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1. Jordan’s Inequality and Related Inequalities

1.1. Jordan’s Inequality

The well-known Jordan’s inequality (see [1, page 143], [2], [3, page 269], and [4, page 33])
reads that

2
π

≤ sinx
x

< 1 (1.1)

for 0 < |x| ≤ π/2. The equality in (1.1) is valid if and only if x = π/2.

Remark 1.1. The inequality (1.1) is an immediate consequence of the concavity of the function
x �→ sinx on the interval [0, π/2]. The straight line y = (2/π)x is a chord of y = sinx, which



2 Journal of Inequalities and Applications

joints the points (0, 0) and (π/2, 1). The straight line y = x is a tangent to y = sinx at the
origin. Hence, the graph of y = sinx for x ∈ [0, π/2] lies between these straight lines. See [4,
page 33, Remark 1].

Remark 1.2. The very origin of Jordan’s inequality (1.1) is not found in the references listed in
this paper; therefore, it is unknown that why the inequality (1.1) is named after Jordan and
to which Jordan, to the best of our knowledge. Although the Name Index on [4, page 391]
hints us that the inequality (1.1) is due to C. Jordan (1838–1922), but no references related to
C. Jordan were listed. Someone says that may be Jordan’s inequality is coming from Jordan’s
lemma in Complex Analysis.

1.2. Kober’s Inequality

The following inequality is due to Kober [5, page 22]:

1 − 2
π
x ≤ cosx ≤ 1 − x2

π
, x ∈

[
0,

π

2

]
. (1.2)

See also [3, pages 274–275].
In [6] and [7, page 313], it was listed that

cosx ≤ 1 − 2
π2

x2, x ∈ [0, π]. (1.3)

Remark 1.3. The left-hand side inequalities in (1.1) and (1.2) are equivalent to each other,
since they can be deduced from each other via the transformation x → π/2 − x, as said in
[8]. Applying this transformation to the right-hand side of inequality (1.2) acquires

sinx ≤ 1 − (π − 2x)2

4π
, x ∈

[
0,

π

2

]
, (1.4)

which cannot be compared with the right-hand side of (1.1) on [0, π/2].

1.3. Redheffer-Williams’s Inequality and Li-Li’s Refinement

1.3.1. Redheffer-Williams’s Inequality

In [9, 10], it was proposed that

sinx
x

≥ π2 − x2

π2 + x2
, x /= 0. (1.5)
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In [11], the inequality (1.5) was verified as follows: for x ≥ 1,

1 − x2

1 + x2
− sin(πx)

πx
=

1 − x2

1 + x2
+
sin[π(x − 1)]

π(x − 1)
· x − 1

x

≤ 1 − x2

1 + x2
+
x − 1
x

= − (1 − x)2

x(1 + x2)
≤ 0.

(1.6)

For 0 < x < 1, since

sin(πx)
πx

=
∞∏
k=1

(
1 − x2

k2

)
, (1.7)

it is enough to prove that (1 + x2)Pn ≥ 1 for n ≥ 2, where

Pn =
n∏

k=2

(
1 − x2

k2

)
. (1.8)

Actually, by a simple induction argument based on the relation

Pn+1 =

[
1 − x2

(n + 1)2

]
Pn, (1.9)

it is deduced that

(
1 + x2

)
Pn ≥ 1 +

x2

n
, 0 < x < 1. (1.10)

The inequality (1.5) follows readily.

1.3.2. Li-Li’s Refinement

In [12, Theorem 4.1], the inequality (1.5)was refined as

(
1 − x2)(4 − x2)(9 − x2)

x6 − 2x4 + 13x2 + 36
≤ sin(πx)

πx
≤ 1 − x2

√
1 + 3x4

, 0 < x < 1. (1.11)

1.4. Mercer-Caccia’s Inequality

In [13], it was proposed that

sin θ ≥ 2
π
θ +

1
12π

θ
(
π2 − 4θ2

)
(1.12)



4 Journal of Inequalities and Applications

for θ ∈ [0, π/2]. By finding the minimum of the function

1, x = 0,

sinx
x

+
x2

3π
, x ∈

(
0,

π

2

]
,

(1.13)

the inequality (1.12)was not only proved but also improved in [14] as

sin θ ≥ 2
π
θ +

1
π3

θ
(
π2 − 4θ2

)
(1.14)

for θ ∈ [0, π/2]. The inequality (1.14) is sharp in the sense that 1/π3 cannot be replaced by a
larger constant.

1.5. Prestin’s Inequality

In [15], the following inequality was given: for 0 < |x| ≤ π/2,

∣∣∣∣
1

sinx
− 1
x

∣∣∣∣ ≤ 1 − 2
π
. (1.15)

See also [3, page 270].

Remark 1.4. For 0 < x ≤ π/2, the inequality (1.15) can be rewritten as

x

sinx
≤ 1 +

(
1 − 2

π

)
x or sinx ≥ x

1 + (1 − 2/π)x
. (1.16)

This inequality and the inequality (1.14) are not included each other on (0, π/2].

1.6. Some Inequalities Obtained from Taylor’s Formula

In [16, pages 101-102], [7, page 313], and [3, page 269], the following inequalities are listed:
for x ∈ [0, π/2],

x − 1
6
x3 ≤ sinx ≤ x − 1

6
x3 +

1
120

x5, (1.17)

1 − 1
2
x2 ≤ cosx ≤ 1 − 1

2
x2 +

1
24

x4, (1.18)

(−1)n
[
sinx −

n∑
k=1

(−1)k−1 x2k−1

(2k − 1)!

]
≤ x2n+1

(2n + 1)!
, (1.19)

(−1)n+1
[
cosx −

n∑
k=0

(−1)k x2k

(2k)!

]
≤ x2n+2

(2n + 2)!
. (1.20)



Journal of Inequalities and Applications 5

Remark 1.5. It is obvious that these inequalities are established based on Taylor’s formula.

Remark 1.6. In [17, 18], the inequality (1.17) was applied to obtain the lower and upper
estimations of ζ(3) in virtue of

∞∑
i=0

1

(2i + 1)3
=

1
4

∫π/2

0

x(π − x)
sinx

dx =
7
8
ζ(3). (1.21)

In [19, Theorem 1.7], as a by-product, the very closer lower and upper bounds for ζ(3) are
deduced by a different approach from [17, 18].

1.7. Cusa-Huygens’ and Related Inequalities

Nicolaus da Cusa (1401–1464) found by a geometrical method that

sinx
x

≤ 2 + cosx
3

, (1.22)

for 0 < x ≤ π/2. Christian Huygens (1629–1695) proved (1.22) explicitly when he
approximated π . See [20, 21] and related references therein.

In [22], by using Techebysheff’s integral inequality, it was constructed that

sinx
x

≥ 1 + cosx
2

. (1.23)

In [4, page 238, 3.4.15], the following double inequality

2(1 + a cosx)
π

≤ sinx
x

≤ 1 + a cosx
a + 1

(1.24)

was given for a ∈ (0, 1/2] and x ∈ [0, π/2].
Recently, inequalities (1.22) and (1.23)were refined in [23].
This topic is related or similar to the so-called Carlson’s, Oppenheim’s, Shafer’s, and

Shafer-Fink’s double inequalities for the arc sine, arc cosine, and arc tangent functions. For
detailed information, please refer to [24–36] and closely related references therein.

1.8. Some Inequalities Related to Trigonometric Functions

In [37–39], the following inequalities were presented: for 0 < x < 1,

2
π

· x

1 − x2
<

1
πx

− cot(πx) <
π

3
· x

1 − x2
, (1.25)

π2

8
· x

1 − x2
< sec

πx

2
− 1 <

4
π

· x

1 − x2
, (1.26)

π

6
· x

1 − x2
< csc(πx) − 1

πx
<

2
π

· x

1 − x2
. (1.27)
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For 0 < |x| < 1,

ln
(

πx

sin(πx)

)
<

π2

6
· x2

1 − x2
,

ln
(
sec

πx

2

)
<

π2

8
· x2

1 − x2
,

ln
(
tan(πx/2)

πx/2

)
<

π2

12
· x2

1 − x2
.

(1.28)

The constants 2/π and π/3 in (1.25), π2/8 and 4/π in (1.26), π/6 and 2/π in (1.27) are the
best possible. So are the constants π2/6, π2/8, and π2/12 in (1.28).

For x ∈ (0, π/2) and n ∈ N, it was proved in [40, 41] that

22(n+1)
[
22(n+1) − 1

]
Bn+1

(2n + 2)!
x2n tanx < tanx − Sn(x) <

(
2
π

)2n

x2n tanx, (1.29)

where

Sn(x) =
n∑
i=1

22i
(
22i − 1

)
Bi

(2i)!
x2i−1 (1.30)

and Bi for i ∈ N are the well-known Bernoulli’s numbers defined by

x

ex − 1
=

∞∑
n=0

Bn

n!
xn = 1 − x

2
+

∞∑
j=1

B2j
x2j
(
2j
)
!
, |x| < 2π (1.31)

and the first several Bernoulli’s numbers are

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

. (1.32)

Let

p(θ) =

⎧
⎪⎪⎨
⎪⎪⎩

(
π2

8
− 1
2
θ

)
sec2θ − θ tan θ − 1

2
, θ ∈

(
−π
2
,
π

2

)
,

0, θ = ±π
2
,

q(θ) =

⎧
⎪⎪⎨
⎪⎪⎩

2
cos2θ

∫π/2

θ

t cos2tdt, θ ∈
(
−π
2
,
π

2

)
,

0, θ = ±π
2
,

φ(θ) =

⎧
⎪⎨
⎪⎩

π

4
(
θ sec2θ + tan θ

) − 2 tan θ sec θ, θ ∈
(
−π
2
,
π

2

)
,

±1, θ = ±π
2
.

(1.33)



Journal of Inequalities and Applications 7

These functions originate from estimates of the eigenvalues of Laplace operator on compact
Riemannian manifolds. Their monotonicity and estimates have been investigated by several
mathematicians. For more detailed information, please refer to [42–44] and related references
therein.

2. Refinements and Generalizations of
Jordan’s and Related Inequalities

2.1. Qi-Guo’s Refinements of Kober’s and Jordan’s Inequality

2.1.1. Refinements of Kober’s Inequality

In [45], by the help of two auxiliary functions

cosx − 1 +
2
π
x − αx

(
π2 − x2

)
, cosx − 1 +

2
π
x − βx(π − 2x) (2.1)

with undetermined positive constants α and β for x ∈ [0, π/2], Kober’s inequality (1.2) was
refined as

1 − 2
π
x +

π − 2
π2

x(π − 2x) ≤ cosx ≤ 1 − 2
π
x +

2
π2

x(π − 2x), (2.2)

1 − 2
π
x +

π − 2
2π3

x
(
π2 − 4x2

)
≤ cosx ≤ 1 − 2

π
x +

2
π3

x
(
π2 − 4x2

)
. (2.3)

These two double inequalities are sharp in the sense that the constants (π − 2)/π2, 2/π2,
(π − 2)/2π3, and 2/π3 cannot be replaced by larger or smaller ones, respectively.

Remark 2.1. The inequality (2.2) is better than (2.3) and may be rewritten as

1 − 4 − π

π
x − 2(π − 2)

π2
x2 ≤ cosx ≤ 1 − 4

π2
x2. (2.4)

The double inequality (2.4) is stronger than (1.2) on [0, π/2].

