
Hindawi Publishing Corporation
Journal of Inequalities and Applications
Volume 2009, Article ID 271265, 14 pages
doi:10.1155/2009/271265

Research Article
Moment Inequalities and
Complete Moment Convergence

Soo Hak Sung

Department of Applied Mathematics, Pai Chai University, Taejon 302-735, South Korea

Correspondence should be addressed to Soo Hak Sung, sungsh@pcu.ac.kr

Received 22 August 2009; Accepted 26 September 2009

Recommended by Andrei Volodin
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1. Introduction

Let {Xn, n ≥ 1} be a sequence of random variables defined on a fixed probability space
(Ω,F, P). The most interesting inequalities to probability theory are probably Marcinkiewicz-
Zygmund and Rosenthal inequalities. For a sequence {Xi, 1 ≤ i ≤ n} of i.i.d. random
variables with E|X1|q < ∞ for some q > 1, Marcinkiewicz and Zygmund [1] and Rosenthal
[2] (1 < q ≤ 2 and q > 2, resp.) proved that there exist positive constantsAq and Bq depending
only on q such that

E

∣
∣
∣
∣
∣

n∑

i=1

(Xi − EXi)

∣
∣
∣
∣
∣

q

≤ Aq

n∑

i=1

E|Xi|q for 1 < q ≤ 2, (1.1)

E

∣
∣
∣
∣
∣

n∑

i=1

(Xi − EXi)

∣
∣
∣
∣
∣

q

≤ Bq

⎧
⎨

⎩

n∑

i=1

E|Xi|q +
(

n∑

i=1

E|Xi|2
)q/2

⎫
⎬

⎭
for q > 2. (1.2)



2 Journal of Inequalities and Applications

The following Marcinkiewicz-Zygmund and Rosenthal type maximal inequalities are well
known. For a sequence {Xi, 1 ≤ i ≤ n} of i.i.d. random variables with E|X1|q < ∞ for some
q > 1, there exist positive constants Cq and Dq depending only on q such that
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Note that (1.3) and (1.4) imply (1.1) and (1.2), respectively. The above inequalities
have been obtained for dependent random variables by many authors. Shao [3] proved that
(1.3) and (1.4) hold for negatively associated random variables. Asadian et al. [4] proved that
(1.1) and (1.2) hold for negatively orthant dependent random variables.

For a sequence of some mixing random variables, (1.4) holds. However, the constant
Dq depends on both q and the sequence of mixing random variables. Shao [5] obtained
(1.4) for φ-mixing identically distributed random variables satisfying

∑∞
n=1 φ

1/2(2n) < ∞.
Shao [6] also obtained (1.4) for ρ-mixing identically distributed random variables satisfying
∑∞

n=1 ρ
2/q(2n) < ∞. Utev and Peligrad [7] obtained (1.4) for ρ∗-mixing random variables.
The concept of complete convergence was introduced by Hsu and Robbins [8]. A

sequence {Xn, n ≥ 1} of random variables is said to converge completely to the constant
θ if

∞∑

n=1

P(|Xn − θ| > ε) < ∞ ∀ε > 0. (1.5)

In view of the Borel-Cantelli lemma, this implies that Xn → θ almost surely. Therefore the
complete convergence is a very important tool in establishing almost sure convergence of
summation of random variables. Hsu and Robbins [8] proved that the sequence of arithmetic
means of i.i.d. random variables converges completely to the expected value if the variance
of the summands is finite. Erdös [9] proved the converse.

The result of Hsu-Robbins-Erdös has been generalized and extended in several
directions. Baum and Katz [10] proved that if {Xn, n ≥ 1} is a sequence of i.i.d. random
variables with E|X1| < ∞, E|X1|pt < ∞ (1 ≤ p < 2, t ≥ 1) is equivalent to
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Chow [11] generalized the result of Baum and Katz [10] by showing the following complete
moment convergence. If {Xn, n ≥ 1} is a sequence of i.i.d. random variables with E|X1|pt < ∞
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for some 1 ≤ p < 2 and t > 1, then
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where a+ = max{a, 0}. Note that (1.7) implies (1.6) (see Remark 2.6).
Recently, Zhu [12] obtained a complete convergence for ρ∗-mixing random variables.

