s) sup

θ∈[−τ,0]
E‖x(s + θ)‖pds

+
3p−1

(1 − κ)p−1
MpC

p

2

(
p
(
p − 1

)

2

)p/2(
2β
(
p − 1

)

p − 2

)1−(p/2)

×
∫ t

0
e−β(t−s) sup

θ∈[−τ,0]
E‖x(s + θ)‖pds.

(3.13)

By Lemma 3.1, we can derive that E‖x(t)‖p ≤ M3e
−μt(M3 > 0, μ ∈ (0, β)). That is, the

exponential stability in p (p ≥ 2)-moment for mild solution to system (2.1) is obtained. The
proof is completed.

Theorem 3.3. Suppose that all the conditions of Theorem 4.1 hold with p > 2, then the mild solution
of system (2.1) is almost surely exponential stability, that is,

lim
t→+∞

log‖x(t)‖
t

≤ − μ

2p
, a.s., (3.14)

where μ is defined in Theorem 3.2.

Proof. Let N be a sufficiently large positive integer and for t ∈ [N,N + 1], then

x(t) = S(t −N)(x(N) −D(N,x(N − δ(N)))) +D(t, x(t − δ(t)))

+
∫ t

N

AS(t − s)D(s, x(s − δ(s)))ds

+
∫ t

N

S(t − s)f(s, x(s − r(s)))ds +
∫ t

N

S(t − s)g
(
s, x

(
s − ρ(s)

))
dw(s).

(3.15)
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For arbitrary fixed εN > 0, we have

P

{

sup
N≤t≤N+1

‖x(t)‖ > εN

}

≤ P

{

sup
N≤t≤N+1

‖S(t −N)(x(N) −D(N,x(N − δ(N))))‖ >
εN
5

}

+ P

{

sup
N≤t≤N+1

‖D(t, x(t − δ(t)))‖ >
εN
5

}

+ P

{

sup
N≤t≤N+1

∥∥∥∥∥

∫ t

N

AS(t − s)D(s, x(s − δ(s)))ds

∥∥∥∥∥
>

εN
5

}

+ P

{

sup
N≤t≤N+1

∥∥∥∥∥

∫ t

N

S(t − s)f(s, x(s − r(s)))ds

∥∥∥∥∥
>

εN
5

}

+ P

{

sup
N≤t≤N+1

∥∥∥∥∥

∫ t

N

S(t − s)g
(
s, x

(
s − ρ(s)

))
dw(s)

∥∥∥∥∥
>

εN
5

}

≤
(

5
εN

)p

E

[

sup
N≤t≤N+1

‖S(t −N)(x(N) −D(N,x(N − δ(N))))‖p
]

+
(

5
εN

)p

E

[

sup
N≤t≤N+1

‖D(t, x(t − δ(t)))‖p
]

+
(

5
εN

)p

E

[

sup
N≤t≤N+1

∥∥∥∥∥

∫ t

N

AS(t − s)D(s, x(s − δ(s)))ds

∥∥∥∥∥

p]

+
(

5
εN

)p

E

[

sup
N≤t≤N+1

∥∥∥∥∥

∫ t

N

S(t − s)f(s, x(s − r(s)))ds

∥∥∥∥∥

p]

+
(

5
εN

)p

E

[

sup
N≤t≤N+1

∥∥∥∥∥

∫ t

N

S(t − s)g
(
s, x

(
s − ρ(s)

))
dw(s)

∥∥∥∥∥

p]

=
5∑

i=1

Ii,

(3.16)

where

I1 ≤
(

5
εN

)p

MpE‖x(N) −D(N,x(N − δ(N)))‖p

≤
(

5
εN

)p

MpM3

(
1

(1 − κ)p−1
+ κeμτ

)

e−μN,

I2 ≤
(

5
εN

)p

κpM3e
μτe−μN,
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I3 ≤
(

5
εN

)p

M
p

1−αC
p

3

(
qβ
)pα−(p/q)(Γ

(
1 − q(1 − α)

))p/q
∫N+1

N

E‖x(s − δ(s))‖pds

≤
(

5
εN

)p

M
p

1−αM3C
p

3

(
qβ
)pα−(p/q)(Γ

(
1 − q(1 − α)

