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1. Introduction

Let X and Y be real locally convex Hausdorff topological vector spaces, whose respective
dual spaces, X∗ and Y ∗, are endowed with the weak∗-topologies w∗(X∗, X) and w∗(Y ∗, Y ).
Let f : X → R := R ∪ {+∞}, g : Y → R be proper convex functions, and let A : X → Y be
a linear operator such that A(dom f) ∩ dom g /= ∅. We consider the primal DC (difference of
convex) programming problem

(PA) inf
x∈X

{
f(x) − g(Ax)

}
, (1.1)

and its associated dual problem

(DA) inf
y∗∈Y ∗

A

{
g∗(y∗) − f∗(A∗y∗)}, (1.2)

where f∗ and g∗ are the Fenchel conjugates of f and g, respectively, andA∗ : Y ∗
A → X∗ stands

for the adjoint operator, where Y ∗
A is the subspace of Y ∗ such that y∗ ∈ Y ∗

A if and only if A∗y∗
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defined by 〈A∗y∗, ·〉 = 〈y∗, A(·)〉 is continuous onX. Note that, in general, Y ∗
A is not the whole

space Y ∗ because A is not necessarily continuous.
Problems of DC programming are highly important from both viewpoints of

optimization theory and applications. They have been extensively studied in the literature;
see, for example, [1–6] and the references therein. On one hand, such problems being
heavily nonconvex can be considered as a special class in nondifferentiable programming (in
particular, quasidifferentiable programming [7]) and thus are suitable for applying advanced
techniques of variational analysis and generalized differentiation developed, for example, in
[7–10]. On the other hand, the special convex structure of both plus function f and minus
function g ◦ A in the objective of (1.1) offers the possibility to use powerful tools of convex
analysis in the study of DC Programming.

DC programming of type (1.1) (whenA is an identity operator) has been considered in
the Rn space in paper [5], where the authors obtained some necessary optimality conditions
for local minimizers to (1.1) by using refined techniques and results of convex analysis. In
this paper, we extend these results to DC programming in topological vector spaces and also
derive some new necessary and/or sufficient conditions for local minimizers to (1.1). Finally,
we consider the strong duality of problem (1.1); that is, there is no duality gap between the
problem (PA) and the dual problem (DA) and (DA) has at least an optimal solution.

In this paper we study the optimality conditions and the strong duality between (PA)
and (DA) in the most general setting, namely, when f and g are proper convex functions (not
necessarily lower semicontinuous) and A is a linear operator (not necessarily continuous).
The rest of the paper is organized as follows. In Section 2 we present some basic definitions
and preliminary results. The optimality conditions are derived in Section 3, and the strong
duality of DC programming is obtained in Section 4.

2. Notations and Preliminary Results

The notation used in the present paper is standard (cf. [11]). In particular, we assume
throughout the paper that X and Y are real locally convex Hausdorff topological vector
spaces, and let X∗ denote the dual space, endowed with the weak∗-topology w∗(X∗, X). By
〈x∗, x〉 we will denote the value of the functional x∗ ∈ X∗ at x ∈ X, that is, 〈x∗, x〉 = x∗(x).
The zero of each of the involved spaces will be indistinctly represented by 0.

Let f : X → R be a proper convex function. The effective domain and the epigraph of
f are the nonempty sets defined by

dom f :=
{
x ∈ X : f(x) < +∞}

,

epi f :=
{
(x, r) ∈ X × R : f(x) ≤ r

}
.

