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1. Introduction and Preliminar Results

A common method in solving ill-posed problems is to substitute the original problem by a
family of well-posed (i.e., with a unique solution) regularized problems. We will use this
idea to define and study a two-step algorithm to solve hierarchical fixed point problems
under different conditions on involved parameters. We will see that choosing appropriate
hypotheses on the parameters, we will obtain convergence to the solution of well-posed
problems. Changing these assumptions, we will obtain convergence to one of the solutions of
a ill-posed problem. The results are situaded on the lines of research of Byrne [1], Yang and
Zhao [2], Moudafi [3], and Yao and Liou [4].
In this paper, we consider variational inequalities of the form

x* € Fix(T) such that ((I - S)x*,x —x*) >0, Vx € Fix(T) (1.1)

where T, S : C — C are nonexpansive mappings such that the fixed points set of T (Fix(T)) is
nonempty and C is a nonempty closed convex subset of a Hilbert space H. If we denote with
Q the set of solutions of (1.1), it is evident that Fix(S) C Q.
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Variational inequalities of (1.1) cover several topics recently investigated in literature
as monotone inclusion ([5] and the references therein), convex optimization [6], quadratic
minimization over fixed point set (see, e.g., [5, 7-10] and the references therein).

It is well known that the solutions of (1.1) are the fixed points of the nonexpansive
mapping PriyT)S.

There are in literature many papers in which iterative methods are defined in order to
solve (1.1).

Recently, in [3] Moudafi defined the following explicit iterative algorithm

Xp1 = (1 —ap)xy + a,(0,5x, + (1 — 0,)Txy), (1.2)

where (a,),cy and (0y) ey are two sequences in (0, 1), and he proved a weak-convergence’s
result. In order to obtain a strong-convergence result, Maingé and Moudafi in [11] introduced
and studied the following iterative algorithm

Wpt1 = anf(wn) + (1 - ‘xn)znr n>1,

zn = PuSwp + (1 = Bn) Twy,

(1.3)

where (a,) ey and (Bn),.cy are two sequences in (0, 1).
Let f : C — Cbe a contraction with coefficient p € (0, 1). In this paper, under different
conditions on involved parameters, we study the algorithm

Xn+l = anf(xn) + (1 - an)T]/n/ n>1,

Yn = ﬂnsxn + (]— - ,Bn)xn/

(1.4)

and give some conditions which assure that the method converges to a solution which solves
some variational inequality.

We will confront the two methods (1.3) and (1.4) later.

We recall some general results of the Hilbert spaces theory and of the monotone
operators theory.

Lemma 1.1. For all x,y € H, there holds the inequality
||x+y||2 < |lxl* +2{y, x + y). (1.5)

If K is closed convex subset of a real Hilbert space H, the metric projection Px : H —
K is the mapping defined as follows: for each x € H, Pxx is the only point in K with the

property

e = Prcxl] = inf [|x = . (1.6)

Lemma 1.2. Let K be a nonempty closed convex subset of a real Hilbert space H and let Pk be the
metric projection from H onto K. Given x € H and z € K, z = Pxx if and only if

(x-z,y-2z)<0, VYyek. (1.7)
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Lemma 1.3 (see [7]). Let f : C — C be a contraction with coefficient p € (0,1) and W : C — C
be a nonexpansive mapping. Then, for all x,y € C:

(a) the mapping (I — f) is strongly monotone with coefficient (1 — p), that is,

(x=y, (1= Hx= (I~ fy) = (1=p)x -yl (18)
(b) the mapping (I — W) is monotone, that is,
(x-y,I-W)x-(I-W)y) >0. (1.9)

Finally, we conclude this section with a lemma due to Xu on real sequences which has
a fundamental role in the sequel.

Lemma 1.4 (see [9]). Assume (a,) ey is a sequence of nonnegative numbers such that

ans1 < (1 - Yn)an +6n, n20, (1.10)

where (yn),, is a sequence in (0,1), and (6,,),, is a sequence in R such that,

(1) X5 v = o0;
(2) limsup, , _ 6,/yn <00r 352 [64] < 0.

Then lim,, _, ,a,, = 0.