))p/q
eμτe−μN,

I4 ≤
(

5
εN

)p

MpE

⎡

⎣ sup
N≤t≤N+1

(∫ t

N

e−qβ(t−s)ds

)p/q∫N+1

N

∥∥f(s, x(s − r(s)))
∥∥pds

⎤

⎦

≤
(

5
εN

)pMpM3C
p

1e
μτ

(
qβ
)p/q e−μN,

I5 ≤
(

5
εN

)p

Mpc
(
p
)
∫N+1

N

E
∥∥g
(
s, x

(
s − ρ(s)

))∥∥2
L0
2
ds

≤
(

5
εN

)p

MpC
p

2c
(
p
)
eμτe−μN.

(3.17)

Thus, (3.16) implies

P

{

sup
N≤t≤N+1

‖x(t)‖H > εN

}

≤ K

(
5
εN

)p

e−μN, (3.18)

where

K = MpM3

(
1

(1 − κ)p−1
+ κeμτ

)

+ κpM3e
μτ +M

p

1−αM3C
p

3

(
qβ
)pα−(p/q)(Γ

(
1 − q(1 − α)

))p/q
eμτ

+
MpM3C

p

1e
μτ

(qβ)p/q
+MpC

p

2c
(
p
)
eμτ .

(3.19)

As εN is arbitrarily given real number, let εN = e−(μN/2p), such that

P

{

sup
N≤t≤N+1

‖x(t)‖ > e−(μN/2p)

}

≤ 5pKe−(μN/2). (3.20)

Consequently, from the Borel-Cantelli Lemma, there exists a T(ω) > 0, for all t > T(ω), and
we have

‖x(t)‖p ≤ e−(μN/2), a.s. (3.21)
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That is,

lim
t→+∞

log‖x(t)‖
t

≤ − μ

2p
, a.s. (3.22)

The proof is completed.

Corollary 3.4. Suppose that the conditions (H1)–(H3) hold with p = 2, then the mild solution of
system (2.1) is exponential stability in mean square and almost surely exponential stability, if the
following inequality

6M2
1−αC

2
3β

1−2αΓ(2α − 1) + 3M2(β−1C2
1 + C2

2

)

(1 − κ)2
< β (3.23)

holds, where α ∈ (1/2, 1].

Remark 3.5. When the neutral itemD(t, ·) is removed, system (2.1) is turned into the following
stochastic partial differential equations with delays:

dx(t) =
[
Ax(t) + f(t, x(t − r(t)))

]
dt + g

(
t, x
(
t − ρ(t)

))
dw(t), t ∈ [0,+∞),

x0 = ϕ ∈ Cb
I0
.

(3.24)

Themild solution of system (3.24) is the exponential stability in p (p ≥ 2)-moment and almost
surely exponential stability provided that

3p−1Mp

⎛

⎝β1−pCp

1 + C
p

2

(
p
(
p − 1

)

2

)p/2(
2β
(
p − 1

)

p − 2

)1−(p/2)⎞

⎠ < β (3.25)

holds, which was studied by the fixed point theorem in [13]. As the neutral item D(t, ·) ≡
0 and the delays r(·) ≡ 0, ρ(·) ≡ 0, system (2.1) is considered as the stochastic evolution
equations:

dx(t) =
[
Ax(t) + f(t, x(t))

]
dt + g(t, x(t))dw(t), t ∈ [0,+∞),

x0 ∈ X.
(3.26)

The mild solution to system (3.26) is guaranteed to be the exponential stability in p (p ≥ 2)-
moment and almost surely exponential stability under the inequality (3.25) in [17]. Thus, we
can generalize the results in [13, 17] which are regarded as two special cases in this paper.

Remark 3.6. Caraballo and Liu, in [2], have considered the exponential stability in p (p ≥ 2)-
moment and almost surely exponential stability for mild solution to system (3.24) by utilizing
the Gronwall inequality. However, the monotone decreasing behaviors of the delays are
imposed in [2], that is, r ′(t) ≤ 0, ρ′(t) ≤ 0, for for all t ≥ 0. In particular, when r(t) ≡ τ
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and ρ(t) ≡ τ , the condition for the exponential stability in p (p ≥ 2)-moment and almost
surely exponential stability for mild solution to system (3.24) in [2] is

3p−1Mp

⎛

⎝C
p

1β
1−p + C

p

2

(
p
(
p − 1

)

2

)p/2(
2β
(
p − 1

)

p − 2

)1−(p/2)⎞

⎠ eβτ < β, p ≥ 2. (3.27)

In this sense, this paper can generalize and improve the results in [2].