(2.1)

The conjugate function of f is the function f∗ : X∗ → R defined by

f∗(x∗) := sup
{〈x∗, x〉 − f(x) : x ∈ X

}
. (2.2)

If f is lower semicontinuous, then the following equality holds:

f∗∗ = f. (2.3)
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Let x ∈ dom f . For each ε ≥ 0, the ε-subdifferential of f at x is the convex set defined by

∂εf(x) :=
{
x∗ ∈ X∗ :

〈
x∗, y − x

〉 − ε ≤ f
(
y
) − f(x) for each y ∈ X

}
. (2.4)

When x /∈ dom f , we put ∂εf(x) := ∅. If ε = 0 in (2.4), the set ∂f(x) := ∂0f(x) is the classical
subdifferential of convex analysis, that is,

∂f(x) :=
{
x∗ ∈ X∗ :

〈
x∗, y − x

〉 ≤ f
(
y
) − f(x) for each y ∈ X

}
. (2.5)

Let ε > 0, the following inequality holds (cf. [11, Theorem 2.4.2(ii)] ):

f(x) + f∗(x∗) ≤ 〈x∗, x〉 + ε ⇐⇒ x∗ ∈ ∂εf(x). (2.6)

Following [12],

epi f∗ =
⋃

ε≥0

{(
x∗, 〈x∗, x〉 − f(x) + ε

)
: x∗ ∈ ∂εf(x)

}
. (2.7)

The Young equality holds

f(x) + f∗(x∗) = 〈x∗, x〉 ⇐⇒ x∗ ∈ ∂f(x). (2.8)

As a consequence of that,

(
x∗, 〈x∗, x〉 − f(x)

) ∈ epi f∗ ∀x∗ ∈ ∂f(x). (2.9)

The following notion of Cartesian product map is used in [13].

Definition 2.1. Let M1,M2,N1,N2 be nonempty sets and consider maps F : M1 → M2 and
G : N1 → N2. We denote by F ×G : M1 ×N1 → M2 ×N2 the map defined by

(F ×G)
(
x, y

)
:=

(
F(x), G

(
y
))
. (2.10)

3. Optimality Conditions

Let idR denote the identity map on R. We consider the image set (A∗ × idR)(epi g∗) of epi g∗

through the map A∗ × idR : Y ∗
A × R → X∗ × R, that is,

(x∗, r) ∈ (A∗ × idR)
(
epi g∗) ⇐⇒ ∃y∗ ∈ Y ∗

A such that
(
y∗, r

) ∈ epi g∗ and A∗y∗ = x∗. (3.1)

By [14, Proposition 4.1] and the well-known characterization of optimal solution to DC
problem, we obtain the following lemma.



4 Journal of Inequalities and Applications

Lemma 3.1. Let φ1, φ2 be proper convex fucntions on X, and let φ = φ1 − φ2. Then x0 is a local
minimizer of φ if and only if, for each ε ≥ 0

∂εφ2(x0) ⊆ ∂εφ1(x0). (3.2)

Especially, if x0 is a local minimizer of φ, then

∂φ2(x0) ⊆ ∂φ1(x0). (3.3)

Theorem 3.2. The following statements are equivalent:

(i) epi(g ◦A)∗ = (A∗ × idR)(epi g∗),

(ii) For each x0 ∈ A−1(domg) and each ε ≥ 0,

∂ε
(
g ◦A)

(x0) = A∗∂εg(Ax0). (3.4)

Moreover, x0 is a local optimal solution to problem (PA) if and only if for each ε ≥ 0,

A∗∂εg(Ax0) ⊆ ∂ε
(
g ◦A)

(x0) ⊆ ∂εf(x0). (3.5)

Proof. (i)⇒(ii). Suppose that (i) holds. Let x0 ∈ A−1(dom g), ε ≥ 0, and u ∈ Y ∗
A ∩ ∂εg(Ax0),

then for each x ∈ X,

〈A∗u, x − x0〉 = 〈u,Ax −Ax0〉 ≤ g(Ax) − g(Ax0) + ε. (3.6)

Therefore, A∗u ∈ ∂ε(g ◦A)(x0). Hence, A∗∂εg(Ax0) ⊆ ∂ε(g ◦A)(x0).
Conversely, let v ∈ Y ∗

A ∩ ∂ε(g ◦A)(x0). Then (v, 〈v, x0〉 − (g ◦A)(x0) + ε) ∈ epi(g ◦A)∗.
By (i),

(
v, 〈v, x0〉 −

(
g ◦A)

(x0) + ε
) ∈ (A∗ × idR)