Remark 2.2. Replacing x by π/2 − x in (2.4) gives

x − 2(π − 2)
π2

x2 ≤ sinx ≤ 4
π
x − 4

π2
x2, x ∈

[
0,

π

2

]
. (2.5)

The lower bound in (2.5) is better than the corresponding one in (1.16) and it is not included
or includes the inequality (1.14).
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2.1.2. Refinements of Jordan’s Inequality

In [46], by considering auxiliary functions

sinx − 2
π
x − αx

(
π2 − 4x2

)
,

sinx − 2
π
x − βx2(π − 2x),

sinx − 2
π
x − θx(π − 2x)

(2.6)

on [0, π/2], the inequality (1.14) was recovered, and the following inequalities were also
obtained:

sinx ≤ 2
π
x +

π − 2
π3

x
(
π2 − 4x2

)
, (2.7)

sinx ≥ 2
π
x +

4
π3

x2(π − 2x), (2.8)

2
π
x +

π − 2
π2

x(π − 2x) ≤ sinx ≤ 2
π
x +

2
π2

x(π − 2x), (2.9)

where the constants (π − 2)/π3, 4/π3, (π − 2)/π2, and 2/π2 are the best possible.
In [47], by the method used in [45, 46, 48], the following inequalities were deduced:

for x ∈ [0, π/2],

sinx ≥ 2
π
x +

2
π4

x2
(
π2 − 4x2

)
, (2.10)

sinx ≥ 2
π
x +

8
π4

x3(π − 2x), (2.11)

2
3π4

x
(
π3 − 8x3

)
≤ sinx − 2

π
x ≤ π − 2

π4
x
(
π3 − 8x3

)
. (2.12)

Remark 2.3. The inequality (2.9) may be rewritten as (2.5). Therefore, inequalities (2.4) and
(2.9) are equivalent to each other.

Remark 2.4. Combination of (1.14) and (2.7) leads to

3
π
x − 4

π3
x3 ≤ sinx ≤ x − 4(π − 2)

π3
x3, x ∈

[
0,

π

2

]
. (2.13)

Inequalities (2.5) and (2.13) are not included each other on [0, π/2]. Inequality (2.8) is weaker
than the left-hand side inequality in (2.13) and cannot compare with the left-hand side
inequality of (2.5).

Remark 2.5. In [49], by constructing suitable auxiliary functions as above, inequality (2.7) or
the right-hand side inequality in (2.13), the double inequality (2.9) or (2.5), the inequality
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(2.8), the double inequality (2.2) or (2.4), the double inequality (2.3), and their sharpness are
verified again. Employing these inequalities, it was derived in [49] that

4
3
<

∫π/2

0

sinx
x

dx <
π + 1
3

,
1
2
<

∫π/2

0

1 − cosx
x

dx <
6 − π

4
. (2.14)

Remark 2.6. In [50], inequalities (1.14) and (2.7) or their variant (2.13) and the inequality (2.2)
or (2.4) were proved once again by considering suitable auxiliary functions as above. From
(2.13) and the symmetry and period of sinx, it was deduced in [50] that

4
π3

x3 − 12
π2

x2 +
9
π
x − 1 ≤ sinx ≤ 4(π − 2)

π3
x3 − 12(π − 2)

π2
x2 +

11π − 24
π

x + 8 − 3π (2.15)

on [π/2, π] and

7
6
− ln 2 <

∫π

π/2

sinx
x

dx <
13π − 32

6
+ (8 − 3π) ln 2. (2.16)

Remark 2.7. Themethod used in [45, 46, 49–53]was reused to construct inequalities involving
the sine and cosine functions in [54] and obtained the following one-sided inequalities:

sinx ≥ 2
π
x +

π − 2
π

x cosx, x ∈
[
0,

π

2

]
;

sinx ≥ 4 − π(√
2 − 1

)
π
x +

4
(
π − 2

√
2
)

π
(
2 − 2

√
2
)x cosx, x ∈

[
0,

π

4

]
.

(2.17)

The first inequality above refines the left-hand side inequality in (2.9).

Remark 2.8. In [22], among other things, a lot of inequalities and integrals related to
sinx/x and similar to inequalities in (2.14) and (2.16) are constructed by using the famous
Tchebysheff’s integral inequality [4, page 39, Theorem 8]. For examples,

(
sin t
t

)2

+ 2
(
sin t
t

)
≥ 4
(
1 − cos t

t2

)
+ cos t, t ∈ [0, π],

∫ t

0

(
x

sinx

)2

dx < 2 tan
(
t

2

)
+
2
3
tan3

(
t

2

)
, t ∈

(
0,

π

2

]
.

(2.18)

2.2. Refinements of Jordan’s Inequality by L’Hôspital’s Rule

2.2.1. L’Hôspital’s Rule

The following monotonic form of the famous L’Hôspital’s rule was put forward in [55,
Theorem 1.25].
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Lemma 2.9. Let f and g be continuous on [a, b] and differentiable on (a, b) such that g ′(x)/= 0 on
(a, b). If f ′(x)/g ′(x) is increasing (or decreasing) on (a, b), then so are the functions (f(x)− f(b))/
(g(x) − g(b)) and (f(x) − f(a))/(g(x) − g(a)) on (a, b).

2.2.2. Zhang-Wang-Chu’s Recoveries

In [8], by using Lemma 2.9, inequalities (1.14), (2.2), (2.3), (2.7), and (2.9) were recovered
once more.

2.3. Li’s Power Series Expansion and Refinements of Jordan’s Inequality

In [56], a power series expansion was established as follows: for x > 0,

sinx
x

=
2
π

+
∞∑
k=1

(−1)k Rk(π/2)
k!π2k

(
π2 − 4x2

)k
, (2.19)

where

Rk(x) =
∞∑
n=k

(−1)nn!
(2n + 1)!(n − k)!

x2n (2.20)

satisfy (−1)kRk(π/2) > 0 and

R1(x) =
x

2

(
sinx
x

)′
, Rk+1(x) = −kRk(x) +

x

2
R′

k(x) (2.21)

for k ∈ N.
As a direct consequence of the above identity, the following lower bound for the

function sinx/x was established in [56]:

sinx
x

≥ 2
π

+
1
π3

(
π2 − 4x2

)
+
12 − π2

16π5

(
π2 − 4x2

)2
+
10 − π2

16π7

(
π2 − 4x2

)3

+
π4 − 180π2 + 1680

3072π9

(
π2 − 4x2

)4
, 0 < x <

π

2
.

(2.22)

Equality in (2.22) is valid if and only if x = π/2. The constants 1/π3, (12 − π2)/16π5, (10 −
π2)/16π7, and (π4 − 180π2 + 1680)/3072π9 are the best possible.

Moreover, by employing

x

sinx
=

∞∑
k=0

(−1)k+1B2k
22k − 2
(2k)!

x2k (2.23)
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for |x| < π , where B2k for 0 ≤ k < ∞ is the well-known Bernoulli’s numbers, it was presented
in [56] that

x

sinx
≤ 1 +

1
6
x2 +

7
360

x4 +
31

15120
x6, |x| < π. (2.24)

2.4. Li-Li’s Refinements and Generalizations

In [12], two seemingly general but not much significant results for refining or generalizing
Jordan’s inequality (1.1) were discovered.

The first result may be stated as follows: if the function g : [0, π/2] → [0, 1] is
continuous and

sinx
x

≥ g(x) (2.25)

for x ∈ [0, π/2], then the double inequality

2
π

− h
(π
2

)
+ h(x) ≤ sinx

x
≤ 1 + h(x) (2.26)

for x ∈ [0, π/2] holds with equality if and only if x = π/2, where

h(x) = −
∫x

0

1
u2

∫u

0
v2g(v)dv du, x ∈

[
0,

π

2

]
. (2.27)

Since g(x) is positive, it is clear that the function h(x) is decreasing and negative, and
therefore, the double inequality (2.26) refines Jordan’s inequality (1.1).

Remark 2.10. It is remarked that the upper bound in (2.26) was not considered in [12],
although it is implied in the arguments. On the other hand, if inequality (2.25) is reversed,
then so is inequality (2.26).

Remark 2.11. Upon taking g(x) = 0 in (2.25) and (2.27), Jordan’s inequality (1.1) is derived
from (2.26). If letting g(x) = 2/π , then inequalities (1.12) and

sinx
x

≤ 1 − 1
3π

x2, x ∈
(
0,

π

2

]
(2.28)

are deduced from (2.26). If choosing g(x) as the function in the right-hand side of (1.12), then
the inequality

sinx
x

≥ 2
π

+
60 + π2

720π

(
π2 − 4x2

)
+

1
960π

(
π2 − 4x2

)2
, x ∈

(
0,

π

2

]
(2.29)

follows from the left-hand side of (2.26). These three examples given in [12] seemly show that,
by using some lower bound for sinx/x on (0, π/2], a corresponding stronger lower bound
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may be derived from the left-hand side inequality in (2.26). Actually, this is not always valid.
By taking g(x) as the function in the right-hand side of (1.14) or the one in the left-hand side
of (2.13), it was obtained that

sinx
x

≥ 2
π

+
1

60π

(
π2 − 4x2

)
+

1
80π3

(
π2 − 4x2

)2
, x ∈

(
0,

π

2

]
. (2.30)

Unluckily, inequality (2.30) is worse than both inequality (1.14) and the left-hand side
inequality in (2.13). This tells us that the inequality

2
π

− h
(π
2

)
+ h(x) > g(x), x ∈

(
0,

π

2

]
(2.31)

is not always sound. Therefore, Theorem 2.1 in [12], one of the main results in [12], is not
always significant and meaningful. This reminds us of proposing a question: under what
conditions on 0 < g(x) < 1 for x ∈ (0, π/2] the inequality (2.31) holds?

The second result in [12] is procured basing on Lemma 2.9. It can be summarized as
follows: if the function f(x) ∈ C2[0, π/2] satisfies f ′(x) > 0 and [x2f ′(x)]′ /= 0 for x ∈ [0, π/2],
then the double inequality

lim
x→ 0+

sinx/x − 2/π
f(x) − f(π/2)

[
f(x) − f

(π
2

)]

≤ sinx
x

− 2
π

≤ lim
x→ (π/2)−

sinx/x − 2/π
f(x) − f(π/2)

[
f(x) − f

(π
2

)]
, x ∈

(
0,

π

2

] (2.32)

is sharp in the sense that the limits before brackets in (2.32) cannot be replaced by larger or
smaller numbers. If f ′(x) < 0 and [x2f ′(x)]′ /= 0, then the inequality (2.32) is reversed.

As an application, by taking f(x) = xn for n ∈ N in (2.32), the inequality (2.9) and

2
π

+
2

nπn+1

[
πn − (2x)n

] ≤ sinx
x

≤ 2
π

+
π − 2
πn+1

[
πn − (2x)n

]
, n ≥ 2 (2.33)

were showed in [12, Theorem 3.2], where the equalities hold if and only if x = π/2 and the
constants 2/nπn+1 and (π − 2)/πn+1 in (2.33) are the best possible.

If taking n = 2 in (2.33), then the inequalities (1.14) and (2.7) are recovered. The
inequality (2.33) for n = 3 and n = 4, respectively, implies (2.12) and (3.10).

Remark 2.12. What essentially established in [12, Section 3] are sufficient conditions for the
function (sinx/x − 2/π)/(f(x) − f(π/2)) to be monotonic on [0, π/2]. Generally, more new
sufficient conditions may be further found.
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2.5. Some Generalizations of Redheffer-Williams’s Inequality

2.5.1. Chen-Zhao-Qi’s Results

In [57, 58], the following three inequalities similar to (1.5)were established: if |x| ≤ 1/2, then

cos(πx) ≥ 1 − 4x2

1 + 4x2
, cosh(πx) ≤ 1 + 4x2

1 − 4x2
. (2.34)

If 0 < |x| < 1, then

sinh(πx)
πx

≤ 1 + x2

1 − x2
. (2.35)

2.5.2. Zhu-Sun’s Results

In [59], by using Lemma 2.9 and other techniques, the above three inequalities are sharpened,
and some new results were demonstrated as follows.