Wu and Zhu [13] obtained complete moment convergence results for negatively orthant
dependent random variables.

In this paper, we give general methods for obtaining the complete moment
convergence by using some moment inequalities. From these results, we generalize and
extend the results of Chow [11], Zhu [12], and Wu and Zhu [13] from independent (or
dependent) random variables to random variables satisfying some conditions similar to
(1.1)–(1.4).

2. Complete Moment Convergence for Random Variables

In this section, we give general methods for obtaining the complete moment convergence
by using some moment inequalities. The first two lemmas are simple inequalities for real
numbers.

Lemma 2.1. For any real numbers a, b, c, the inequality holds

(|a + b| − |c|)+ ≤ (|a| − |c|)+ + |b|. (2.1)

Proof. The result follows by an elementary calculation.

The following lemma is a slight generalization of Lemma 2.1.

Lemma 2.2. Let {ai, 1 ≤ i ≤ n} and {bi, 1 ≤ i ≤ n} be two sequences of real numbers. Then for any
real number c, the inequality holds

(
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|bi|. (2.2)

Proof. By Lemma 2.1, we obtain
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|bi|.
(2.3)

The next two lemmas play essential roles in the paper. Lemma 2.3 gives a moment
inequality for the sum of random variables.
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Lemma 2.3. Let {Yi, 1 ≤ i ≤ n} and {Zi, 1 ≤ i ≤ n} be sequences of random variables. Then for any
q > 1, ε > 0, a > 0,
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Proof. By Lemma 2.1,

E

(∣
∣
∣
∣
∣

n∑

i=1

(Yi + Zi)

∣
∣
∣
∣
∣
− εa

)+

≤ E

(∣
∣
∣
∣
∣

n∑

i=1

Yi

∣
∣
∣
∣
∣
− εa

)+

+ E

∣
∣
∣
∣
∣

n∑

i=1

Zi

∣
∣
∣
∣
∣
. (2.5)

On the other hand, we have by Markov’s inequality that
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Substituting (2.6) into (2.5), we have the result.

The following lemma gives a moment inequality for the maximum partial sum of
random variables.

Lemma 2.4. Let {Yi, 1 ≤ i ≤ n} and {Zi, 1 ≤ i ≤ n} be sequences of random variables. Then for any
q > 1, ε > 0, a > 0,
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Proof. By Lemma 2.2,
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The rest of the proof is similar to that of Lemma 2.3 and is omitted.

Now we state and prove one of our main results. The following theorem gives
a general method for obtaining the complete moment convergence for sums of random
variables satisfying (2.9). The condition (2.9) is well known Marcinkiewicz-Zygmund
inequality.

Theorem 2.5. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables with E|Xni| < ∞ for
1 ≤ i ≤ n, n ≥ 1. Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of positive real numbers. Suppose
that the following conditions hold.

(i) For some 1 < q ≤ 2, there exists a positive constant Cq depending only on q such that
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where X′
ni = XniI(|Xni| ≤ an) + anI(Xni > an) − anI(Xni < −an).
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Then we have by Lemma 2.3, (2.9), (2.11), and (2.12) that
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The above two series converge by (ii) and (iii). Hence the result is proved.

Remark 2.6. If (2.10) holds, then
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Hence complete moment convergence is more general than complete convergence.

When q > 2, we have the following theorem. Condition (2.15) is well-known Rosenthal
inequality.