(
epi g∗). (3.7)

Therefore, there exists w ∈ Y ∗
A such that A∗w = v and g∗(w) ≤ 〈v, x0〉 − g(Ax0) + ε. Noting

that 〈A∗w,x0〉 = 〈w,Ax0〉, then

0 ≤ 〈v, x0〉 − g(Ax0) − g∗(w) + ε = 〈w,Ax0〉 − g(Ax0) − g∗(w) + ε. (3.8)

This implies w ∈ ∂g(Ax0) thanks to (2.6). Thus, v = A∗w ∈ A∗∂εg(Ax0) and ∂ε(g ◦A)(x0) ⊆
A∗∂εg(Ax0). Hence, (3.4) is seen to hold.

(ii)⇒(i). Suppose that (ii) holds. To show (i), it suffices to show that epi(g ◦A)∗ ⊆
(A∗ × idR)(epi g∗). To do this, let (x∗, r) ∈ epi (g ◦A)∗ and x0 ∈ A−1(dom g). By (2.7), there
exists ε ≥ 0 such that x∗ ∈ ∂ε(g ◦A)(x0) and r = 〈x∗, x0〉 − g(Ax0) + ε. From (3.4), there exists
y∗ ∈ ∂εg(Ax0) such that x∗ = A∗y∗. Since y∗ ∈ ∂εg(Ax0), it follows from (2.6) that

g∗(y∗) + g(Ax0) ≤
〈
y∗, Ax0

〉
+ ε = 〈x∗, x0〉 + ε, (3.9)
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that is g∗(y∗) ≤ 〈x∗, x0〉−g(Ax0)+ε = r. Hence, (x∗, r) ∈ (A∗×idR)(epi g∗) and so epi (g ◦A)∗ ⊆
(A∗ × idR)(epi g∗).

By the well-known characterization of optimal solution to DC problem (see
Lemma 3.1), x0 is a local optimal solution to problem (PA) if and only if, for each ε ≥ 0,

∂ε
(
g ◦A)

(x0) ⊆ ∂εf(x0). (3.10)

Obviously, A∗∂εg(Ax0) ⊆ ∂ε(g ◦A)(x0) holds automatically. The proof is complete.

Let p ∈ Y . Define

(
f∗ ◦A∗)∗

A

(
p
)
:= sup

y∗∈Y ∗
A

{〈
p, y∗〉 − f∗(A∗y∗)}. (3.11)

Theorem 3.3. The following statements are equivalent:

(i) epi(f∗ ◦A∗)∗A = (A × idR)(epi f),

(ii) For each ε ≥ 0 and each y∗ ∈ Y ∗
A ∩A∗(domf∗),

∂ε
(
f∗ ◦A∗)(y∗) = A∂εf

∗(A∗y∗). (3.12)

Moreover, y∗ is a local optimal solution to problem (DA) if and only if, for each ε ≥ 0,

A∂εf
∗(A∗y∗) ⊆ ∂ε

(
f∗ ◦A∗)(y∗) ⊆ ∂εg

∗(y∗). (3.13)

Proof. (i)⇒(ii). Suppose that (i) holds. Let ε ≥ 0, y∗ ∈ Y ∗
A∩A∗(dom f∗) and y ∈ ∂ε(f∗◦A∗)(y∗).

Then one has

(
f∗ ◦A∗)∗

A

(
y
)
+
(
f∗ ◦A∗)(y∗) ≤ 〈

y, y∗〉 + ε. (3.14)

Hence, (y, 〈y, y∗〉 − f∗(A∗y∗) + ε) ∈ epi(f∗ ◦A∗)∗A. By the given assumption,

(
y,

〈
y, y∗〉 − f∗(A∗y∗) + ε

) ∈ (A × idR)
(
epi f

)
. (3.15)

Therefore, there exists x ∈ X such that Ax = y and (x, 〈y, y∗〉 − f∗(A∗y∗) + ε) ∈ epi f .
Hence, f(x) ≤ 〈y, y∗〉 − f∗(A∗y∗) + ε, this means x ∈ ∂εf

∗(A∗y∗) and so Ax ∈ A∂εf
∗(A∗y∗).