(1) The double inequality

(
π2 − x2

π2 + x2

)β

≤ sinx
x

≤
(

π2 − x2

π2 + x2

)α

(2.36)

holds for 0 < x < π if and only if α ≤ π2/12 and β ≥ 1.
(2) The double inequality

(
π2 − 4x2

π2 + 4x2

)β

≤ cosx ≤
(

π2 − 4x2

π2 + 4x2

)α

(2.37)

holds for 0 ≤ x ≤ π/2 if and only if α ≤ π2/16 and β ≥ 1.
(3) The double inequality

(
π2 + 4x2

π2 − 4x2

)α

≤ tanx
x

≤
(

π2 + 4x2

π2 − 4x2

)β

(2.38)

holds for 0 < x < π/2 if and only if α ≤ π2/24 and β ≥ 1.
(4) The double inequality

(
r2 + x2

r2 − x2

)α

≤ sinhx
x

≤
(

r2 + x2

r2 − x2

)β

(2.39)

holds for 0 < x < r if and only if α ≤ 0 and β ≥ r2/12.
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(5) The double inequality

(
r2 + x2

r2 − x2

)α

≤ coshx ≤
(

r2 + x2

r2 − x2

)β

(2.40)

holds for 0 ≤ x < r if and only if α ≤ 0 and β ≥ r2/4.
(6) The double inequality

(
r2 − x2

r2 + x2

)β

≤ tanhx
x

≤
(

r2 − x2

r2 + x2

)α

(2.41)

holds for 0 < x < r if and only if α ≤ 0 and β ≥ r2/6.

2.5.3. Zhu’s Sharp Inequalities

In [60], using Lemma 2.9 and other techniques, some sharp inequalities for the sine, cosine,
and tangent functions are presented as follows.

(1) For x ∈ (0, π], the double inequality

(
π2 − x2

√
π4 + 3x4

)α

≤ sinx
x

≤
(

π2 − x2

√
π4 + 3x4

)β

(2.42)

holds if and only if α ≥ π2/6 and β ≤ 1.
(2) The following inequalities are valid:

(
π2 − 4x2

√
π4 + 48x4

)π2/6

≤ cosx ≤
(

π2 − 4x2

√
π4 + 48x4

)3/4

, 0 < x ≤ π

2
;

(√
π4 + 48x4

π2 − 4x2

)1/2

≤ tanx
x

≤
(√

π4 + 48x4

π2 − 4x2

)π2/6

, 0 < x <
π

2
.

(2.43)

(3) For 0 < x ≤ π/2, the double inequality

[
sin(2x)

2x

]α
≤ cosx ≤

[
sin(2x)

2x

]β
(2.44)

holds if and only if α ≥ 1 and β ≤ 3/4.
(4) For 0 < x < π/2, the double inequality

[
2x

sin(2x)

]α
≤ tanx

x
≤
[

2x
sin(2x)

]β
(2.45)

holds if and only if α ≤ 1/2 and β ≥ 1.
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2.5.4. Baricz-Wu’s Generalization

For detailed information, please refer to [61].

2.6. Some Generalizations and Related Results

In [62], it was obtained that

2
π

≤
∣∣∣∣∣

sin
(
λy
)

λx sin
(
πy/2x

)
∣∣∣∣∣ ≤

∣∣∣∣
sin(λx)

λx

∣∣∣∣ ≤
∣∣∣∣∣
sin
(
λy
)

λy

∣∣∣∣∣ < 1 (2.46)

for 0 < |y| < |x| and 0 < |λx| ≤ π/2.
In [63, 64], by considering the logarithmic concavity of sinx/x and the logarithmic

convexity of tanx/x and by using Jensen’s inequality for convex functions, it was obtained
that

∣∣∣∣∣
n∏
i=1

tanxi

∣∣∣∣∣ ≥
∣∣∣∣∣

n∏
i=1

xi

[
tan(

∑n
i=1|xi|/n)∑n

i=1|xi|/n
]n∣∣∣∣∣

>

∣∣∣∣∣
n∏
i=1

xi

∣∣∣∣∣

>

∣∣∣∣∣
n∏
i=1

xi

[
sin(

∑n
i=1|xi|/n)∑n

i=1|xi|/n
]n∣∣∣∣∣

≥
∣∣∣∣∣

n∏
i=1

sinxi

∣∣∣∣∣

(2.47)

for 0 < |xi| < π/2, 1 ≤ i ≤ n and n ∈ N and that

|tan(αx)|
α|x| >

∣∣tan(βx)∣∣
β|x| > 1 >

∣∣sin(βx)∣∣
β|x| >

|sin(αx)|
α|x| >

∣∣sin(βx)∣∣
α|x| csc

βπ

2α
(2.48)

for 0 < β < α and 0 < |αx| < π/2.
In [65], it was proved that a positive and concave function is logarithmically concave

and that the function sinx/x for 0 < x < π/2 is a concave function. As a corollary, the
following inequality was obtained:

sinx
x

≥ 1 +
2(2 − π)

π2
x ≥ 2

π
, 0 < x ≤ π

2
. (2.49)

This inequality is better than (1.16) and it is not included or includes (1.14).

Remark 2.13. In passing it is pointed out that the above relationship between concave
functions and logarithmically concave functions was also verified much simply in [66, page
85].
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Recently, the following double inequalities and others were established in [67, 68]:

x2

sinh2x
<

sinx
x

<
x

sinhx
, x ∈

(
0,

π

2

)
;

(
1

coshx

)1/2

<
x

sinhx
<

(
1

coshx

)1/4

, x ∈ (0, 1).

(2.50)

Some results obtained in [69–71] and the related references therein may be also interesting.
In [6, 7], [3, pages 269–288], and [4, pages 235–265], a large amount of inequalities

involving trigonometric functions are collected.

3. Refinements of Jordan’s Inequality and Yang’s Inequality

3.1. Yang’s Inequality

In [72, pages 116–118], an inequality states that

cos2(λA) + cos2(λB) − 2 cos(λA) cos(λB) cos(λπ) ≥ sin2(λπ) (3.1)

is valid for 0 ≤ λ ≤ 1, A > 0 and B > 0 with A + B ≤ π , where the equality holds if and only if
λ = 0 or A + B = π .

Remark 3.1. The inequality (3.1) has been generalized in [73, 74] and related references
therein.

3.2. Zhao’s Result

In [75, Theorems 1 and 2], by using inequalities (1.1) and (1.5), respectively, it was concluded
that

4

(
n

2

)
λ2cos2

(π
2
λ
)
≤
∑

1≤i<j≤n
Hij ≤

(
n

2

)
π2λ2,

(
n

2

)(
1 − λ2

1 + λ2

)2

≤
∑

1≤i<j≤n
Hij ≤

(
n

2

)
π2λ2,

(3.2)

where

Hij = cos2(λAi) + cos2
(
λAj

) − 2 cos(λAi) cos
(
λAj

)
cos(λπ) (3.3)

for 0 ≤ λ ≤ 1 and Ai > 0 with
∑n

i=1 Ai ≤ π for n ≥ 2.
This generalizes Yang’s inequality (3.1).
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3.3. Debnath-Zhao’s Result

In [76], inequalities (1.12) and (1.14) or the left-hand side inequality in (2.13)were recovered
once again. However, it seems that the authors of the paper [76] did not compare (1.12) and
(1.14) explicitly.

As an application of (1.14), with the help of

sin2(λπ) ≤ Hij ≤ 4 sin2
(
λ

2
π

)
(3.4)

in [73] and [74, (2.13)], Yang’s inequality (3.1)was generalized in [76] to

(
n

2

)
λ2
(
3 − λ2

)2
cos2

(
λ

2
π

)
≤
∑

1≤i<j≤n
Hij ≤

(
n

2

)
λ2π2. (3.5)

3.4. Özban’s Result

In [77], a new refined form of Jordan’s inequality was given for 0 < x ≤ π/2 as follows:

sinx
x

≥ 2
π

+
1
π3

(
π2 − 4x2

)
+
π − 3
π3

(2x − π)2 (3.6)

with equality if and only if x = π/2. As an application of (3.6) as in [76], the lower bound in
(3.5) was refined as

∑
1≤i<j≤n

Hij ≥
(
n

2

)
λ2
[
π + (6 − 2π)λ + (π − 4)λ2

]2
cos2

(
λ

2
π

)
. (3.7)

3.5. Jiang-Hua’s Results

Motivated by the papers [47, 49], it was procured in [78] that

sinx
x

≥ 2
π

+
8x
π3

(π
2
− x
)
+
4(π − 2)

π3

(π
2
− x
)2

(3.8)

for x ∈ (0, π/2]. Equality in (3.8) holds if and only if x = π/2.
As an application of (3.8), Yang’s inequality (3.1) is generalized and refined as

4

(
n

2

)
λ2
[
π − 2
2

(λ − 1)2 + λ(1 − λ) + 1
]2
cos2

(
πλ

2

)
≤
∑

1≤i<j≤n
Hij ≤

(
n

2

)
π2λ2. (3.9)

In [79], by Lemma 2.9, the inequality

1
2π5

(
π4 − 16x4

)
≤ sinx

x
− 2
π

≤ π − 2
π5

(
π4 − 16x4

)
(3.10)
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for 0 < x ≤ π/2, a refinement of Jordan’s inequality (1.1), was presented. Meanwhile, Yang’s
inequality was refined as

(
n

2

)
λ2
(
5 − λ4

)2
4

cos2
(
λ

2
π

)
≤
∑

1≤i<j≤n
Hij ≤

(
n

2

)
λ2
[
π + (2 − π)λ4

]2
. (3.11)

3.6. Agarwal-Kim-Sen’s Result

In [80], inequalities (3.6) and (3.19) were refined as follows: for 0 < x ≤ π/2, the double
inequality

1 + B1x − B2x
2 + B3x

3 ≤ sinx
x

≤ 1 + C1x − C2x
2 + B3x

3 (3.12)

holds with equalities if and only if x = π/2 and

B1 =
4
π2

(
66 − 43π + 7π2

)
, B2 =

4
π3

(
124 − 83π + 14π2

)
, B3 =

16
π4

(π − 3),

C1 =
4
π2

(
75 − 49π + 8π2

)
, C2 =

4
π3

(
142 − 95π + 16π2

)
.

(3.13)

By using (3.12), Yang’s inequality was refined in [80, Theorem 3.1] as

U(λ) ≤
∑

1≤i<j≤n
sin2(λπ) ≤

∑
1≤i<j≤n

Hij ≤
∑

1≤i<j≤n
λ2π2, (3.14)

where

U(λ) =
n(n − 1)

2
λ2[B(λ;π)]2cos2

(
λ

2
π

)
(3.15)

with

B(λ;π) = π + 2
(
66 − 43π + 7π2

)
λ −

(
124 − 83π + 14π2

)
λ2 + 2(π − 3)λ3. (3.16)

3.7. Zhu’s Results

In [81], inequalities (1.14) and (2.7), equivalently, the double inequality (2.13), and their
sharpness were recovered once more by using Lemma 2.9.

