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By using the way of weight functions and the technic of real analysis, a multiple Hilbert-type
integral operator with the homogeneous kernel of —A-degree (A € R) and its norm are considered.
As for applications, two equivalent inequalities with the best constant factors, the reverses, and
some particular norms are obtained.

1. Introduction

Ifp > 1,1/p+1/q9 =1, f(= 0) € LF(0,00),8(> 0) € LI(0,00), [Ifll, = {jé.m')‘i"(x)obc}l/’7 >
0,ligll; > 0, then we have the following famous Hardy-Hilbert’s integral inequality and its
equivalent form (cf. [1]):

J‘°° “f®gW) , 1)

Jr
0 0 x+y X y sm(]l‘/p) ”f”p”g”q’

{Im< w&dx >p dy}l/p < L”f”p/ (1.2)

o \Jox+y sin(or/p)

where the constant factor or / sin(sr /p) is the best possible. Define the Hardy-Hilbert’s integral
operator T : LF(0,c0) — LP(0,00) as follows: for f € LP(0,00),Tf(y) : = fgo(l/(x +
y¥)) f(x)dx (y € (0,00)). Then in view of (1.2), it follows that ||Tf||p <um/ sin(yr/p)llf”p and
IIT|| £ (or/ sin(ar/p)). Since the constant factor in (1.2) is the best possible, we find that (cf.[2])
IT|| = o/ sin(or/p).
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Inequalities (1.1) and (1.2) are important in analysis and its applications (cf. [3]). In
2002, reference [4] considered the property of Hardy-Hilbert’s integral operator and gave an
improvement of (1.1) (for p = g = 2). In 2004-2005, introducing another pair of conjugate
exponents (r,s)(r > 1,1/r + 1/s = 1) and an independent parameter A > 0, [5, 6] gave two
best extensions of (1.1) as follows:

= (= f()g(y) i
B Asin(zr /) 1.
f x)t + y)‘ dx d]/ < /\51n(7r/r) ”f”p,d)”g”q,q;/ ( 3)
*f0sW) , < A >
B 14
Jo ), Sl 171, gl o
where B(,v) is the Beta function (¢(x) = xPIV/07 g(x) = x0TV 7|

{jgo(ﬁ(x)fr’(x)dx}l/” > 0,lgll,, > 0). In 2009, [7, Theorem 9.1.1] gave the following
multiple Hilbert-type integral inequality: suppose that n € N\ {1},p; > 1,>7,(1/pi) =
1,0 > 0,then ky(x1,...,x,) > 0 is a measurable function of —\-degree in R” and for any
(r1,...,1n)(ri > 1) satisfies 3" ;(1/r;) =1 and

n-l (.}l/r]‘)—l
k) = f ky(uq, . ..,un,l,l)Hu]. duq---du,_1 > 0. (1.5)
R} j=1

If i (x) = xP=/m-1 > 0) € Lg’;(O,oo), ”f”pi,qb,- >0(i =1,...,n), then we have the following
inequality:

f ka(xt, . xn) [ [ fixi)daxy - - dacy < k*H”f"”pi,qn,-' (1.6)
RY i=1 i=1

where the constant factor k) is the best possible. For n = 2,k)(x,y) = 1/ (x* + y*), and
1/ (x + y))L in (1.6), we obtain (1.3) and (1.4). Inequality (1.6) is some extensions of the results
in [6, 8-11]. In 2006, reference [12] also considered a multiple Hilbert-type integral operator
with the homogeneous kernel of —n + 1-degree and its inequality with the norm, which is the
best extension of (1.2).

In this paper, by using the way of weight functions and the technic of real analysis,
a new multiple Hilbert-type integral operator with the norm is considered, which is an
extension of the result in [12]. As for applications, an extended multiple Hilbert-type integral
inequality and the equivalent form, the reverses, and some particular norms are obtained.