Theorem 2.7. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables with E|Xni| < ∞ for
1 ≤ i ≤ n, n ≥ 1. Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of positive real numbers. Suppose
that the following conditions hold.
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(i) For some q > 2, there exists a positive constant Cq depending only on q such that
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Corollary 2.8. Let {an, n ≥ 1} be a sequence of positive real numbers. Let {Xni, 1 ≤ i ≤ n, n ≥ 1}
be an array of random variables satisfying (2.15) for some q > 2. Suppose that the following conditions
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and hence,

∞∑

n=1

P

(∣
∣
∣
∣
∣

n∑

i=1

(Xni − EXni)

∣
∣
∣
∣
∣
> εan

)

< ∞ ∀ε > 0. (2.18)

Proof. By Remark 2.6, (2.17) implies (2.18). To prove (2.17), we apply Theorem 2.7with bn = 1.
Since 0 < s ≤ q/2,

∞∑

n=1

(
n∑

i=1

E
|Xni|r
ar
n

)q/2

≤
( ∞∑

n=1

(
n∑

i=1

E
|Xni|r
ar
n

)s)q/(2s)

< ∞. (2.19)

Hence the result follows by Theorem 2.7.

The following theorem gives a general method for obtaining the complete moment
convergence for maximum partial sums of random variables satisfying condition (2.20).

Theorem 2.9. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables with E|Xni| < ∞ for
1 ≤ i ≤ n, n ≥ 1. Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of positive real numbers. Suppose
that the following conditions hold.
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Proof. The proof is similar to that of Theorem 2.5. We have by Lemma 2.4, (2.20), (ii), and (iii)
that
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))
∣
∣
∣
∣
∣

≤ Cq

(
1
εq

+
1

q − 1

) ∞∑

n=1

bn

a
q
n

n∑

i=1

E
∣
∣X′

ni

∣
∣q + 2

∞∑

n=1

bn
an

n∑

i=1

E
∣
∣Xni −X′

ni

∣
∣

≤ Cq

(
1
εq

+
1

q − 1

) ∞∑

n=1

bn

a
q
n

n∑

i=1

E|Xni|qI(|Xni| ≤ an)

+
{

Cq

(
1
εq

+
1

q − 1

)

+ 2
} ∞∑

n=1

bn
an

n∑

i=1

E|Xni|I(|Xni| > an) < ∞.

(2.22)

Hence the result is proved.

Remark 2.10. If (2.21) holds, then
∑∞

n=1 bnP(max1≤k≤n|
∑k

i=1(Xni − EXni)| > εan) < ∞ for all
ε > 0, since, as in Remark 2.6,

E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(Xni − EXni)

∣
∣
∣
∣
∣
− εan

)+

≥ εanP

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(Xni − EXni)

∣
∣
∣
∣
∣
> 2εan

)

. (2.23)

When q > 2, we have the following theorem.

Theorem 2.11. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables with E|Xni| < ∞ for
1 ≤ i ≤ n, n ≥ 1. Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of positive real numbers. Suppose
that the following conditions hold.

(i) For some q > 2, there exists a positive constant Cq depending only on q such that

Emax
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(
X′

ni − EX′
ni

)
∣
∣
∣
∣
∣

q

≤ Cq

⎧
⎨

⎩

n∑

i=1

E
∣
∣X′

ni

∣
∣q +

(
n∑

i=1

E
∣
∣X′

ni

∣
∣2
)q/2

⎫
⎬

⎭
for n ≥ 1, (2.24)

where X′
ni = XniI(|Xni| ≤ an) + anI(Xni > an) − anI(Xni < −an).

(ii)
∑∞

n=1 bna
−q
n

∑n
i=1 E|Xni|qI(|Xni| ≤ an) < ∞.

(iii)
∑∞

n=1 bna
−1
n

∑n
i=1 E|Xni|I(|Xni| > an) < ∞.

(iv)
∑∞

n=1 bn(
∑n

i=1 E|Xni|r/ar
n)

q/2 < ∞ for some 0 < r ≤ 2.

Then (2.21) holds.
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Proof. The proof is similar to that of Theorem 2.9 and is omitted.

Corollary 2.12. Let {an, n ≥ 1} be a sequence of positive real numbers. Let {Xni, 1 ≤ i ≤ n, n ≥ 1}
be an array of random variables satisfying (2.24) for some q > 2. Suppose that the following conditions
hold.