As an application of (2.7), the upper bound in (3.5)was refined as

∑
1≤i<j≤n

Hij ≤ 4

(
n

2

)[
λ3 +

λ
(
1 − λ2

)
π

2

]2
. (3.17)
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In [82], by using Lemma 2.9, the inequality (3.6) and the following two refined forms
of Jordan’s inequality were established:

12 − π2

16π5

(
π2 − 4x2

)2
≤ sinx

x
− 2
π

− 1
π3

(
π2 − 4x2

)
≤ π − 3

π5

(
π2 − 4x2

)2
, (3.18)

sinx
x

≤ 2
π

+
1
π3

(
π2 − 4x2

)
+
12 − π2

π3

(
x − π

2

)2
. (3.19)

The inequality (3.18) and the right-hand side inequality in (3.19) were also applied to obtain

N3(λ) ≤
∑

1≤i<j≤n
Hij ≤ min

{
M3(λ),M′

3(λ)
}
, (3.20)

where

N3(λ) =

(
n

2

)
λ2
[
3 − λ2 +

12 − π2

16

(
1 − λ2

)2]2
cos2

(
λ

2
π

)
,

M3(λ) =

(
n

2

)
λ2
[
3 − λ2 + (π − 3)

(
1 − λ2

)2]2
,

M′
3(λ) =

(
n

2

)
λ2
[
3 − λ2 +

12 − π2

4
(1 − λ)2

]2
.

(3.21)

In [83], a general refinement of Jordan’s inequality (1.1) was presented by a different
approach from that used in [84, 85] as follows: for 0 < x ≤ π/2 and any nonnegative integer
n ≥ 0, the inequality

an+1

(
π2 − 4x2

)n+1 ≤ sinx
x

− P2n(x) ≤
1 −∑n

k=0 akπ
2k

π2(n+1)
(π2 − 4x2)

n+1
(3.22)

is valid with the equalities if and only if x = π/2, where

P2n(x) =
n∑

k=0

ak

(
π2 − 4x2

)k
, (3.23)

and ak satisfies the recurrent formula

a0 =
2
π
, a1 =

1
π3

, ak+1 =
2k + 1

2(k + 1)π2
ak − 1

16k(k + 1)π2
ak−1 (3.24)

for k ∈ N. Furthermore, the constants an+1 and (1 −∑n
k=0 akπ

2k)/π2(n+1) in (3.22) are the best
possible.
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Moreover, the following series expansion for sinx/x was also deduced in [83]: for
0 < x ≤ π/2 and n ≥ 0, we have

sinx
x

= P2n(x) +Q2n+2, (3.25)

where the reminder term is

Q2n+2 =
1

23(n+1)(n + 1)!(2n + 3)!!
· sinη

η
(π2 − 4x2)

n+1
, 0 < η <

π

2
. (3.26)

If taking n → ∞ in (3.25), since limn→∞Q2n+2 = 0, then

sinx
x

=
∞∑
k=0

ak

(
π2 − 4x2

)k
, 0 < |x| ≤ π

2
, (3.27)

which implies
∑∞

k=0 akπ
2k = 1.

As an application of (3.22), a general improvement of Yang’s inequality (3.1) was
deduced in [83] as

(
n

2

)
(λπ)2

[
P2n

(
λ

2
π

)
+ an+1π

2(n+1)
(
1 − λ2

)n+1]2
cos2

(
λ

2
π

)

≤
∑

1≤i<j≤n
Hij ≤

(
n

2

)
(λπ)2

[
P2n

(
λ

2
π

)
+

(
1 −

n∑
k=0

akπ
2k

)(
1 − λ2

)n+1]2
.

(3.28)

3.8. Niu-Huo-Cao-Qi’s Result

In [84, 85], the following general refinement of Jordan’s inequality was presented: for 0 < x ≤
π/2 and n ∈ N, the inequality

2
π

+
n∑

k=1

αk

(
π2 − 4x2

)k ≤ sinx
x

≤ 2
π

+
n∑

k=1

βk
(
π2 − 4x2

)k
(3.29)

holds with the equalities if and only if x = π/2, where the constants

αk =
(−1)k

(4π)kk!

k+1∑
i=1

(
2
π

)i

ak
i−1 sin

(
k + i

2
π

)
, (3.30)

βk =

⎧
⎪⎪⎨
⎪⎪⎩

1 − 2/π −
∑n−1

i=1
αiπ

2i

π2n
, k = n,

αk, 1 ≤ k < n

(3.31)
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with

ak
i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(i + k − 1)ak−1
i−1 + ak−1

i , 0 < i ≤ k,

1, i = 0,

0, i > k

(3.32)

in (3.29) are the best possible.
As an application of inequality (3.29), a refinement and generalization of Yang’s

inequality (3.1) is obtained: for 0 ≤ λ ≤ 1 and Ai > 0 such that
∑n

i=1 Ai ≤ π , if m ∈ N

and n ≥ 2, then

Lm(n, λ) ≤
∑

1≤i<j≤n
Hij ≤ Rm(n, λ), (3.33)

where

Lm(n, λ) =

(
n

2

)
λ2
[
2 +

m∑
k=1

αkπ
2k+1

(
1 − λ2

)k]2
cos2

(
λ

2
π

)
,

Rm(n, λ) =

(
n

2

)
λ2
[
2 +

m∑
k=1

βkπ
2k+1

(
1 − λ2

)k]2
.

(3.34)

4. Generalizations of Jordan’s Inequality and Applications

4.1. Qi-Niu-Cao’s Generalization and Application

In [84, 86], a general generalization of Jordan’s inequality was established: for 0 < x ≤ θ < π ,
n ∈ N and t ≥ 2, the inequality

n∑
k=1

μk

(
θt − xt)k ≤ sinx

x
− sin θ

θ
≤

n∑
k=1

ωk

(
θt − xt)k (4.1)

holds with the equalities if and only if x = θ, where the constants

μk =
(−1)k
k!tk

k+1∑
i=1

ak
i−1θ

k−i−kt sin
(
θ +

k + i − 1
2

π

)
, (4.2)

ωk =

⎧
⎪⎪⎨
⎪⎪⎩

1 − (sin θ)/θ −
∑n−1

i=1
μiθ

ti

θtn
, k = n,

μk, 1 ≤ k < n

(4.3)
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with

ak
i =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ak−1
i + [i + (k − 1)(t − 1)]ak−1

i−1 , 0 < i ≤ k,

1, i = 0,

0, i > k

(4.4)

in (4.1) are the best possible.
As an application of inequality (4.1), Yang’s inequality was refined as follows: let 0 ≤

λ ≤ 1, 0 < x ≤ θ < π , t ≥ 2, and Ai > 0 with
∑n

i=1 Ai ≤ π for n ∈ N. Ifm ∈ N and n ≥ 2, then

Lm(n, λ) ≤
∑

1≤i<j≤n
Hij ≤ Rm(n, λ), (4.5)

where

Lm(n, λ) =

(
n

2

)
λ2π2

[
sin θ
θ

+
m∑
k=1

2−ktμk

(
2tθt − λtπt)k

]2
cos2

(
λ

2
π

)
,

Rm(n, λ) =

(
n

2

)
λ2π2

[
sin θ
θ

+
m∑
k=1

2−ktωk

(
2tθt − λtπt)k

]2
cos2

(
λ

2
π

)
,

(4.6)

and μk and ωk are defined by (4.2).

4.2. Zhu’s Generalizations and Applications

In [87], by making use of Lemma 2.9, the author obtained the following generalization of
Jordan’s inequality: if 0 < x ≤ r ≤ π/2, then

sin r
r

+
sin r − r cos r

2r3
(
r2 − x2

)
≤ sinx

x
≤ sin r

r
+
r − sin r

r3

(
r2 − x2

)
. (4.7)

As an application of (4.7), in virtue of (3.4), Yang’s inequality (3.1) was sharpened and
generalized as

4

(
n

2

)[
λπ sin r

2r
+
sin r − r cos r

2r3

(
λπr2

2
− (λπ)3

8

)]2
cos2

(
λ

2
π

)

≤
∑

1≤i<j≤n
Hij ≤ 4

(
n

2

)[
λπ sin r

2r
+
r − sin r

r3

(
λπr2

2
− (λπ)3

8

)]2
.

(4.8)
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In [88], the double inequality (3.22) was extended by using the method in [83] as

A2n,r(x) + αn,r

(
r2 − x2

)n+1 ≤ sinx
x

≤ A2n,r(x) + βn,r
(
r2 − x2

)n+1
, (4.9)

A2m,r(x) + μm,r(r − x)m+1 ≤ sinx
x

≤ A2m,r(x) + νm,r(r − x)m+1 (4.10)

with the equalities in (4.9) and (4.10) if and only if x = r, where 0 < x ≤ r ≤ π/2, n ≥ 0,m ∈ N

and

A2n,r(x) =
n∑

k=0

ak,r

(
r2 − x2

)k
(4.11)

with

a0,r =
sin r
r

, a1,r =
sin r − r cos r

2r3
,

ak+1,r =
2k + 1

2(k + 1)r2
ak,r − 1

4k(k + 1)r2
ak−1,r , k ∈ N.

(4.12)

The constants αn,r = an+1 and

βn,r =
1 −∑n

k=0 akr
2k

r2(n+1)
(4.13)

in (4.9) and the constants

μm,r =
1 −∑m

k=0 ak,rr
2k

rn+1
(4.14)

and νm,r = (2r)m+1am+1 in (4.10) are the best possible.
As an application of inequalities in (4.9), Yang’s inequality (3.1) was extended or

generalized as follows: if Ai > 0 for i ∈ N with
∑n

i=1 Ai ≤ r for 0 < r ≤ π and n ≥ 2,
then

max{L1(r), L2(r)} ≤ (n − 1)
n∑

k=1

cos2Ak − 2 cos r
∑

1≤i<j≤n
cosAi cosAj

≤ min{R1(r), R2(r)},
(4.15)
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where

L1(r) =

(
n

2

)
r2
[
P2n

( r
2

)
+ an+1

(
π2 − r2

)n+1]2
cos2

r

2
,

L2(r) =

(
n

2

)
r2
[
P2n

( r
2

)
+
1 −∑n

k=0 akπ
2k

π2(n+1)

(
π − r

2

)n+1
]2
cos2

r

2
,

R1(r) =

(
n

2

)
r2
[
P2n

( r
2

)
+
1 −∑n

k=0 akπ
2k

π2(n+1)

(
π2 − r2

)n+1]2
,

R2(r) =

(
n

2

)
r2
[
P2n

( r
2

)
+ an+1

(
π − r

2

)n+1
]2
.

(4.16)

In [89], the double inequality (4.9)was recovered by a similar method as in [83, 88].
The series expansion (3.25) was generalized in [89, Theorem 8] as follows: if 0 < x ≤

r ≤ π/2 and n ≥ 0, then

sinx
x

= S2n(x) + R2n+2, (4.17)

where S2n(x) =
∑n

k=0 ak(r2 − x2)k and

R2n+2 =
1

2n+1(n + 1)!(2n + 3)!!
· sinη

η
(r2 − x2)

n+1
, 0 < η < r ≤ π

2
(4.18)

with

a0 =
sin r
r

, a1 =
sin r − r cos r

2r3
,

ak+1 =
2k + 1

2(n + 1)r2
ak − 1

4k(k + 1)r2
ak−1, k ∈ N.