2. Some Lemmas

Lemma2.1. Ifne N\ {1},pi e R\ {0,1}, , €R (i=1,...,n), 3, 1/p; = 1, then

1/pi
n
A= H[ we T xjf‘l] =1 (2.1)

j=1(j #i)
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Proof. We find that

n n Vpi
. Li-1) (1-p; ) +1-4; A1
A= [xl. ij
i=1 =1
(2.2)
1/pi > (1/p)
z 1) A1 ok [ Trou
— xl( i)Pi xj] — xi i Hx]} ,
i=1 =1 i=1 j=1
and then (2.1) is valid. O

Definition 2.2. If n € N, R} := {(x1,...,x,)x; >0 (i=1,...,n)},L € R,and ky(xy,...,x,) isa
measurable function in R? such that for any u > 0 and (xy,...,x,) € RY, ky(uxy,..., ux,) =
utky(x1,...,x,), then call ky(x1,...,x,) the homogeneous function of —\-degree in R.

Lemma 2.3. As for the assumption of Lemma 2.1, if >y Xi = A, ky(x1, ..., xn) > 0is a homogeneous
function of —A-degree in R,

n

. 1i-1
H(i) := j ky(ug, ..o i, L, .., Uy) I | u].’ duq - -duj_1duiy -+ - duy, (2.3)
Rnfl . . .
. j=1(j #)

(i=1,...,n),and H(n) = ky € R, then each H(i) = H(n) = k\(i = 1,...,n), and for any
i=1,...,n, it follows that
i L Ai-1
wi(x;) = x;' ky(xi, ..., x, x. dxy---dxjdxiq - dx, = ky.
R Ry v e

Proof. Setting u; = u,v; (j#1,n) in the integral H (i), we find that

e
: -1 A1 1)

H(z):f ki<vl,...,vi_1,un,vi+1,...,vn_1,1> | | Uj] u, doy---dvi1dvpq - dog_du,.

RZ_] .

]_

1(j #i)
(2.5)

Setting v; = u;! in the above integral, we obtain H (i) = H(n). Setting uj = xj/x; (j#i) in
(2.4), we find that w;(x;) = H(i) = H(n) = k. O

Lemma 2.4. As for the assumption of Lemma 2.3, setting

n-1 -~
k<A1, .. .,.)L-,l_1> = J‘R21 ky(uq, ... ,un_l,l)gu;‘rldul s duy,q, (2.6)
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then there exist 6 > o and I = {(Ay,..., N1) | & = X+ 64,16 < 6 (i = 1,...,n = 1)}, such
that for any ()q, A1) € Lk(A, ..., 1) € R, if and only if k(\y, ..., A1) is continuous at
(CEPRT DR

Proof. The sufficiency property is obvious. We prove the necessary property of the condition
by mathematical induction. For n = 2, since

1
k()tl +61) =J k)L(u1, ) )Ll+61 1du1 +’[ kk(ul,l)u)‘”él_lduh
0

G, D07 < Ky (g, D, wn € (0,1], @7

K (u1, 1) < ey (g, D" g, wg € (1,00),

and k(A1 — 6p) + k(A + 8p) < oo, then by Lebesgue control convergence theorem (cf. [13]) it
follows that k(A + 61) = k(A1) + 0(1)(61 — 0). Assuming that for n(> 2), k()q, c A1) s
continuous at (Ay, ..., A1), then for n + 1, in view of the result for n = 2, we have that

6lim0k(J\1 +061,..., A +06y)

. e Aj+6;-1 A, +6,—1
=1 . nr 1 crrOUp- n n
5,,11—1}0 . <J‘R21 ky(ui, ..., u )l_[ duy---du 1> u du
- (2.8)
=J‘ <f ka(u, - ,un,l)]_[ o 1du1---dun_1>uﬁ”_1dun
0 R7!
e L
= J‘ <I kA(ul,...,un,l)uﬁ"_ldun> w7 duy---duyq,
R! 0 j=1 /
then by the assumption for 7, it follows that
61im0k()q+61,...,)un+6n) =k(M,..., ) +0(1) (6, —0,i=1,...,n-1). (2.9)