4. Example

In this section, we provide an example to illustrate the obtained results above.
We consider the following neutral stochastic partial differential equations with delays:

d

[

x(t, ξ)+
α3

M1−α
∥∥(−A)α

∥∥x(t−δ(t), ξ)
]

=

[
∂2

∂x2
z(t, x)+α1x(t−r(t), ξ)

]

dt+α2x
(
t−ρ(t), ξ)dβ(t),

x(t, 0) = x(t, π) = 0, αi > 0, i = 1, 2, 3, 0 < δ(t), r(t), ρ(t) < τ,

x(s, ξ) = ϕ(s, ξ), ϕ(·, ξ) ∈ C, ϕ(s, ·) ∈ L2[0, π], −τ ≤ s ≤ 0, 0 ≤ ξ ≤ π, τ ≥ 0, t ≥ 0,
(4.1)

where β(t) is a standard one-dimensional Wiener process and ‖ϕ‖C < +∞ a.s., and M1−α ≥
1(α ∈ (1/2, 1]). Take X = L2[0, π], Y = R1. Define A : X → X by −A = ∂2/∂ξ2 with domain
D(−A) = {ω ∈ X : ω, ∂ω/∂ξ are absolutely continuous, ∂2/∂ξ2 ∈ X, ω(0) = ω(π) = 0}. Then

(−A)ω =
+∞∑

n=1

n2(ω,ωn)ωn, ω ∈ D(−A), (4.2)

where ωn(ξ) =
√
2/π sin nξ, n = 1, 2, 3, . . . , is orthonormal set of eigenvector of −A. It is well

known that A is the infinitesimal generator of an analytic semigroup S(t)(t ≥ 0) in X and is
given (see pazy [26, page 70]) by

S(t)ω =
+∞∑

n=1

exp
(
−n2t

)
(ω,ωn)ωn, ω ∈ X, (4.3)

that satisfies ‖S(t)‖ ≤ exp(−π2t), t ≥ 0, and hence is a contraction semigroup.
Define

D(t, x(t − δ(t))) =
α3

M1−α
∥∥(−A)α

∥∥x(t − δ(t), ξ), f(t, x(t − r(t))) = α1x(t − r(t), ξ),

g
(
t, x
(
t − ρ(t)

))
= α2x

(
t − ρ(t), ξ

)
.

(4.4)
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It is easily seen that

∥∥f(t, x(t − r(t))) − f
(
t, y(t − r(t))

)∥∥

≤ α1
∥∥x(t − r(t)) − y(t − r(t))

∥∥, f(t, 0) = 0,
∥∥g
(
t, y
(
t−ρ(t)))−g(t, y(t−ρ(t)))∥∥L0

2

≤ α2
∥∥x
(
t−ρ(t))−y(t−ρ(t))∥∥, g(t, 0)=0,

∥∥(−A)αD(t, x(t − δ(t))) − (−A)αD
(
t, y(t − δ(t))

)∥∥

≤ α3

M1−α

∥∥x(t − δ(t)) − y(t − δ(t))
∥∥, (−A)αD(t, 0) = 0,

(4.5)

from the definition of (−A)−α by

∥∥(−A)−α
∥∥ ≤ 1

Γ(α)

∫+∞

0
tα−1‖S(t)‖dt ≤ 1

π2α
. (4.6)

Thus, when α3 < M1−απ2α(α ∈ (1/2, 1]), by virtue of Corollary 3.4, the mild solution
of system (4.1) is exponential stability in mean square and almost sure exponential stability
provided that the following inequality

6α2
3π

2−4αΓ(2α − 1) + 3
(
π−2α2

1 + α2
2

)
<

(
π − α3

M1−απ2α−1

)2

, α ∈
(
1
2
, 1
]

(4.7)

holds.
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