(i)
∑∞

n=1 a
−q
n

∑n
i=1 E|Xni|qI(|Xni| ≤ an) < ∞.

(ii)
∑∞

n=1 a
−1
n

∑n
i=1 E|Xni|I(|Xni| > an) < ∞.

(iii)
∑∞

n=1(
∑n

i=1 E|Xni|r/ar
n)

s < ∞ for some 0 < r ≤ 2 and 0 < s ≤ q/2.

Then

∞∑

n=1

1
an

E

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(Xni − EXni)

∣
∣
∣
∣
∣
− εan

)+

< ∞ ∀ε > 0, (2.25)

and hence,

∞∑

n=1

P

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(Xni − EXni)

∣
∣
∣
∣
∣
> εan

)

< ∞ ∀ε > 0. (2.26)

Proof. By Remark 2.10, (2.25) implies (2.26). As in the proof of Corollary 2.8,

∞∑

n=1

(
n∑

i=1

E
|Xni|r
ar
n

)q/2

≤
( ∞∑

n=1

(
n∑

i=1

E
|Xni|r
ar
n

)s)q/(2s)

< ∞. (2.27)

Hence the result follows by Theorem 2.11 with bn = 1.

3. Corollaries

In this section, we establish some complete moment convergence results by using the results
obtained in the previous section.

Throughout this section, let {Ψn(t), n ≥ 1} be a sequence of positive even functions
satisfying

Ψn(|t|)
|t| ↑, Ψn(|t|)

|t|p ↓ as |t| ↑ (3.1)

for some p > 1.
To obtain complete moment convergence results, the following lemmas are needed.

Lemma 3.1. Let X be a random variable and {Ψn(t), n ≥ 1} a sequence of positive even functions
satisfying (3.1) for some p > 1. Then for all a > 0 and n ≥ 1, the followings hold.

(i) If q ≥ p, then E|X|qI(|X| ≤ a)/aq ≤ EΨn(|X|)/Ψn(a).

(ii) E|X|I(|X| > a)/a ≤ EΨn(|X|)/Ψn(a).
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Proof. First note by Ψn(|t|)/|t| ↑ that Ψn(|t|) is an increasing function. If q ≥ p, then
Ψn(|t|)/|t|p ↓ implies Ψn(|t|)/|t|q ↓, and so

Ψn(|X|)
Ψn(a)

≥ Ψn(|X|I(|X| ≤ a))
Ψn(a)

≥ |X|qI(|X| ≤ a)
aq

. (3.2)

Hence (i) holds. Since Ψn(|t|)/|t| ↑,

Ψn(|X|)
Ψn(a)

≥ Ψn(|X|I(|X| > a))
Ψn(a)

≥ |X|I(|X| > a)
a

. (3.3)

So (ii) holds.

Lemma 3.2. Let {Xni, 1 ≤ i ≤ n, n ≥ 1} be an array of random variables with E|Xni| < ∞ for
1 ≤ i ≤ n, n ≥ 1. Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of positive real numbers. Assume
that {Ψn(t), n ≥ 1} is a sequence of positive even functions satisfying (3.1) for some p > 1 and

∞∑

n=1

bn
n∑

i=1

EΨi(|Xni|)
Ψi(an)

< ∞. (3.4)

Then the followings hold.

(i) If q ≥ p, then
∑∞

n=1 bna
−q
n

∑n
i=1 E|Xni|qI(|Xni| ≤ an) < ∞.

(ii)
∑∞

n=1 bna
−1
n

∑n
i=1 E|Xni|I(|Xni| > an) < ∞.

Proof. The result follows from Lemma 3.1.

By using Lemma 3.2, we can obtain Corollaries 3.3, 3.4, 3.5, 3.6 from Theorem 2.5,
Corollary 2.8, Theorem 2.9, Corollary 2.12, respectively.