By mathematical induction, we prove that for n € N\ {1}, k(L, ... ,Xn_l) is continuous at
M, A1), O

Lemma 2.5. As for the assumption of Lemma 2.4, if 0 < € < minj<;<, {|pil} 6o, then for e — 0,

I = gf J ki(xl,...,xn)l_[x]).‘j_g/'gj_ldxl'.-dx,, =ky +0(1). (2.10)
1 1 j=1
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Proof. Setting u; = x;/x, (j =1,...,n-1), we find that

o o oo n—1
I, = ef x, ¢ [f f ky(uy, .. .,un,l,l)l |u;.\"7£/pj71du1 . ~-dun1] dx,,. (2.11)
1 x5! x5 i=1
j

Setting D := {(u1,...,us1) | uj € (0,x,'), ux € (0,00) (k#j)} and
L
Aj(xn) = ff kG, tnr, D] T P duy - dug_q, (2.12)
D; j=1
then by (2.11), it follows that

n-1 n-1 oo
I > f Jeauny e, D] Ty ™ s i - ng LA (e)dx,. (213)
R j=1 j=171

Without loses of generality, we estimate that f;’ox,glAn_l(xn)dxn = O(1). In fact, setting & > 0
such that |e/(p,-1) + a| < 8¢, since ~u; ; Inu, 1 — 0 (4,1 — 07), there exists M > 0, such
that —u;_, Inu, 1 < M(u,-1 € (0,1]), and then by Fubini theorem, it follows that

0< f X7 A1 ()
1

© X! n—1
1 " Xj—e/pj-1
=I x, [J J k)l(ul,...,un_hl)l |u].’ ! dun_ldu1-~-dun_2] dx,
R}/ 0 i=1
+ j

1
u']1
Ai—-€/ =
u]’ Pi~ (I xnldxn>du1-~dun_1
1

1 n—
=f I k/\(ul/---/un—lll)
0J R

Juny

g=

1 n-1
= I I kl(ulf s Un-1, 1) uj] ~/pil ( In un_l)dul s dun—l (214)
0 Rn—Z ]:1
! Aj—e/pj-1 A,, 1= (e/pnor+a) - 1
S M zk)t(ull . /un 1/1)H "‘dun_l
0/ R}
: MJ ky(ua, ..., u, 1/1)1_[ e )Ln = (e/prara)- 1 Uy diy,q
R

=M~k<)tl—£,...,)tn,2—L,An,l—( £ +tx)><oo.
p1 Pn-2 Pn-1
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Hence by (2.13), we have that
n-1
Ig > J kA (ul, oo, Upq, 1)Hujl"_g/pj_1du1 te dun_l - 01(1). (215)
R =1

By Lemma 2.4, we find that

[ee) 0] {ee)
IESE’[ x;l_s J f ky(uy, ..., up1,1)
1 0 0

n-1
xHuAj_g/pj_ldu ~-du dx
j 1 n-1 n

j=1 (2.16)
0 s n-1
=[] e, DT T -
0 0 j=1
- k<)u1 S P ) = ky+0x(1),
p1 Pn-1
Then by combination with (2.15), we have (2.10). O

Lemma 2.6. Suppose that n € N\ {1},p1 € Re \ {1}, 35, (1/pi) = 1,1/gn = 1= 1/pn, (N,
s An) €RY, LA = A, then ky(xq, ..., x,) > 0 is a measurable function of —\-degree in R such
that

n-1
Ai—
ky = f ka(uar, o g0, D] [ duy - dy 1 €R. (2.17)
R7! i=1
+ ]

If fi > 0 are measurable functions in R.(i=1,...,n—1),then (1) forp; >1 (i=1,...,n),

© n-1 qn 1/qn
J = {j xZ")'"_l [f k)t(xl,...,xn)nfi(xi)dxl ---dxn_1:| dxn}
0 R i=1