(4.19)

The series expansion (3.27) was also generalized in [89, Theorem 9]: if 0 < |x| ≤ r ≤
π/2, then

sinx
x

=
∞∑
k=0

ak

(
r2 − x2

)k
, (4.20)

where ak for k ≥ 0 are defined by (4.19).
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As applications of the above inequalities, the following general improvement of Yang’s
inequality was established in [89, Theorem 11]:

(
n

2

)
(λπ)2

[
S2n

(
πλ

2

)
+ an+1

(
r2 − 1

4
π2λ2

)n+1
]2
cos2

(
πλ

2

)

≤
∑

1≤i<j≤n
Hij ≤

(
n

2

)
(λπ)2

[
S2n

(
πλ

2

)
+
1 −∑n

k=0 akr
2k

r2(n+1)

(
r2 − 1

4
π2λ2

)n+1
]2 (4.21)

for n ≥ 2 and 0 < r ≤ π/2.

4.3. Wu’s Generalization and Applications

In [90], Jordan’s inequality (1.1) was generalized as

1
λ

(
sin θ
θ

− cos θ
)(

1 − xλ

θλ

)
+
[
1 − sin θ

θ
− 1
λ

(
sin θ
θ

− cos θ
)](

1 − x

θ

)λ

≤ sinx
x

− sin θ
θ

≤
(
1 − sin θ

θ

)(
1 − xλ

θλ

)
,

(4.22)

where 0 < x ≤ θ ≤ π and λ ≥ 2.
As an application of (4.22), Yang’s inequality (3.1)was generalized as follows: ifAi ≥ 0

for 1 ≤ i ≤ n and n ≥ 2 satisfy
∑n

i=1 Ai ≤ θ ∈ [0, π], then

(
n

2

)[(
π − 2 − 2

λ

)(
1 − θ

π

)λ

− 2
λ

(
θ

π

)λ

+
2
λ
+ 2

]2(
θ

π
cos

θ

2

)2

≤ (n − 1)
n∑

k=1

cos2Ak − 2 cos θ
∑

1≤i<j≤n
cosAi cosAj

≤
(
n

2

)[
2
(
θ

π

)λ+1

− θ

(
θ

π

)λ

+ θ

]
, λ ≥ 2.

(4.23)

Remark 4.1. The right-hand side inequality in (2.14) was recovered, and the left-hand side
inequality in (2.14)was improved in [90].
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4.4. Wu-Debnath’s Generalizations and Applications

In [91], the following generalizations of Jordan’s inequality were established:

max

⎧
⎨
⎩

3
2
ϕ1(θ)

(
1 − x

θ

)2

,
3
8
ϕ2(θ)

(
1 − x2

θ2

)2
⎫
⎬
⎭

≤ sinx
x

− sin θ
θ

− 1
2

(
sin θ
θ

− cos θ
)(

1 − x2

θ2

)

≤ min

⎧
⎨
⎩

3
2
ϕ2(θ)

(
1 − x

θ

)2

,
3
2
ϕ1(θ)

(
1 − x2

θ2

)2
⎫
⎬
⎭

(4.24)

for 0 < x ≤ θ and θ ∈ (0, π], where

ϕ1(θ) =
2
3
+
cos θ
3

− sin θ
θ

, ϕ2(θ) =
sin θ
θ

− 1
3
θ sin θ − cos θ. (4.25)

The equalities in (4.24) hold if and only if x = θ, and the coefficients of the factors (1 − x/θ)2

and (1 − x2/θ2)2 are the best possible.
If taking θ = π/2, then inequalities (3.18) and (3.19) are deduced from (4.24).
Integrating on both sides of (4.24) yields

max

{
5 sin θ − θ cos θ + 2θ

6
,
23 sin θ − 8θ cos θ − θ2 sin θ

15

}

<

∫θ

0

sinx
x

dx < min

{
11 sin θ − 5θ cos θ − θ2 sin θ

6
,
8 sin θ − θ cos θ + 8θ

15

}
.

(4.26)

If taking θ = π/2 in (4.26), then

92 − π2

60
<

∫π/2

0

sinx
x

dx <
8 + 4π
15

, (4.27)

which is better than (2.14).
The basic tool for proving (4.24) is also Lemma 2.9.
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As another application of (4.24), a generalization of Yang’s inequality (3.1) was
obtained: if Ai > 0 for 1 ≤ i ≤ n and n ≥ 2 such that

∑n
i=1 Ai ≤ θ ∈ [0, π], then

max{N1(θ),N2(θ)} ≤
(
n

2

)
sin2θ

≤ (n − 1)
n∑

k=1

cos2Ak − 2 cos θ
∑

1≤i<j≤n
cosAi cosAj

≤ 4

(
n

2

)
sin2 θ

2
≤ min{M1(θ),M2(θ)},

(4.28)

where

N1(θ) =

(
n

2

)[
3 − θ2

π2
+ (π − 3)

(
1 − θ

π

)2
]2(

θ

π
cos

θ

2

)2

,

N2(θ) =

(
n

2

)⎡
⎣3 − θ2

π2
+
12 − π2

16

(
1 − θ2

π2

)2
⎤
⎦

2(
θ

π
cos

θ

2

)2

,

M1(θ) =

(
n

2

)[
3 − θ2

π2
+
12 − π2

4

(
1 − θ

π

)2
]2(

θ

π

)2

,

M2(θ) =

(
n

2

)⎡
⎣3 − θ2

π2
+ (π − 3)

(
1 − θ2

π2

)2
⎤
⎦

2(
θ

π

)2

.

(4.29)

If substituting Ai by λAi and θ by λπ in (4.28), then inequalities (3.7) and (3.20) are
deduced.

In [92], as a generalization of inequality (4.24), the following sharp inequality

1
2τ2

[
(1 + λ)

(
sin θ
θ

− cos θ
)
− θ sin θ

](
1 − xτ

θτ

)2

≤ sinx
x

− sin θ
θ

− 1
λ

(
sin θ
θ

− cos θ
)(

1 − xλ

θλ

)

≤
[
1 − sin θ

θ
− 1
λ

(
sin θ
θ

− cos θ
)](

1 − xτ

θτ

)2

(4.30)

was obtained for 0 < x ≤ θ ∈ (0, π/2], τ ≥ 2 and τ ≤ λ ≤ 2τ by employing Lemma 2.9.
The equalities in (4.30) holds if and only if x = θ. The coefficients of the term (1 − xτ/θτ)2
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are the best possible. If 1 ≤ τ ≤ 5/3 and either λ/= 0 or λ ≥ 2τ , then the inequality (4.30) is
reversed. Specially, when θ = π/2, the inequality (4.30) becomes

4λ + 4 − π2

4τ2π2τ+1
(πτ − 2τxτ)2 ≤ sinx

x
− 2
π

− 2
λπλ+1

(
πλ − 2λxλ

)
≤ λπ − 2λ − 2

λπ2τ+1
(πτ − 2τxτ)2

(4.31)

for 0 < x ≤ π/2, τ ≥ 2, and τ ≤ λ ≤ 2τ . If 1 ≤ τ ≤ 5/3 and either λ/= 0 or λ ≥ 2τ , then the
inequality (4.31) is reversed.

If taking (τ, λ) = (2, 2) and (τ, λ) = (1, 2), then inequalities (3.6), (3.18), and (3.19) are
derived.

If λ ≥ 2 andAi ≥ 0with
∑n

i=1 Ai ≤ θ ∈ [0, π] for n ≥ 2, then the following generalization
of Yang’s inequality was obtained by using the inequality (4.30) in [92]:

max{K1(λ, θ), K2(λ, θ)} ≤ (n − 1)
n∑

k=1

cos2Ak − 2 cos θ
∑

1≤i<j≤n
cosAi cosAj

≤ min{Q1(λ, θ), Q2(λ, θ)},
(4.32)

where

K1(λ, θ) =

(
n

2

){[
λ + 1 − θλ

πλ
+
λπ − 2λ − 2

2

(
1 − θ

π

)2
]
2θ
λπ

cos
θ

2

}2

,

K2(λ, θ) =

(
n

2

)⎧⎨
⎩

⎡
⎣λ + 1 − θλ

πλ
+
4λπ + 4 − π2

8λ

(
1 − θλ

πλ

)2
⎤
⎦ 2θ
λπ

cos
θ

2

⎫
⎬
⎭

2

,

Q1(λ, θ) =

(
n

2

){[
λ + 1 − θλ

πλ
+
4λ + 4λ2 − λπ2

8

(
1 − θ

π

)2
]
2θ
λπ

}2

,

Q2(λ, θ) =

(
n

2

)⎧⎨
⎩

⎡
⎣λ + 1 − θλ

πλ
+
λπ − 2λ − 2

2

(
1 − θλ

πλ

)2
⎤
⎦ 2θ
λπ

⎫
⎬
⎭

2

.

(4.33)

Note that inequalities (3.7), (3.20), and (4.28) can be deduced from (4.32).
By analytic techniques, the following inequalities are presented in [93].
(1) If 0 < x ≤ θ ≤ π , then

sinx
x

≥ sin θ
θ

− θ − sin θ
θ2 (x − θ). (4.34)

(2) If 0 < x ≤ π and 0 < θ ≤ π/2, then

sinx
x

≤ sin θ
θ

− θ cos θ − sin θ
θ2 (x − θ). (4.35)

(3) Equalities in (4.34) and (4.35) hold if and only if x = θ.
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These two inequalities extend the double inequality obtained by applying n = 1 to the
inequality (4.41).

As applications of inequalities in (4.34) and (4.35), the following double inequalities
were gained: if xi > 0 for 1 ≤ i ≤ n and n ≥ 2 satisfying

∑n
i=1 xi = θ for 0 < θ ≤ π , then

sin θ
θ

+ n − 1 <
n∑
i=1

sinxi

xi
≤ n2

θ
sin

θ

n
, (4.36)

n∑
i=1

sinxi

θ − xi
> 1 +

1
n − 1

· sin θ
θ

(4.37)

1 + (n − 1)
(
sin θ
θ

)
<

n∑
i=1

sin(θ − xi)
θ − xi

<
(
n2 − 3n + 1

)
cos

θ

n − 1

− (n − 1)
(
n2 − 4n + 1

)

θ
sin

θ

n − 1
, n ≥ 3.

(4.38)

The equality in (4.36) holds if and only if xi = θ/n for all 1 ≤ i ≤ n.
The inequality (4.36) generalizes Janous-Klamkin’s inequality [94, 95]:

2 <
sinA
A

+
sinB
B

+
sinC
C

≤ 9
√
3

2π
, (4.39)

where A > 0, B > 0, and C > 0 satisfy A + B + C = π . Meanwhile, the inequalities (4.37) and
(4.38) generalize and improve Tsintsifas-Murty-Henderson’s double inequality [96, 97]:

3
π

<
sinA
π −A

+
sinB
π − B

+
sinC
π − C

<
3
√
3

π
, (4.40)

where 0 < A < π/2, 0 < B < π/2, and 0 < C < π/2 satisfy A + B + C = π .

4.5. Wu-Srivastava’s Generalizations and Applications

By using Lemma 2.9 and other techniques, a double inequality was obtained in [98], which
can be simplified as follows: let i be a nonnegative integer and 0 < x ≤ θ ≤ π/2.
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(1) For n = 4i + 1 or n = 4i + 2,

(θ − x)n

θn

[
1 −

n−1∑
k=0

k∑
�=0

(−1)�θ�−1

�!
sin
(
θ +

�π

2

)]

≤ sinx
x

−
n−1∑
k=0

k∑
�=0

(−1)k+�(x − θ)k

�!θk−�+1 sin
(
θ +

�π

2

)

≤ (θ − x)n

θn+1

n∑
�=0

(−1)�θ�

�!
sin
(
θ +

�π

2

)
.

(4.41)

(2) For n = 4i + 3 or n = 4i + 4, the inequality (4.41) is reversed.