2. Convergence of the Two-Step Iterative Algorithm

Let us consider the scheme

Xp+1 = anf(xn) + (1 - an)Tym n>1,

2.1
Yn = PuSxn + (1= By)xn. @1)

As we will see the convergence of the scheme depends on the choice of the parameters
(@n) peny C [0,1] and (B) ,en C [0,1]. We list some possible hypotheses on them:

(H1) there exists y > 0 such that 8, < ya,;

(H2) limy_ofn/an =T € [0, +00];
(H3) a, — 0asn — ooand 3,y an = oo;
(H4) 3 en lan — an-a| < oo;

)
)
)
)
(H5) Xen 1Bn = Pnal < o0;
)
)
)
)

)

(H6) limy, , oo |y, — @y1|/n = 0;

(H7) limy, — oo |Bn = Pr-1l/ B = 0;

(H8) limy, oo (|fn = Pra| + lan — an-1l)/anfn = 0;

(H9) there exists K > 0 such that (1/a,)|(1/f,) — (1/pa-1)] < K.
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Proposition 2.1. Assume that (H1) holds. Then (xy,) ,er and (Yn) per are bounded.

Proof. Let z € Fix(T). Then,

%ne1 = 2l < an| fCxn) = @) + @ul| f(2) = 2| + (1 = @) || Tyw - 2|
< “HP”xn - z|| + dn”f(Z) - Z” +(1- “n)ﬁn“sxn -zl +(1- 0(,,)(1 _ﬂn)Hxn -z||
< anpllxn = zll + anl| f(2) = 2| + (1 = an) Ball Sz — 2|l + (1 = an) [l — ]|

= (1= (L=p)an)lloxn =zl + an[|| f(2) = z|| +ylISz - zlI].

(2.2)
So, by induction, one can see that
1
a2l < max{ o = 2l 7 [1£(2) - =1l + ylS= - ] } (2.3)
Of course (Y ) ey is bounded too. O

Proposition 2.2. Suppose that (H1), (H3) hold. Also, assume that either (H4) and (H5) hold, or (H6)
and (H7) hold. Then

(1) (xn) ey is asymptotically reqular, that is,

lim ||x,41 = x4]| =0, (2.4)
n—oo

(2) the weak cluster points set wy,(x,) C Fix(T).

Proof. Observing that

Xnel — Xp = “nf(xn) + (1 - “n)Tyn - an—lf(xn—l) - (1 - ‘xn—l)Tyn—l

= an(f(xn) _f(xn—l)) + (f(xn—l) - Tyn—l)(an - an—l) + (1 - an)(Tyn - Tyn—l)r
(2.5)

then, passing to the norm we have

||xn+1 - xn” < “n”f(xn) - f(xn—l)” + ”f(xn—l) - Tyn—l ”l“n - an—ll + (1 - an)”Tyn - T]/n—l ”

< anpllacn = xna [l + || f (1) = Ty, |llan — anal + (1= @) [[yn = yua |-
(2.6)
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By definition of y,, one obtain that
”]/n - ]/n—l” = ”,Bn(sxn - an—l) + (an—l - xn—l)(,ﬁn - ﬁn—l) + (1 - ,Bn)(xn - xn—l)”

< ﬂn”xn = Xp1l + [1Sxp-1 = xn—l“lﬂn - ﬂn—ll + (1 - ,Bn)“xn = Xp1]| (2.7)

= ”xn - xn71|| + ”anfl - xn71|| |ﬁn - ﬁn—l

so, substituting (2.7) in (2.6) we obtain

2¢n41 = 2ull < Anpllxn = X1l + latw = @t || £ (n-1) = Tyt | 08)
+ (1 - an) [”xn - xn—l” + ”an—l - xn—l” |ﬁn - ﬁn—l ”

By Proposition 2.1, we call M := max{sup, |l f(xn-1) = Tyn-1ll, sup,eyllSxn-1 — x4-1]|} so we
have

|2¢ne1 = x4 < [1 - an(l - P)] ll2cn = 21| + M[lan — 1|+ |ﬁn - ﬁn—1|]~ (2.9)

So, if (H4) and (H5) hold, we obtain the asymptotic regularity by Lemma 1.4.
If, instead, (H6) and (H7) hold, from (H1) we can write

|an - anfll " |ﬂ71 _ﬂ"—ll

[[xne1 — x4 < [1 - an(l - P)] |2 — xp1]] + M“nI:

an Xn

(2.10)
< [1-an(1=p)]llxn = xnall + Manl:|an — | +y [ ﬁn_ll],
an Pn
so, the asymptotic regularity follows by Lemma 1.4 also.
In order to prove (2), we can observe that
130 = Txal < [l = Xpaa || + 12xne1 = Toxn|
< loen = X || + ]| f () = Toxu|| + (1 = &) || Ty — Toxa |

(2.11)

< lxn = Xpaa || + an”f(xn) - Txn” +(1- an)”yn - xn”
= ||lotn = e || + ]| f(xn) = Txu|| + (1 = o) Bl Sxxn — x|