(2.18)
n-1 o 1/pi
< k)lH{J‘ xPi(l—)u)—lfpi (x)dx} ,
i=1 0

(2) for0<p1 <1,pi <0 (i=2,...,n), the reverse of (2.18) is obtained.
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Proof. (1) Forp; >1 (i=1,...,n), by Holder’s inequality (cf. [14] ) and (2.4), it follows that
n-1 qn
U 1kk(x1,...,xn>1‘[fi<xi>dx1---dxn_l]
RI” i=1

1/pi
= J‘Rn_lkl(xll ,xn)H[ d-bi-p) I x?j_l] fi(xi)
: j

-i(j7)

qn

X 1/pn
a=1) (1=pa) T A1
><|:x,(1 " p)Hx].] ] dxi---dxn_
j=1

qn/ pi
W (1-p) T 11
SI 1k/\(x1/ . rxn)H[ ( H x]'] ]
R

G (2.19)
X fiqn (xi)dxy -+ - dxy
qn-1
{f Ka(xn, o xn)x 1“”")1‘[ Ul - dxnl}
R+
= (k)% a0 f ki (x1, -, Xn)
R
n-1 n qn/Pl
Xi—1) (1-p; Ai-1 "
« [x( ) 1T = ] £ () dxs - dxn,
i=1 j=1(j#i)
J < (k)t)l/p" f J k)l(xln--/xn)
0 JR"!
B Gn/pi 1/ qu
% [x(l 1)(1 px H x;‘j—ll flqn (xi)dxl "‘dxn_ldxn
i=1 j=1(j #i)
(2.20)

= (k)7 f (f kuxl,...,xn)xﬁ"*dxn)
R \Jo

1/%

qn/pi
n-1 n-1
Ai=1) (1-p; Ai—1 "
<[] |:xi ) 1T = ] £ (i) doey - s

i=1 j=1(j#i)
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For n > 3, by Holder’s inequality again, it follows that

n-1 ©
J< (kk)l/”" f <f k/\(xl,...,xn)xﬁ”_ldxn>
i=1 Y RPN O

qn/pi
-1
W) (1-p) T N1 p,
X; (1-11) || x].’ ff(xi)dxl‘-'dxn_ll

7=1(i #1)
n-1 S
= (kA)l/Pnir_i[{J‘O [J‘Rzlk)t(xl,. . -/xn)

1/p1

/\i -1 ,'1*)1,‘ -1 i

X X; H x].’ dx1-~dx,-1dx,-+1-~-dxn]xf( ) fl.p(xi)dx,}
j=1(j #1)

1/qn

n-1

© 1/pi
— (kl)l/an{J‘ wl(xl)xpz(l Ai)- 1fp:(x1 dxl} .
0

i=1
(2.21)

Then by (2.4), we have (2.18) (note that for n = 2, we do not use Holder’s inequality again).
(2) For0<p; <1,pi <0 (i =2,...,n), by the reverse Holder’s inequality and the same way,
we obtain the reverses of (2.18). O

3. Main Results and Applications

As for the assumption of Lemma 2.6, setting ¢;(x) := x"i(-)" (x € (0,00);i = 1,...,n), then
we find that 4’1/ - pn)( ) = xTnt If p; > 1(i = 1,...,n), then define the following real function
spaces:

pi * pi r .
L¢’i(0,oo) = {f;||f||pi,¢i ={IO $i(x)| f ()| ‘dx} <oo} (i=1,...,n),
3.1)

n-1

[1850,00) = {(fi,-s far) fi € Ly (0,00),i=1,...,n =1},

i=1

and a multiple Hilbert-type integral operator T : [T, 1Lp’ (0,00) — L;’; s as follows: for

f=fr.-, fa1) €IS 1L'D‘(O ),

n—-1
(Tf)(xn) —f ky(xq, .. /xn)E[fi(xi)dxl"'dxn—lr xn € (0, 00). (3.2)



Journal of Inequalities and Applications 9

Then by (2.18), it follows that Tf € L;m s I is bounded, ||Tf|| P/ < ki JTH5 ||f,||p! b
and ||T|| € ky, where