Corollary 3.3. Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of positive real numbers {Ψn(t), n ≥
1} a sequence of positive even functions satisfying (3.1) for some 1 < p ≤ 2. Assume that {Xni, 1 ≤
i ≤ n, n ≥ 1} is an array of random variables satisfying (2.9) for q = p and (3.4). Then (2.10) holds.

Corollary 3.4. Let {an, n ≥ 1} be a sequence of positive real numbers {Ψn(t), n ≥ 1} a sequence of
positive even functions satisfying (3.1) for some p > 2. Assume that {Xni, 1 ≤ i ≤ n, n ≥ 1} is an
array of random variables satisfying (2.15) for some q ≥ max{p, 2s} (s is the same as in (3.6)),

∞∑

n=1

n∑

i=1

EΨi(|Xni|)
Ψi(an)

< ∞, (3.5)

∞∑

n=1

(
n∑

i=1

E
|Xni|r
ar
n

)s

< ∞ for some 0 < r ≤ 2, s > 0. (3.6)

Then (2.17) holds and hence, (2.18) holds.
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Corollary 3.5. Let {an, n ≥ 1} and {bn, n ≥ 1} be sequences of positive real numbers {Ψn(t), n ≥
1} a sequence of positive even functions satisfying (3.1) for some 1 < p ≤ 2. Assume that {Xni, 1 ≤
i ≤ n, n ≥ 1} is an array of random variables satisfying (2.20) for q = p and (3.4). Then (2.21) holds.

Corollary 3.6. Let {an, n ≥ 1} be a sequence of positive real numbers {Ψn(t), n ≥ 1} a sequence of
positive even functions satisfying (3.1) for some p > 2. Assume that {Xni, 1 ≤ i ≤ n, n ≥ 1} is an
array of random variables satisfying (2.24) for some q ≥ max{p, 2s} (s is the same as in (3.6)), (3.5),
and (3.6). Then (2.25) holds and hence, (2.26) holds.

Remark 3.7. Marcinkiewicz-Zygmund and Rosenthal (type) inequalities hold for dependent
random variables as well as independent random variables.

(1) For an array {Xni, 1 ≤ i ≤ n, n ≥ 1} of rowwise negatively associated random
variables, condition (2.20) holds if 1 < q ≤ 2, and (2.24) holds if q > 2 by Shao’s [3] results.
Note that {X′

ni, 1 ≤ i ≤ n, n ≥ 1} is still an array of rowwise negatively associated random
variables. Hence Corollaries 3.3–3.6 hold for arrays of rowwise negatively associated random
variables.

(2) For an array {Xni, 1 ≤ i ≤ n, n ≥ 1} of rowwise negatively orthant dependent
random variables, condition (2.9) holds if 1 < q ≤ 2, and (2.15) holds if q > 2 by the results of
Asadian et al. [4]. Hence Corollaries 3.3 and 3.4 hold for arrays of rowwise negatively orthant
dependent random variables. These results also were proved by Wu and Zhu [13]. Hence
Corollaries 3.3 and 3.4 extend the results of Wu and Zhu [13] from an array of negatively
orthant dependent random variables to an array of random variables satisfying (2.9) and
(2.15).

(3) For an array {Xni, 1 ≤ i ≤ n, n ≥ 1} of rowwise ρ∗-mixing random variables,
condition (2.24) does not necessarily hold if q > 2. As mentioned in Section 1, Utev and
Peligrad [7] proved (1.4) for ρ∗-mixing random variables. However, the constantDq depends
on both q and the sequence of ρ∗-mixing random variables. Hence condition (2.24) holds
for an array of rowwise ρ∗-mixing random variables under the additional condition that Dq

depending on the sequence of random variables in each row are bounded. So Corollary 3.6
holds for arrays of rowwise ρ∗-mixing random variables satisfying this additional condition.
Zhu [12] obtained only (2.26) in Corollary 3.6 when the array is rowwise ρ∗-mixing random
variables satisfying the additional condition. This additional condition should be added in
Zhu [12]. Hence Corollary 3.6 generalizes and extends Zhu’s [12] result from ρ∗-mixing
random variables to more general random variables.