By (H1), and (H3) it follows that g, — 0, asn — oo, so that ||x, — Tx,|| — 0 since (x,),cy iS
asymptotically regular. By demiclosedness principle we obtain the thesis. O

Corollary 2.3. Suppose that the hypotheses of Proposition 2.2 hold. Then
(i) limy — ool 260 = Tynl| = 0;
(i) 1imy, — oo [|Xn = Yl = 0;

(i) 1imy— o 70 — Tyall = 0.
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Proof. To prove (i), we can observe that
”xn - T]/n” < ”xn - xn+1|| + ||xn+1 - Tyn” = ||xn - xn+1|| + an”}/f(xn) - T]/n” (212)

The asymptotical regularity of (x,),cy gives the claim.
Moreover, noting that

lyn = xall = BullSxn = xall, (2.13)

since f, — 0asn — oo we obtain (ii). In the end (iii) follows easily by (i) and (ii). O

Theorem 2.4. Suppose (H2) with T = 0 and (H3). Moreover Suppose that either (H4) and (H5) hold,

or (H6) and (H7) hold. If one denote by z € C the unique element in Fix(T) such that z = Prixr) f 2,
then

Q)

limsup(f(z) - z,x, — z) <0, (2.14)

n— oo

(2) x, — zasn — oo.

Proof. First of all, Priyr)f is a contraction, so there exists a unique z € Fix(T) such that
Prixry f (z) = z. Moreover, from Lemma 1.2, z is characterized by the fact that

(f(z)-z,y-2z)<0, VyeFix(T). (2.15)

Since (H2) implies (H1), thus (x;),cy is bounded. Let (xy, ) ey be a subsequence of (xy,),,cr
such that

limsup(f(z) —z,x, — z) = ’}iillo(f(z) —Z, Xy, — Z), (2.16)

n—oo

and x,, — x'. Thanks to either ((H4) and (H5)) or ((H6) and (H7)), by Proposition 2.2 it
follows that x" € Fix(T). Then

Jim (f(2) =z %, = 2) = (f(2) - 2,4 - 2) 0. (2.17)
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Now we observe that, by Lemma 1.1

s = zI* = [|etu(f (xa) = £(2)) + au(f (2) = 2) + (1 = 2) (Ty - 2) ||
< lan(f Gea) = £(2)) + (1= @) (Tyn = 2)||” + 220 (f (2) = 2, X1 - 2)
< anpllaen = 2| + (1= @) | ym - z||* + 200 (f (2) = 2, %001 - 2)
< anp||xn = 2> + 20, (f (2) = 2, Xp11 — Z)
+ (1= )| Bu(Sx — S2) + Pu(Sz —2) + (1~ fu) (xu — 2) ||
< anpllxn - zI” + 20 (f (2) = 2, %1 - 2)
+ (1= an) ot = 2|1* +2(1 = @) u(Sz = 2,y - 2)

=(1-(1-p)ay)|lx, - z|I> +2(1 - 0)Bn(Sz = 2, Yn — 2) + 20, (f (2) — 2, X1 — 2).

(2.18)
Since T = 0, then
B )
lim —(Sz-z,y, —z) = 0. (2.19)
n~>ooan
Thus, by Lemma 1.4, x, — zasn — oo. O

Theorem 2.5. Suppose that (H2) with 0 < T < oo, (H3), (HS8), (H9) hold. Then x, — X,asn — oo,
where X € Fix(T) is the unique solution of the variational inequality

<%(I—f)a?+ (I—S)J?,J?—y> <0, Vy €Fix(T). (2.20)

Proof. First of all, we show that (2.20) cannot have more than one solution. Indeed, let X and
X be two solutions. Then, since X is solution, for y = X one has

((I- HFF-%) <7((I - S)%, X - X). (2.21)
Analogously
(I-fx,x-%)<t(I-9)x,X-X). (2.22)
Adding (2.21) and (2.22), we obtain
(1-p)|[x - F|*<((I-)Z-(I-f)xX, X %)< ~7((I - S)X - (I - S)X, ¥ -X) <0  (2.23)

so X = x. Also now the condition (H2) with 0 < 7 < oo implies (H1) so the sequence (x,,) oy iS
bounded. Moreover, since (H8) implies (H6) and (H7), then (x,) .oy is asymptotically regular.
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Similarly, by Proposition 2.2, the weak cluster points set of x,, wy,(x,), is a subset of Fix(T).
Now we have