Consequently, ∂ε(f∗ ◦A∗)(y∗) ⊆ A∂εf
∗(A∗y∗). This completes the proof because the converse

inclusion holds automatically.
(ii)⇒(i). Suppose that (ii) holds. To show (i), it suffice to show that epi (f∗ ◦A∗)∗A ⊆

(A × idR)(epi f). To do this, let (y, r) ∈ epi(f∗ ◦A∗)∗A and y∗ ∈ Y ∗
A ∩ A∗(dom f∗). By (2.7),

there exists ε ≥ 0 such that y ∈ ∂ε(f∗ ◦ A∗)(y∗) and r = 〈y∗, y〉 − f∗(A∗y∗) + ε. From (3.12),
there exists x ∈ ∂εf

∗(A∗y∗) such that y = Ax. Since x ∈ ∂εf
∗(A∗y∗), it follows from (2.6) that

f∗(A∗y∗) + f(x) ≤ 〈
y∗, y

〉
+ ε, (3.16)
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that is f(x) ≤ 〈y∗, y〉+ε−f∗(A∗y∗) = r. Hence, (y, r) ∈ (A×idR)(epi f) and so epi (f∗ ◦A∗)∗A ⊆
(A × idR)(epi f).

Similar to the proof of (3.5), one has that (3.13) holds.

4. Duality in DC Programming

This section is devoted to study the strong duality between the primal problem and its Toland
dual, namely, the property that both optimal values coincide and the dual problem has at least
an optimal solution.

Given p ∈ X∗, we consider the DC programming problem given in the form

(
P(A,p)

)
inf
x∈X

{
f(x) − g(Ax) − 〈

p, x
〉}
, (4.1)

and the corresponding dual problem

(
D(A,p)

)
inf

y∗∈Y ∗
A

{
g∗(y∗) − f∗(p +A∗y∗)}. (4.2)

Let v(P(A,p)), v(D(A,p)) denote the optimal values of problems (P(A,p)) and (D(A,p)),
respectively, that is

v
(
P(A,p)

)
= inf

x∈X
{
f(x) − g(Ax) − 〈

p, x
〉}
,

v
(
D(A,p)

)
= inf

y∗∈Y ∗
A

{
g∗(y∗) − f∗(p +A∗y∗)}.

(4.3)

In the special case when p = 0, problems (P(A,p)) and (D(A,p)) are just the problem (PA) and
(DA).

Before establishing the relationship between problems (P(A,p)) and (D(A,p)), we give
useful formula for computing the values of conjugate functions. The formula is an extension
of a well-known result, called Toland duality, for DC problems. In this section, we always
assume that g and f∗ are everywhere subdifferentible.

Proposition 4.1. Let h = f − g ◦A. Then the conjugate function h∗ of h is given by

h∗(x∗) = sup
y∗∈Y ∗

A

{
f∗(x∗ +A∗y∗) − g∗(y∗)}. (4.4)
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Proof. By the definition of conjugate function, it follows that

h∗(x∗) = sup
x∈X

{〈x∗, x〉 − (
f − g ◦A)

(x)
}

= sup
x∈X

{〈x∗, x〉 − f(x) + g(Ax)
}

= sup
x∈X

{〈x∗, x〉 + 〈
A∗y∗, x

〉 − f(x) − 〈
A∗y∗, x

〉
+ g(Ax)

} ∀y∗ ∈ Y ∗
A

≥ sup
x∈X

{〈
x∗ +A∗y∗, x

〉 − f(x)
} − sup

x∈X

{〈
y∗, Ax

〉 − g(Ax)
} ∀y∗ ∈ Y ∗

A

≥ sup
y∗∈Y ∗

A

{
f∗(x∗ +A∗y∗) − g∗(y∗)}.