(3) The equalities in (4.41) hold true if and only if x = θ.

Upon letting n = 2 in (4.41), the following inequality is derived:

θ − 2 sin θ + θ cos θ
θ3

(x − θ)2 ≤ sinx
x

− sin θ
θ

− θ cos θ − sin θ
θ2 (x − θ)

≤ 2 sin θ − 2θ cos θ − θ2 sin θ
2θ3

(x − θ)2
(4.42)

for 0 < x ≤ θ ≤ π .
Upon taking n = 2 and θ = π/2, the inequality (3.19) follows.
As a consequence of (4.41), a double inequality for estimating the definite integral∫π/2

0 (sinx/x)dx was established in [98], which refines the double inequality (2.14).
Finally, the inequality (4.41) for n = 5 and θ = π/2 was applied to refine and generalize

Yang’s inequality (3.1).

4.6. Wu-Debnath’s General Generalizations and Applications

In [99], the inequality (4.41) was generalized to a general form which can be recited as
follows: let f be a real-valued (n + 1)-time differentiable function on [0, θ] with f(0) = 0.

(1) If n is either a positive even number such that f (n+1) is increasing on [0, θ] or a
positive odd number such that f (n+1) is decreasing on [0, θ], then the following
double inequality is valid for x ∈ (0, θ]:

(−1)n
θn

[
f ′(0+) +

n−1∑
k=0

k∑
i=0

(−1)i−1θi−1

i!
f (i)(θ)

]

≤ f(x)
x

−
n−1∑
k=0

k∑
i=0

(−1)i(θ − x)k

i!θk−i+1 f (i)(θ)

≤
n∑
i=0

(−1)i(θ − x)n

i!θn−i+1 f (i)(θ).

(4.43)
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(2) If n is either a positive even number such that f (n+1) is decreasing on [0, θ] or a
positive odd number such that f (n+1) is increasing on [0, θ], then the inequality
(4.43) is reversed.

(3) The equalities in (4.43) hold if and only if x = θ.

Upon taking f(x) = sinx, the inequality (4.41) follows straightforwardly.
The tool of the paper [99] is Lemma 2.9. The authors also used their techniques to

present similar inequalities for the functions

sinhx
x

,
ln(1 + x)

x
. (4.44)

As consequences of the above inequalities, a double inequality for bounding the
definite integral

∫a
0(ln(1 + x)/x)dx for a > 0 and some known inequalities were derived.

4.7. Wu-Srivastava-Debnath’s Generalization and Applications

In virtue of Lemma 2.9, the following conclusion for bounding the function sinx/x was
gained in [100]: for n ∈ N, 0 < x ≤ θ ≤ π and f(x) = sin

√
x/

√
x, we have

f (n)(θ2)

n!

(
x2 − θ2

)n ≤ sinx
x

−
n−1∑
k=0

f (k)(θ2)

k!

(
x2 − θ2

)k

≤ 1
θ2n

[
1 −

n−1∑
k=0

(−1)kθ2kf (k)(θ2)

k!

](
θ2 − x2

)n
.

(4.45)

The equalities in (4.45) hold true if and only if x = θ.
In [100, Lemma 3], the function f(x) = sin

√
x/

√
x was proved to be completely

monotonic on (0, π2]. For detailed information on the class of completely monotonic
functions, please see the survey paper [101] and related references therein.

In the final of [100], Yang’s inequality (3.1)was generalized by virtue of the inequality
(4.45) for n = 4 and θ = π/2.

5. Refinements of Kober’s Inequality

5.1. Niu’s Results

As a direct consequence of (3.29), the following general refinements of Kober’s inequality
was obtained in [84]: for 0 < x ≤ π/2, k ∈ N, and n ∈ N, inequalities

(π
2
− x
)[ 2

π
+

n∑
k=1

αk(4x)k(π − x)k
]

≤ cosx ≤
(π
2
− x
)[ 2

π
+

n∑
k=1

βk(4x)k(π − x)k
]
,

(5.1)
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which may be deduced by replacing x with x − π/2 in (3.29), and

n∑
k=1

k∑
i=0

(−4)i
(

k

i

)
αkπ

2k−2i

2i + 2
x2i+2

≤ 1 − cosx − x2

π
≤

n∑
k=1

k∑
i=0

(−4)i
(

k

i

)
βkπ

2k−2i

2i + 2
x2i+2,

(5.2)

which follows from integrating (3.29) from 0 to x ∈ [0, π/2], hold with constants αk and βk
defined by (3.30) and (3.31), respectively.

5.2. Zhu’s Result

By a utilization of the inequality (3.22) and a simple transformation of variables, the following
Kober type inequality was deduced in [89, Theorem 13]: let

R(u) =
n∑

k=0

ak

2
π2k+1(1 − u)uk(2 − u)k,

S(u) =
1
2
π2n+3(1 − u)un+1(2 − u)n+1

(5.3)

for n ≥ 0, where ak for k ≥ 0 are defined by (3.24). Then the inequality

R(u) + λS(u) ≤ cos
(πu

2

)
≤ R(u) + μS(u) (5.4)

holds if either 0 ≤ u ≤ 1, λ = an+1 and μ = (1 − ∑n
k=0 akπ

2k)/π2(n+1) or 1 ≤ u ≤ 2 and
λ = (1 −∑n

k=0 akπ
2k)/π2(n+1) and μ = an+1.

6. Niu’s Applications and Analysis of Coefficients

6.1. An Application to the Gamma Function

In [84], combining

Γ(1 + z)Γ(1 − z) =
πz

sinπz
(6.1)

with (3.29) yields that if 0 < x < π/2 and n ∈ N, then

2
π

+
n∑

k=1

αk(π2 − 4x2)
k ≤ 1

Γ(1 + x/π)Γ(1 − x/π)
≤ 2

π
+

n∑
k=1

βk(π2 − 4x2)
k
, (6.2)
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where Γ(x) is the classical Euler gamma function defined for x > 0 by

Γ(x) =
∫∞

0
e−ttx−1dt. (6.3)

6.2. Applications to Definite Integrals

In [84], as applications of (3.29), the following conclusions were also obtained.
(1) For 0 < x ≤ π/2 and k, n ∈ N,

2
π
x +

n∑
k=1

k∑
i=0

(−4)i
(

k

i

)
αkπ

2k−2i

2i + 1
x2i+1

≤
∫x

0

sin t
t

dt ≤ 2
π
x +

n∑
k=1

k∑
i=0

(−4)i
(

k

i

)
βkπ

2k−2i

2i + 1
x2i+1.

(6.4)

(2) Let f(x) be continuous on [a, b] such that f(x)/≡ 0 and 0 ≤ f(x) ≤ M. If 0 < b−a < π
and n ∈ N, then

0 <

(∫b

a

f(x)dx

)2

−
(∫b

a

f(x) cosx dx

)2

−
(∫b

a

f(x) sinx dx

)2

≤ M2(b − a)2

⎧
⎨
⎩1 −

[
2
π

+
n∑

k=1

αk

(
π2 − a2 − b2 + 2ab

)k]2
⎫
⎬
⎭.

(6.5)

6.3. Analysis of Coefficients

The coefficients αk and βk defined by (3.30) and (3.31) were estimated in [84] as follows: for
k > 1,

−
√
π

π2k
√
4k + 1

< αk <
1

π2k
√
4k + 1

,

βk <
1 − 2/π +

√
π
(√

k − 1 − 1/2
)

π2k
,

0 ≤ βk − αk <
1 − 2/π +

√
π
(√

k − 1/2
)

π2k
.

(6.6)

Recently, some more accurate estimates of the coefficients αk and βk are carried out in [102].



34 Journal of Inequalities and Applications

6.4. A Power Series

The inequality (3.29) can be rearranged as

0 ≤ sinx
x

− 2
π

−
n∑

k=1

αk

(
π2 − 4x2

)k ≤
n∑

k=1

(
βk − αk

)(
π2 − 4x2

)k −→ 0 (6.7)

as n → ∞, this implies that

sinx =
2
π
x −

∞∑
k=1

αkx
(
π2 − 4x2

)k
. (6.8)

This gives an alternative power series expansion similar to (2.19) and (3.27).

6.5. A Remark

It is natural to consider that the series (2.19), (3.27), and (6.8) should be the same one,
although they seem to have different expressions. This was affirmed in [102], among other
things.

7. Generalizations of Jordan’s Inequality to Bessel Functions

For x ∈ R, some Bessel functions are defined by

Jp(x) =
∞∑
n=0

(−1)n
n!Γ
(
p + n + 1

)
(x
2

)2n+p
,

Ip(x) =
∞∑
n=0

1
n!Γ
(
p + n + 1

)
(x
2

)2n+p
,

λp(x) =
∞∑
n=0

(−1)ncnΓ(p + (b + 1)/2
)

n!Γ
(
p + (b + 1)/2 + n

)
(x
2

)2n
,

Jp(x) = 2pΓ
(
p + 1

)
x−pJp(x),

Ip(x) = 2pΓ
(
p + 1

)
x−pIp(x).

(7.1)

It is well known that

J−1/2(x) = cosx, I−1/2(x) = coshx,

J1/2(x) =
sinx
x

, I1/2(x) =
sinhx

x
.

(7.2)
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7.1. Neuman’s Generalizations of Jordan’s Inequality

In [103], it was established for p ≥ 1/2 and |x| ≤ π/2 that

1
3
(
p + 1

)
[
2p + 1 +

(
p + 2

)
cos

(√
3

2
(
p + 2

) x

)]
≥ Jp(x) ≥ cos

⎛
⎜⎝ x√

2
(
p + 1

)

⎞
⎟⎠. (7.3)

When p = −1/2, equality in (7.3) validates.
Taking in (7.3) p = 1/2 leads to

2
9

⎡
⎣2 + 5

2
cos

⎛
⎝
√

3
5
x

⎞
⎠
⎤
⎦ ≥ sinx

x
≥ cos

(
x√
3

)
, x ∈

[
−π
2
,
π

2

]
. (7.4)

By employing Lemma 2.9, inequalities (2.2), and (2.13) are generalized in [104] as

[
1 − λp

(π
2

)]π − 2x
π

≤ λp(x) − λp
(π
2

)
≤
[(

cπ

2k

)
λp+1

(π
2

)]π − 2x
π

(7.5)

for k ≥ 1/2 and 0 ≤ c ≤ 1 and

[(
c

4k

)
λp+1

(π
2

)]π2 − 4x2

4
≤ λp(x) − λp

(π
2

)
≤
[
1 − λp

(π
2

)]π2 − 4x2

π2
(7.6)

for k ≥ 0 and 0 ≤ c ≤ 1.
In [105], inequalities (7.5) and (7.6) were further improved.

7.2. Niu-Huo-Cao-Qi’s Generalizations of Jordan’s Inequality

In [84, 102], the following two conclusions were established.
(1) For n ∈ N and x ∈ (0, π/2], if k ≥ 1/2 and 0 ≤ c ≤ 1, then

n∑
i=0

γi
(
π2 − 4x2

)i ≤ λp(x) ≤
n∑
i=0

ηi(π2 − 4x2)
i
, (7.7)

where

γi =
(

c

16

)i Γ(k)
i!Γ(k + i)

λi+p
(π
2

)
, 0 ≤ i ≤ n,

ηi =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

γi, 0 ≤ i ≤ n − 1,

1 −
∑n−1

�=0
γ�π

2�

π2n
, i = n

(7.8)
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are the best possible. For k > 0, c ≤ 0 and x ∈ (0, π/2], when n is odd, the inequality (7.7)
holds; when n is even, the inequality (7.7) is reversed.