X1 — X = oy (f(x0) = xn) + (1 = an) (TYn — Xn)
=, (f(xn) = %n) + (1= ) (TYn — Yn) + (1 — ) (Yn — xn) (2.24)
= an(f _I)xn + (1 —a,)(T _I)yn +(1- an)ﬁn(s -Dxy,

so that

Xn — Xn+1

Xn = X1 €
(1- “n)ﬂn

= (I - S)xn + 5

Op
(I-T)yn + m(l - f)xn, (2.25)

and denoting by v, := (x,, — x441)/ (1 — a,) B, we have

1

vy = —S)x, + B

Ay
(I-T)y, + T alf, (I-f)xn. (2.26)

Dividing by S, in (2.9), one observe that

llxn41 — ]| [l — xn-1l 1 1
< [1-a,(1-p) | ——"—+ [1 = an(1 = p)]lIxn — xna1ll| 5= — 5—
ﬂn [ ( P)] ﬂn—l [ ( P)] 1 ﬂn ﬂn—l
M |an_“n—1| n |:6ﬂ _:811*1|
P P
12 — xp—1]| 1 1
<M -a,(1-p)|———— +||lxps1 — xul|| >— — —
= [ ( P)] ﬁn—l [ l ﬂn ,Bn—l
|Bn = B 227
|an - anfll n — Pn-1
+M + ,
[ B P
Xy — Xp
by (H9) < [1 =y (1= p) 2 K =)
M |an_an—1| n |:8Tl _ﬂﬂ*1| ]
P B
By Lemma 1.4, we have
Jim W =Xl _ (2.28)
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s0, also vy, := (x, — xp41) /(1 — &) B is a null sequence as n — oo. Fixing z € Fix(T), by (2.26)
it results

(O 2w = 2) = (I = ), Xn — 2) + lﬂ(u T) Yy xn - 2)

T (= F)xnxn=2)

(1 “n)ﬁn
=(I-S)x,-(I-8)z,x,—z)+{((I-95)z,x, — z)
. (2.29)
+ [5_n<(1 -Tyn—I-T)z,x, - z)
e U= D= (= )z -2)
+ ﬂ;xTnn)ﬂn«I - )z, x, — z).
By Lemma 1.3, we obtain that
(On, xn = 2) 2 ((I=S)z,x, — 2) + lﬂ(([ ~T)yn— (I -T)z, X5 — Yn)
s (=T~ (I =T)z, o~ =)
Xy (1-p)an > (2.30)
+ m(([ - )z, x,—z) + mllx,1 -z
>((I-8)z,x,—z)+(I-T)yn— (I -T)z,x, — Sx»)
(1 P) an 2 Op _ _
(1 ‘xn)ﬁn”xn Z” " (1_0‘71):671(([ f)Z’xn Z>.
Now, we observe that
=17 < _“"))ﬂ" [0 0 = 2) = (L = $)2, % = 2) = {(I = )Y X — 53]
o (2.31)

- m((l—f)zfxn—Z%

so, sincev, — Oand (I -T)y, — 0,asn — oo, then every weak cluster point of (x;),,cy is
also a strong cluster point.
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By Proposition 2.2, (x,),cy is bounded, thus there exists a subsequence (xy,)cy
converging to x'. For all z € Fix(T) by (2.26)

_ (- an)pPu

1_ n Ny
<(I _f)x"k’xnk - Z> - a—<vnk’xnk - Z> - M((I_ S)xnk’xnk - Z>
My L3
1-ay
- (IX—)<(I _T)]/nernk - Z)
by Lemma 1.3 < %(vnwxnk —z)- %«I— S)z, xy, — z)
" " (2.32)
(1 - ank)
——— (I =Tyn, = I =T)z, Xn = Yn)
1 - Un n 1 - Any JPni
< Uy g~z - L2015y, )
1-ay
- (tx—)ﬂnk“l - T)ynklxnk - ank)'
i
Passing to k — oo, we obtain
(I-f)x,x'—z) <-t((I-9)z,x' —z), VzeFix(T), (2.33)

which (2.20). Thus, since the (2.20) cannot have more than one solution, it follows that
Wy (x,) = ws(x,) = {X} and this, of course, ensures that x, — X,asn — co. O

Proposition 2.6. Suppose that (H2) holds with T = +oo. Suppose that (H3), (H8) and (H9) hold.
Moreover let (x,,),cy be bounded and (B) ,eny be a null sequence. Then every v € wy,(xy) is solution
of the variational inequality

((I-S)v,v-x)<0, VxeFix(T), (2.34)

that is, v € Q.