Finally, we apply the complete moment convergence results obtained in the previous
section to a sequence of identically distributed random variables.

Corollary 3.8. Let {Xn, n ≥ 1} be a sequence of identically distributed random variables with
E|X1|pt < ∞ for some 1 ≤ p < 2 and t > 1. Assume that for any q > 2, there exists a positive
constant Cq depending only on q such that

E

∣
∣
∣
∣
∣

n∑

i=1

(
X∗

ni − EX∗
ni

)
∣
∣
∣
∣
∣

q

≤ Cq

⎧
⎨

⎩

n∑

i=1

E
∣
∣X∗

ni

∣
∣q +

(
n∑

i=1

E
∣
∣X∗

ni

∣
∣2
)q/2

⎫
⎬

⎭
, (3.7)

where X∗
ni = XiI(|Xi| ≤ n1/p) + n1/pI(Xi > n1/p) − n1/pI(Xi < −n1/p). Then (1.7) holds.
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Proof. Let Xni = Xi for 1 ≤ i ≤ n, n ≥ 1. We apply Theorem 2.7 with an = n1/p and bn = nt−2.
Take r and q > 2 such that p < r ≤ min{2, pt}, q/p − t > 0, and (r/p − 1)(q/2) − t + 1 > 0. Then
it is easy to see that

∞∑

n=1

nt−2−q/p
n∑

i=1

E|Xi|qI
(
|Xi| ≤ n1/p

)
< ∞,

∞∑

n=1

nt−2−1/p
n∑

i=1

E|Xi|I
(
|Xi| > n1/p

)
< ∞,

∞∑

n=1

nt−2
(

n∑

i=1

E
|Xi|r
nr/p

)q/2

< ∞.

(3.8)

Hence the result follows from Theorem 2.7.

Corollary 3.9. Let {Xn, n ≥ 1} be a sequence of identically distributed random variables with
E|X1|pt < ∞ for some 1 ≤ p < 2 and t > 1. Assume that for any q > 2, there exists a positive
constant Cq depending only on q such that

Emax
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(
X∗

ni − EX∗
ni

)
∣
∣
∣
∣
∣

q

≤ Cq

⎧
⎨

⎩

n∑

i=1

E
∣
∣X∗

ni

∣
∣q +

(
n∑

i=1

E
∣
∣X∗

ni

∣
∣2
)q/2

⎫
⎬

⎭
, (3.9)

where X∗
ni = XiI(|Xi| ≤ n1/p) + n1/pI(Xi > n1/p) − n1/pI(Xi < −n1/p). Then

∞∑

n=1

nt−2−1/pE

(

max
1≤k≤n

∣
∣
∣
∣
∣

k∑

i=1

(Xi − EXi)

∣
∣
∣
∣
∣
− εn1/p

)+

< ∞ ∀ε > 0. (3.10)

Proof. As in the proof of Corollary 3.8, (3.8) are satisfied. So the result follows from
Theorem 2.11.

Remark 3.10. If {Xn, n ≥ 1} is a sequence of i.i.d. random variables, then conditions
(3.7) and (3.9) are satisfied when q > 2. Hence Corollaries 3.8 and 3.9 generalize and
extend the result of Chow [11]. There are many sequences of dependent random variables
satisfying (3.7) for all q > 2. Examples include sequences of negatively orthant dependent
random variables, negatively associated random variables, ρ∗-mixing random variables, φ-
mixing identically distributed random variables satisfying

∑∞
n=1 φ

1/2(2n) < ∞, and ρ-mixing
identically distributed random variables satisfying

∑∞
n=1 ρ

2/q(2n) < ∞. The above sequences
of dependent random variables except negatively orthant dependent random variables also
satisfy (3.9) when q > 2. Hence Corollaries 3.8 and 3.9 hold for many dependent random
variables as well as independent random variables.
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