(4.5)

Next, we prove that

h∗(x∗) ≤ sup
y∗∈Y ∗

A

{
f∗(x∗ +A∗y∗) − g∗(y∗)}. (4.6)

Suppose on the contrary that h∗(x∗) > supy∗∈Y ∗
A
{f∗(x∗ + A∗y∗) − g∗(y∗)}, that is, there exists

x0 ∈ X such that

〈x∗, x0〉 − f(x0) + g(Ax0) > sup
y∗∈Y ∗

A

{
f∗(x∗ +A∗y∗) − g∗(y∗)}. (4.7)

Let y0 = Ax0 and y∗
0 ∈ ∂g(y0), then

g∗(y∗
0
)
=
〈
y∗
0, y0

〉 − g
(
y0
)
. (4.8)

From this, it follows that

〈x∗, x0〉 − f(x0) + g(Ax0) =
〈
x∗ +A∗y∗, x0

〉 − f(x0) −
(〈
A∗y∗, x0

〉 − g∗(y∗
0
))

≤ f∗(x∗ +A∗y∗) − g∗(y0)
∗,

(4.9)

which is contradiction to (4.7), and so (4.4) holds.

Following from Proposition 4.1, we obtain the following proposition.

Proposition 4.2. For each p ∈ X∗,

v
(
P(A,p)

)
= v

(
D(A,p)

)
. (4.10)
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Proof. Let p ∈ X∗. Since infx∈X{f(x)−g(Ax)−〈p, x〉} = −(f − g ◦A)∗(p), it follows from (4.4)
that

v
(
P(A,p)

)
= inf

x∈X
{
f(x) − g(Ax) − 〈

p, x
〉}

= − sup
y∗∈Y ∗

A

{
f∗(p +A∗y∗) − g∗(y∗)}

= inf
y∗∈Y ∗

A

{
g∗(y∗) − f∗(p +A∗y∗)}

= v
(
D(A,p)

)
.

(4.11)

Remark 4.3. In the special case when p = 0 and A = 0, formula (4.10) was first given by
Pshenichnyi (see [10]) and related results on duality can be found in [15–17].

Proposition 4.4. For each p ∈ X∗,

(i) if x0 is an optimal solution to problem (P(A,p)), then y∗
0 ∈ Y ∗

A ∩ ∂g(Ax0) is an optimal
solution to problem (D(A,p));

(ii) suppose that f and g are lower semicontinuous. If y∗
0 is an optimal solution to problem

(D(A,p)), then x0 ∈ ∂f∗(A∗y∗
0) is an optimal solution to problem (P(A,p)).

Proof. (i) Let x0 be an optimal solution to problem (P(A,p)) and let y∗
0 ∈ Y ∗

A ∩ ∂g(Ax0). Then
A∗y∗

0 ∈ A∗∂g(Ax0). It follows from (3.5) that A∗y∗
0 ∈ ∂f(x0). By the Young equality, we have

〈
A∗y∗

0, x0
〉
=
〈
A∗y∗

0 + p, x0
〉 − 〈

p, x0
〉
= f∗(p +A∗y∗

0
)
+ f(x0) −

〈
p, x0

〉
,

〈
y∗
0, Ax0

〉
= g∗(y∗

0
)
+ g(Ax0).

(4.12)

Therefore,

g∗(y∗
0
) − f∗(p +A∗y∗

0
)
= f(x0) − g(Ax0) −

〈
p, x0

〉
. (4.13)

By (4.10), y∗
0 is an optimal solution to problem (D(A,p)).

(ii) Let y∗
0 be an optimal solution to problem (D(A,p)) and x0 ∈ ∂f∗(A∗y∗

0). Then Ax0 ∈
A∂f∗(A∗y∗

0) and henceAx0 ∈ ∂g∗(y∗
0) thanks to Theorem 3.3. By the Young equality, we have

〈
A∗y∗

0, x0
〉
=
〈
A∗y∗

0 + p, x0
〉 − 〈

p, x0
〉
= f∗∗(x0) + f∗(p +A∗y∗

0
) − 〈

p, x0
〉
,

〈
y∗
0, Ax0

〉
= g∗∗(Ax0) + g∗(y∗

0
)
.