Proof. Since (H8) implies (H6) and (H7), by boundedness of (x,),cy, We can obtain its
asymptotical regularity as in proof of Proposition 2.2. Moreover, since , — 0, as in proof
of Proposition 2.2, wy, (x,) C Fix(T). With the same notation in proof of Theorem 2.5 we have
that

<Un/xn - Z> > <(I_ S)Z/xn - Z) + ((I_ T)yn/xn - an>

M 2. M )
(1 _‘Xn)ﬁn I, — 2|~ + a —tXn)ﬁn<(I f)z, Xp —Z)
> (I = 8)2, 20 = 2) + (I = Ty, X0 = %) + oo (T = f) 2,30 - 2)

(1= an)pn
(2.35)
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holds for all z € Fix(T). So, if v € wy,(x,) and x,, — v, by (H2), the boundedness of (x;) ,cn,
v, — 0and (iii) of Corollary 2.3 we have

((I-8)z,w-2z) = lilg'l((I—S)z,xnk - z)

< li};n (O, X = 2) + (I = T) Yy, Sxn — X, ) (2.36)

Lo

+m<(1—f)z,z—xnk> <0, Yz eFix(T).

If we change z with v + pu(z - v), p € (0,1), we have

(I-8)(v+pu(z-v)),v-2z)<0. (2.37)

Letting y — 0 finally
((I-S)v,v-2z)<0, VzeFix(T). (2.38)
O

Remark 2.7. If we choose a, = n™¢ and f, = n™" (with ¢,y > 0), since |a, — a,-1| = n™* and
|y — apq| = n7V it is not difficult to prove that (H8) is satisfied for 0 < ¢,y < 1 and (H9) is
satisfied if ¢ + y < 1.

Remark 2.8. 1t is clear that our algorithm (1.4) is different from (1.3). At the same time, our
algorithm (1.4) includes some algorithms in the literature as special cases. For instance, if we
take S = I in (1.4), then we get x,.1 = a,f(x,) + (1 — a,)Tx, which is well-known as the
viscosity method studied by Moudafi [8] and Xu [10].

Remark 2.9. We do not know the rate of convergence of our method. Nevertheless, the rates
of convergence of our method (1.4) that generates the sequence x, and the Mainge-Moudafi
method (1.3), seem not comparable. To see this, we consider three examples. In such examples
wetake H=R, C=[-1,1], ay, = (n+1)""*, Bo=(m+1)""%, f=(1/2)I,x =1.

In all three examples all the assumptions (that are the same of the Mainge-Moudafi
method) are satisfied and the point at which both the sequences x, and w,, converge is X =
(Paf)x =0.

Example 2.10. Take S =1 and T = —1. Then

3
Xn = — 1— _— Xy 239
+1 < 2(n+1)1/4> ( )

3 2 1
Wyl = [—<1 - 2(n+1)1/4> + PSIE <1 - (n+1)1/4>]wn. (2.40)

while
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Now x; = wy = 0.5, while, for 1 < n < 63, it results |x,| < |w,|. For instance, we report here
some value
xp =0.130672, w, =0.272417

x19 = —2.52698e — 11, w9 = 0.00086297

Xp0 = —1.40916e — 17, wso = 6.2157e — 08

x30 = —2.19772¢ — 22, w3y = 5.95813e — 13

x40 = —1.55804¢ — 26, wap = 1.0547e — 18

x50 = —2.79005e — 30, wsy = 4.10857e — 25

Xeo = —9.53183e — 34, wgo = 3.8945e — 32

Xe3 = 9.61011e — 35, wes = 2.33246¢ — 34.

(2.41)

However from the 64th iteration onward, w, becomes quickly very exiguous with respect to
x,. For instance, w59 = —1.4822¢ — 323 while x,, = 7.18026¢ — 83.

Example 2.11. Take S =T = —I. Then

3 2 1
x“4=[_<1_2m+1f“>+<n+n”6<y'm+1f“>]ﬂ" 4

while

3
wWpir = (1= —2— Vw,, 243
" ( 2m+n“> (249

that is the sequences x, and w, are interchanged with respect to the previous example. So
this time |x,| > |w,| for 1 < n < 64 and |x,| < |w,| for n > 64.

Example 2.12. Take S = —I, T = P_1,2,1/2]- Then

Xp41 = ! Xp+(1- ! P 1- 2 x
T ame A (n+1)1/3 ) m+1)/8 )"

w ! wy+ (1 ! ! wy+ (1 ! P w
=—" - - - ———¢ P2y
2 1)) ) (ne1)/8 ) AT
(2.44)

so this time x,, = w,.

Reassuming, we cannot affirm that our method is more convenient or better than the
Mainge-Moudafi method, but only that seems to us that it is the first time that it is introduced
a two-step iterative approach to the VIP (1.1). In some case, our method approximates the
solution more rapidly than Mainge-Moudafi method, in some other case it happens the
contrary and in some other cases, both methods give the same sequence.
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