(2) For n ∈ N and 0 < x ≤ θ ≤ π/2, if k ≥ 1/2 and 0 ≤ c ≤ 1, then

n∑
i=0

σi

(
θ2 − x2

)i ≤ λp(x) ≤
n∑
i=0

νi
(
θ2 − x2

)i
, (7.9)

where

σi =
(c
4

)i Γ(k)
i!Γ(k + i)

λi+p(θ), 0 ≤ i ≤ n

νi =

⎧
⎪⎪⎨
⎪⎪⎩

σi, 0 ≤ i ≤ n − 1,

1 −
∑n−1

�=0
σ�θ

2�

θ2n
, i = n

(7.10)

are the best possible. For k > 0, c ≤ 0, and 0 < x ≤ θ < ∞, if n is odd, the inequality (7.9) holds
true; if n is even, the inequality (7.9) is reversed.

We remark that for c ∈ [0, 1] the conditions on x and k can be relaxed, as it was stated
in [106, pages 123–124].

7.3. Baricz’s Generalizations of Cusa-Huygens’s Inequality

The inequality (1.24) was generalized in [104] to

1 + 2akλp(x)
a(2k − 1) + π/2

≤ λp+1(x) ≤
1 + 2akλp(x)

a + 1 + a(2k − 1)
, (7.11)

where |x√c| ≤ π/2, a ∈ (0, 1/2], c ≥ 0, and k ≥ 1/2.
By making use of the inequality (1.22) and (1.23), the inequality (7.11) was further

strengthened as

1 + 2kλp(x)
2k + 1

≤ λp+1(x) ≤
1 + kλp(x)

k + 1
. (7.12)

7.4. Baricz’s Generalizations of Redheffer-Williams’s Inequality

In [107], inequalities (1.5), (2.34), and (2.35)were generalized to the case of Bessel functions.
Themotivation of the paper [107] comes from [22, 50, 57, 58, 108] and other related references.
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7.5. Lazarević’s Inequality and Generalizations

An inequality due to [109] states that

(
sinh t

t

)3

> cosh t (7.13)

for t /= 0. The exponent 3 in (7.13) is the best possible. See also [1, page 131], [3, page 300], and
[4, page 270].

In [110, pages 808–809], among other things, it was proved that the function

ln((sinhx)/x)
ln coshx

(7.14)

is decreasing on (−∞, 0) and increasing on (0,∞)with range (1/3, 1). From this, the following
double inequality was inferred:

sinhx
x

< coshx <

(
sinhx

x

)3

, x /= 0. (7.15)

It was also mentioned that the inequality (7.13) can be proved directly by applying
Lemma 2.9 for f(a) = g(a) = 0 or f(b) = g(b) = 0 to the function

(coshx)−1/3 sinhx
x

. (7.16)

The inequality (7.13) was recovered in [111, Lemma 3].
The inequality (7.13) was refined in [23] as follows: for x /= 0, the inequality

(
sinhx

x

)λ

>
λ

3
coshx − λ

3
+ 1 (7.17)

holds if and only if λ < 0 or λ ≥ 7/5 and reverses if and only if 0 < λ ≤ 1.
The inequality (7.13) was generalized in [112] to modified Bessel functions.

Remark 7.1. In [113], it was proved that the inequality

(
sinx
x

)3

> cosx (7.18)

is valid for x ∈ (0, π/2), and the exponent 3 is the best possible. See also [4, pages 238–240].

In [110, pages 806–807], it was pointed out that the inequality (7.18) can also be proved
directly by Lemma 2.9 for f(a) = g(a) = 0 or f(b) = g(b) = 0 by considering the quotient

(cosx)−1/3 sinx
x

, (7.19)
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and that the inequality (7.18) is the special case g(x) > g(0) = 3 for x on (0, π/2), where

g(x) =
ln cosx

ln((sinx)/x)
. (7.20)

The inequality (7.18) was refined in [23] as follows: for x ∈ (0, π/2), the inequality

(
sinx
x

)λ

>
λ

3
cosx − λ

3
+ 1 (7.21)

holds if and only if λ < 0 or λ ≥ λ0 = 1.420 . . . and reverses if and only if 0 < λ ≤ 7/5, where
λ0 satisfies λ/3 + (2/π)λ − 1 = 0.

7.6. Oppenheim’s Problem

Considering inequalities stated in Sections 1.7 and 7.3, it is natural to ask the following
problems.

(1)What are the best possible positive constants a, b, c, r and α, β, γ , λ such that

α + β cosγ(λx) ≤ sinx
x

≤ a + b cosc(rx) (7.22)

for −π/2 ≤ x ≤ π/2 with x /= 0 and

α + β coshγ(λx) ≤ sinhx
x

≤ a + b coshc(rx) (7.23)

for −∞ < x < ∞with x /= 0 hold, respectively?
(2)What about the analogues of Bessel functions or other special functions?

These problems are similar to Oppenheim’s problem which has been investigated in [24, 30,
36, 104, 112].

7.7. Some Inequalities of Bessel Functions

For more information on inequalities of Bessel functions and some other special functions,
please refer to [106, 114–117] and related references therein.

8. Wilker-Anglesio’s Inequality and Its Generalizations

8.1. Wilker’s Inequality and Generalizations

In [118], Wilker proved

(
sinx
x

)2

+
tanx
x

> 2 (8.1)
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and proposed that there exists a largest constant c such that

(
sinx
x

)2

+
tanx
x

> 2 + cx3 tanx (8.2)

for 0 < x < π/2.
In recent years, Wilker’s inequality (8.1) has been proved once and again in papers

such as [110, 119–125].
In [126], the inequality (8.1)was generalized as follows: if q > 0 or q ≤ min{−1,−λ/μ},

then

λ

μ + λ

(
sinx
x

)p

+
μ

μ + λ

(
tanx
x

)q

> 1 (8.3)

holds for 0 < x < π/2, where λ > 0, μ > 0 and p ≤ 2qμ/λ. As an application of the inequality
(8.3), an inequality posed as an open problem in [21]was solved and improved.

In [111], the inequality (8.1)was generalized as

(
sinhx

x

)2

+
tanhx

x
> 2 (8.4)

for x /= 0, which together with (8.1) was further extended and refined in [23, 127] as

(
sinhx

x

)2p

+
(
tanhx

x

)p

>

(
x

sinhx

)2p

+
( x

tanhx

)p
> 2, x /= 0, (8.5)

(
sinx
x

)2p

+
(
tanx
x

)p

>

(
x

sinx

)2p

+
( x

tanx

)p
> 2, 0 < x <

π

2
(8.6)

for p ≥ 1.
Note that the right-hand side inequality in (8.6) is a special case of (8.3).
In [112], inequalities (8.1) and (8.4) were generalized and extended naturally to the

cases of Bessel function. Recently, the inequality (8.3) and all results in [126] were extended
in [128] to Bessel functions.

8.2. Wilker-Anglesio’s Inequality

In [129], the best constant c in (8.2)was found, and it was proved that

2 +
8
45

x3 tanx >

(
sinx
x

)2

+
tanx
x

> 2 +
(
2
π

)4

x3 tanx (8.7)

for 0 < x < π/2. The constants 8/45 and (2/π)4 in the inequality (8.7) are the best possible.
In [130–133], several proofs of Wilker-Anglesio’s inequality (8.7) were given.
In [134], a new proof of the inequality (8.7) was provided by using Lemma 2.9 and

compared with [132].
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In [124, 135, 136], three lower bounds for (sinx/x)2 + tanx/x − 2 were presented, but
they are weaker than (2/π)4x3 tanx in (8.7).

In [137, 138], the following Wilker type inequality was obtained:

2 +
2
45

x3 sinx <

(
x

sinx

)2

+
x

tanx
< 2 +

(
2
π

− 16
π3

)
x3 sinx (8.8)

for x ∈ (0, π/2). The constants 2/45 and 2/π − 16/π3 in (8.8) are the best possible.
In [139, Theorem 3], by Lemma 2.9 for f(a) = g(a) = 0 or f(b) = g(b) = 0, the

inequality (8.7) was recovered and the double inequality

n∑
k=0

(−1)k22k+4[1 − (4k + 10)B2k+4]
(2k + 5)!

x2k+3 tanx

<

(
sinx
x

)2

+
tanx
x

− 2

<
n−1∑
k=0

(−1)k22k+4[1 − (4k + 10)B2k+4]
(2k + 5)!

x2k+3 tanx

+
(
2
π

)2n+4
{
1 −

n−1∑
k=0

(−1)kπ2k+4[1 − (4k + 10)B2k+4]
(2k + 5)!

}
x2n+3 tanx

(8.9)

for 0 < x < π/2 was procured, where Bi for i ∈ N are defined by (1.31).

8.3. An Open Problem

It is clear that to generalize Wilker-Anglesio’s inequality (8.7) is more significant than to
generalize Wilker’s inequality (8.1).

We conjecture that Wilker-Anglesio’s inequality (8.7) may be generalized as follows:
let α, β, λ, and μ be positive real numbers satisfying αλ = 2βμ, then

16μ
π4

x4
(
tanx
x

)β

< λ

(
sinx
x

)α

+ μ

(
tanx
x

)β

− (λ + μ
)

<
λα
[
5λα + μ(12 + 5α)

]

360μ
x4
(
tanx
x

)β
(8.10)

holds for 0 < x < π/2.

9. Applications of a Method of Auxiliary Functions

In Section 2.1 of this paper, a method constructing auxiliary functions to refine Jordan’s
inequality (1.1) in [45, 46, 49, 50, 140] is introduced. Now the aim of this section is to
summarize some other applications of this method, including estimation of some complete
elliptic integrals and construction of inequalities for the exponential function ex.
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The complete elliptic integrals are classified into three kinds and defined for 0 < k < 1
as

K(k) =
∫π/2

0

dθ√
1 − k2sin2θ

,

E(k) =
∫π/2

0

√
1 − k2sin2θ dθ,

II(k, h) =
∫π/2

0

dθ(
1 + h sin2θ

)√
1 − k2sin2θ

.

(9.1)

9.1. Estimates for a Concrete Complete Elliptic Integral

In [141], it was posed that

π

6
<

∫1

0

1√
4 − x2 − x3

dx <
π
√
2

8
. (9.2)

In [142], the inequality (9.2) was verified by using 4 − x2 > 4 − x2 − x3 > 4 − 2x2 on the unit
interval [0, 1].

In [48], by considering monotonicity and convexity of the function

1√
4 − x2 − x3

− 1
2
+
1 − √

2
2

x4 + αx3(1 − x) (9.3)

on [0, 1] for undetermined constant α ≥ 0, the inequality

1√
4 − x2 − x3

≥ 1
2
+

√
2 − 1
2

x4 +

(
11
√
2

8
− 2

)
(1 − x)x3 (9.4)

for x ∈ [0, 1] was established, and then the lower bound in (9.2)was improved to

∫1

0

1√
4 − x2 − x3

dx >
3
10

+
27
√
2

160
. (9.5)

It was also remarked in [48] that if discussing the auxiliary functions

1√
4 − x2 − x3

− 1
2
+
1 − √

2
2

x2 + β(1 − x)x2,

1√
4 − x2 − x3

− 1
2
+
1 − √

2
2

x4 + θ
(
1 − x3

)
x

(9.6)
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on [0, 1], then inequalities

1√
4 − x2 − x3

≥ 1
2
+
√
2 − 1
2

x2 +

(
3
√
2

8
− 1

)
(1 − x)x2

1√
4 − x2 − x3

≥ 1
2
+
√
2 − 1
2

x4 +

(
2
3
− 11

√
2

24

)(
x3 − 1

)
x

(9.7)

can be obtained, and then, by integrating on both sides of above two inequalities, the lower
bound in (9.2)may be improved to

∫1

0

1√
4 − x2 − x3

dx >
1
4
+
19
√
2

96
∫1

0

1√
4 − x2 − x3

dx >
1
5
+
19
√
2

80
.