(4.14)

Since the functions f and g are lower semicontinuous, it follows from (2.3) that f∗∗ = f and
g∗∗ = g. Hence, by the above two equalities, one has

g∗(y∗
0
) − f∗(p +A∗y∗

0
)
= f(x0) − g(Ax0) −

〈
p, x0

〉
. (4.15)

By (4.10), x0 is an optimal solution to problem (P(A,p)).
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Obviously, if A is continuous, then Y ∗
A = Y ∗ and so Y ∗

A ∩ ∂g(Ax)/= ∅ for each x ∈ X. By
Propositions 4.2 and 4.4, we get the following strong duality theorem straightforwardly.

Theorem 4.5. For each p ∈ X∗,

(i) suppose that A is continuous. If the problem (P(A,p)) has an optimal solution, then
v(P(A,p)) = v(D(A,p)) and (D(A,p)) has an optimal solution;

(ii) suppose that f and g are lower semicontinuous. If the problem (D(A,p)) has an optimal
solution, then v(P(A,p)) = v(D(A,p)) and (P(A,p)) has an optimal solution.

Corollary 4.6. (i) If the problem (PA) has an optimal solution, then v(PA) = v(DA) and (DA) has
an optimal solution.

(ii)Suppose that f and g are lower semicontinuous. If the problem (DA) has an optimal
solution, then v(PA) = v(DA) and (PA) has an optimal solution.

Remark 4.7. As in [13], if v(PA) = v(DA) and (PA) has an optimal solution, then we say the
converse duality holds between (PA) and (DA).

Example 4.8. Let X = Y = R and let A = id. Define f, g : X → R by

f(x) = x4, g(x) = 2x2. (4.16)

Then the conjugate functions f∗ and g∗ are

f∗(p
)
= p

(p
4

)1/3
−
(p
4

)4/3
, g∗(p

)
=

p2

8
, p ∈ R. (4.17)

Obviously, v(PA) := infx∈R{f(x) − g(x)} = −1 and (PA) attained the infimun at ±1, v(DA) =
infp∈R{g∗(p) − f∗(p)} = −1 and (DA) attained the infimum at ±4. Hence, v(P) = v(D). It is
easy to see that ∂g(1) = {4}, ∂g(−1) = {−4} and ∂f∗(4) = {1}, ∂f∗(−4) = {−1}. Therefore,
Proposition 4.4 is seen to hold and Theorem 4.5 is applicable.
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[2] R. I. Boţ and G. Wanka, “Duality for multiobjective optimization problems with convex objective
functions and D.C. constraints,” Journal of Mathematical Analysis and Applications, vol. 315, no. 2, pp.
526–543, 2006.

[3] N. Dinh, T. T. A. Nghia, and G. Vallet, “A closedness condition and its applications to DC programs
with convex constraints,” Optimization, vol. 1, pp. 235–262, 2008.

[4] N. Dinh, G. Vallet, and T. T. A. Nghia, “Farkas-type results and duality for DC programs with convex
constraints,” Journal of Convex Analysis, vol. 15, no. 2, pp. 235–262, 2008.



10 Journal of Inequalities and Applications

[5] R. Horst and N. V. Thoai, “DC programming: overview,” Journal of Optimization Theory and
Applications, vol. 103, no. 1, pp. 1–43, 1999.

[6] J.-E. Martı́nez-Legaz and M. Volle, “Duality in D.C. programming: the case of several D.C.
constraints,” Journal of Mathematical Analysis and Applications, vol. 237, no. 2, pp. 657–671, 1999.

[7] V. F. Demyanov and A. M. Rubinov, Constructive Nonsmooth Analysis, vol. 7 of Approximation &
Optimization, Peter Lang, Frankfurt, Germany, 1995.

[8] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I: Basic Theory, vol. 330 of
Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 2006.

[9] B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. II: Application, vol. 331 of
Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, Germany, 2006.

[10] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen
Wissenschaften, Springer, Berlin, Germany, 1998.
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