(9.8)

Numerical computation shows that the lower bound in (9.5) is better than that in (9.8).
In [53], by directly proving the inequality (9.4) and

1√
4 − x2 − x3

≤ 1
2
+
√
2 − 1
2

x2 +
5 − 4

√
2

8
x2(1 − x)

(
8
√
2 − 9

8
√
2 − 10

+ x

)
, (9.9)

the inequality (9.5) and an improved upper bound in (9.2),

∫1

0

1√
4 − x2 − x3

dx <
79
192

+
√
2

10
, (9.10)

were obtained.
In [52], by considering an auxiliary function

1√
4 − x2 − x3

− 1
2
+
1 − √

2
2

x2 + αx2(1 − x)

(
8
√
2 − 9

8
√
2 − 10

+ x

)
(9.11)

on [0, 1], inequalities (9.9) and

1√
4 − x2 − x3

≥ 1
2
+

√
2 − 1
2

x2 −
1137

(
4
√
2 − 5

)

64
(
64 − 39

√
2
) (1 − x)

(
8
√
2 − 9

8
√
2 − 10

+ x

)
(9.12)

were demonstrated to be sharp, and then, by integrating on both sides of (9.9), the inequality
(9.10)was recovered.
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9.2. Estimates for the Second Kind of Complete Elliptic Integrals

In [51], by discussing

√
1 + k2cos2t −

√
1 + k2 +

4
π2

(√
1 + k2 − 1

)
t2 + θ

(π
2
− t
)
t (9.13)

or

√
1 + k2cos2t −

√
1 + k2 +

2
π

(√
1 + k2 − 1

)
t + β

(π
2
− t
)
t (9.14)

on [0, π/2], where θ and β are undetermined constants, the inequality

− 8
π2

(√
1 + k2 − 1

)
t
(π
2
− t
)
≤
√
1 + k2cos2t −

[√
1 + k2 − 4

π2

(√
1 + k2 − 1

)
t2
]
≤ 0

(9.15)

for t ∈ [0, π/2] was obtained, where k2 = b2/a2 − 1 and a, b > 0. Integrating (9.15) yields

π

6
(2a + b) <

∫π/2

0

√
a2sin2t + b2cos2tdt ≤ π

6
(a + 2b) (9.16)

for b > a. When b ≥ 7a, the right-hand side of the inequality (9.16) is stronger than the
well-known result

π

4
(a + b) ≤

∫ π
2
0

√
a2sin2t + b2cos2tdt ≤ π

4

√
2(a2 + b2), (9.17)

which can be obtained by using some properties of definite integral or by applying the well-
known Hermite-Hadamard double integral inequality for convex functions to the integral in
question.

Remark 9.1. By employing Lemma 2.9, some inequalities for complete elliptic integrals,
including the tighter upper bound for the elliptic integral of the second kind, were obtained
in [143].

Remark 9.2. It is worthwhile to point out that some inequalities for bounding complete elliptic
integrals of the first and second kinds are presented in [144].

9.3. Inequalities for the Remainder of Power Series Expansion of ex

In [140, 145], by considering the auxiliary function

ex − Sn(x) − αnx
n+1 + θ(b − x)xn+1 (9.18)
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for 0 ≤ x ≤ b ∈ (0,∞), where α−1 = eb and αn = (1/b)(αn−1 − 1/n!), the following inequalities
of the reminder

Rn(x) = ex −
n∑

k=0

xk

k!
(9.19)

for n ≥ 0 and x ∈ [0,∞) were established:

n + 2 − (n + 1)x
(n + 2)!

xn+1ex ≤ Rn(x) ≤ n + 1 + ex

(n + 2)!
xn+1 ≤ ex

(n + 1)!
xn+1,

(n + 2)!
(n − k + 2)!

Rn(x) ≤ xkRn−k(x) +
k

(n − k + 2)!
xn+1, 0 ≤ k ≤ n,

(9.20)

and, for n ≥ k ≥ 1,

xkRn−k(x) ≤ kxn+1ex

(n + 1)(n − k + 2)!
− n! − (n − k + 2)(n + 1)!

(n − k + 2)!
Rn(x). (9.21)

10. Estimates and Inequalities for Complete Elliptic Integrals

In this section, we continue to recite some estimates and inequalities for complete elliptic
integrals and their new developments in recent years.

10.1. Inequalities between Three Kinds of Complete Elliptic Integrals

By using Tchebycheff’s integral inequality [4, page 39, Theorem 9], the following inequalities
between three kinds of complete elliptic integrals were derived in [146]:

π arcsin k

2k
< K(k) <

π ln((1 + k)/(1 − k))
4k

; (10.1)

E(k) <
16 − 4k2 − 3k4

4(4 + k2)
K(k); (10.2)

K(k) <
(
1 +

h

2

)
II(k, h), −1 < h < 0 or h >

k2

2 − 3k2
> 0; (10.3)

II(k, h)E(k) >
π2

4
√
1 + h

, −2 < 2h < k2; (10.4)

E(k) ≥ 16 − 28k2 + 9k4

4(4 − 5k2)
K(k), k2 ≤ 2

3
. (10.5)

For 0 < 2h < k2, the inequality (10.3) is reversed. For h > k2/(2 − 3k2) > 0, the inequality
(10.4) is reversed.
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As concrete examples, the following estimates of the complete elliptic integrals are also
deduced in [146]:

π2

4
√
2
<

∫π/2

0

(
1 − sin2x

2

)−1/2
dx <

π ln
(
1 +

√
2
)

√
2

, (10.6)

∫π/2

0

(
1 +

cosx
2

)−1
dx <

π(ln 3 − ln 2)
2

, (10.7)

∫π/2

0

(
1 − sinx

2

)−1
dx =

∫π

π/2

(
1 +

cosx
2

)−1
dx >

π ln 2
2

. (10.8)

These results are better than those in [7, page 607].

10.2. Carlson-Vuorinen’s Inequality

In [147], the following inequality was proposed:

2
π

∫π/2

0

dθ√
a2cos2θ + b2sin2θ

≤ ln b − lna
b − a

. (10.9)

Equality holds if and only if a = b.
The inequality (10.9) was recovered in [148, Theorem 4].
There are two natural questions on bounding the complete elliptic integral in (10.9) to

ask.

(1) What are the best constants β > α > 0 such that the inequality

(
ln b − lna

b − a

)α

≤ 2
π

∫π/2

0

dθ√
a2cos2θ + b2sin2θ

≤
(
ln b − lna

b − a

)β

(10.10)

holds for all positive numbers a and b with a/= b?

(2) Is the lower bound for (10.9) the reciprocal of the identric mean

I(a, b) =
1
e

(
bb

aa

)1/(b−a)
(10.11)

for positive numbers a and b with a/= b?

Since the complete elliptic integral in (10.9) tends to infinity as the ratio b/a for a >
b > 0 tends to zero, so we think that the former question is more significant.

For more information on the origin, refinements, extensions, and generalizations of the
inequality (10.9), please refer to [149–151] and closely related references therein.
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10.3. Some Recent Results of Elliptic Integrals

The double inequality (10.1)was strengthened in [152, Theorem 4.1] and [153, (1.13)].
It was pointed in [154] that the right-hand side inequality in (10.1) is a recovery of [155,

Theorem 3.10]. In [154], the inequality (10.1) was also generalized to the case of generalized
complete elliptic integrals by the same method as in [22, 146].

Some tighter inequalities than inequalities (10.2) and (10.5) were contained in [153,
(3.21)].

The elliptic integral appeared in (10.6) is K(1/
√
2)which can be found in [156].

In [157], some of the results in [154]were further improved.

Addendum

This article is a revised and updated version of the papers [108, 158].
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[15] J. Prestin, “Trigonometric interpolation in Hölder spaces,” Journal of Approximation Theory, vol. 53,
no. 2, pp. 145–154, 1988.

[16] G. Klambauer, Problems and Propositions in Analysis, vol. 49 of Lecture Notes in Pure and Applied
Mathematics, Marcel Dekker, New York, NY, USA, 1979.

[17] Q.-M. Luo, Z.-L. Wei, and F. Qi, “Lower and upper bounds of ζ(3),”Advanced Studies in Contemporary
Mathematics, vol. 6, no. 1, pp. 47–51, 2003.

[18] Q.-M. Luo, Z.-L.Wei, and F. Qi, “Lower and upper bounds of ζ(3),”RGMIAResearch Report Collection,
vol. 4, no. 4, article 7, pp. 565–569, 2001.

[19] A. Hoorfar and F. Qi, “Some new bounds for Mathieu’s series,” Abstract and Applied Analysis, vol.
2007, Article ID 94854, 10 pages, 2007.

[20] A. P. Iuskevici, History of Mathematics in 16th and 17th Centuries, Moskva, 1961.
[21] J. Sándor and M. Bencze, “On Huygens’s trigonometric inequality,” RGMIA Research Report

Collection, vol. 8, no. 3, article 14, 2005.
[22] F. Qi, L.-H. Cui, and S.-L. Xu, “Some inequalities constructed by Tchebysheff’s integral inequality,”

Mathematical Inequalities & Applications, vol. 2, no. 4, pp. 517–528, 1999.
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Publikacije Elektrotehničkog Fakulteta. Serija Matematika, vol. 8, pp. 103–105, 1997.
[29] C. S. Ogilvy, A. Oppenheim, V. F. Ivanoff, L. F. Ford Jr., D. R. Fulkerson, and V. K. Narayanan

Jr., “Elementary problems and solutions: problems for solution: E1275–E1280,” The American
Mathematical Monthly, vol. 64, no. 7, pp. 504–505, 1957.

[30] F. Qi and B.-N. Guo, “A concise proof of Oppenheim’s double inequality relating to the cosine and
sine functions,” http://arxiv.org/abs/0902.2511.

[31] F. Qi and B.-N. Guo, “Concise sharpening and generalizations of Shafer’s inequality for the arc sine
function,” http://arxiv.org/abs/0902.2588.

[32] F. Qi and B.-N. Guo, “Sharpening and generalizations of Carlson’s inequality for the arc cosine
function,” http://arxiv.org/abs/0902.3495.

[33] F. Qi and B.-N. Guo, “Sharpening and generalizations of Shafer-Fink’s double inequality for the arc
sine function,” http://arxiv.org/abs/0902.3036.

[34] F. Qi and B.-N. Guo, “Sharpening and generalizations of Shafer’s inequality for the arc tangent
function,” http://arxiv.org/abs/0902.3298.

[35] F. Qi, Sh.-Q. Zhang, and B.-N. Guo, “Sharpening and generalizations of Shafer’s inequality for the
arc tangent function,” Journal of Inequalities and Applications, vol. 2009, Article ID 930294, 10 pages,
2009.

[36] L. Zhu, “A solution of a problem of Oppeheim,” Mathematical Inequalities & Applications, vol. 10, no.
1, pp. 57–61, 2007.

[37] Ch.-P. Chen and F. Qi, “Inequalities of some trigonometric functions,” RGMIA Research Report
Collection, vol. 6, no. 3, article 2, pp. 419–429, 2003.

[38] Ch.-P. Chen and F. Qi, “Inequalities of some trigonometric functions,” Univerzitet u Beogradu.
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