- ITAIl,, g
= sup — b (3.3)
FEIT L O0) (fi#0i1,n-1) TTima ||f1||,,, 4,‘

Define the formal inner product of T(f, ..., fn-1) and f, as

O R OR ILCTRES) y IS (64)

+

Theorem 3.1. Suppose that n € N\ {1},p1 € Ry \ {1}, 25, (1/pi) = 1,1/gn = 1 = 1/pn,
then ky(x1,...,x,) > 0 is a measurable function of —\-degree in R, and for any (A4,...,1,) € R",
it satisfiesy,;, Ai = A and

n-1
k), = f kl(ul,...,un_l,l)Hu?j_ldul---dun_1 > 0. (35)
R+ ].:1

If fi(>0) € L’;‘;(O, o), Ifll,,, >0G=1,...,n), then (1) for pi>1 (i =1,...,n),|[T|| = ky and the
following equivalent inequalities are obtained:

”T(fl’ . fﬂ 1)” 1/(1—Pn) < kAHIIf’||p, d: (36)
(T(fr,---s fn1), fn) < kA]:[||fi||pi,¢i, (3.7)

where the constant factor k, is the best possible; (2) for 0 < p1 < 1,p; <0 (i = 2,...,n), using the
formal symbols of the case in p; > 1 (i = 1,...,n), the equivalent reverses of (3.6) and (3.7) with the
best constant factor are given.

Proof. (1) Forp; >1 (i=1,...,n),if (2.18) takes the form of equality, then for n > 3 in (2.21),
there exist constants C; and Cj (i # k) such that they are not all zero and

n-1
A T iy
j=1(j#i)
(3.8)

-1
WD(p) T AT .
= Cix, " (=p1) | | x;! P¢(xx) a.e.in R%,

j=1(j #k)

viz. Cx’”’(1 )L)fp‘ ) = Cix pkl he) P(xx) = C ae. in R". Assuming that C; > 0, then
f‘(l )= 1f.p‘ (x;) = C/(Cix;), Wthh contradicts ||f||pl_¢' > 0. (Note that for n = 2, we only

1
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consider (2.19) for f (xx) = 1in the above). Hence we have (3.6). By Holder’s inequality, it
follows that

o) n-1
(Tf, fn) = fo <xﬁ"_1/q"J‘Rn1k1(x1,...,xn)1:[fi(xi)dx1 "'dxn—1>

(3.9)
1/ n_)tn
X <xn 4 fn(xn))dx‘rl < “T(fl" - 'f"—l) Gupy f" Pupn”
and then by (3.6), we have (3.7). Assuming that (3.7) is valid, setting
1 n-1 gn—1
Fu(x) = x nl U 1k1(x1,.--,xn)l_[fi(xi)dx1 "'dxn—l] , (3.10)
R} i=1

1/ n
then J = { (A= g )dxn} " By (2.18), it follows that J < co. If J = 0, then (3.6) is

naturally Vahd. Assuming that 0 < J < oo, by (3.7), it follows that

* n 1_)tn -1 n .
J A e = ) = (T f2) < kLTl 0
i=1
(3.11)

© pr(1=A)-1 1/Gn n-1
{[ o e} =7 < T TIAN 40
0 i=1

and then (3.6) is valid, which is equivalent to (3.7).

For ¢ > 0 small enough, setting ﬁ(x)as follows: ﬁ-(x) = 0,x € (0,1); fi(x) =
xhi=e/Pi=l x € [1,00) (i = 1,...,n), if there exists k < ky, such that (3.7) is still valid as we
replace kj by k, then in particular, by Lemma 2.5, we have that

ko) =L =e(T(fir--., fr), fn><skH“fz||pl =K (3.12)

and k) < k (¢ — 0%). Hence k = k, is the best value of (3.7). We conform that the constant
factor k, in (3.6) is the best possible; otherwise, we can get a contradiction by (3.9) that the
constant factor in (3.7) is not the best possible. Therefore ||T|| = k

(2) For0 < p; < 1,pi <0 (i =2,...,n), by using the reverse Holder’s inequality and
the same way, we have the equivalent reverses of (3.6) and (3.7) with the same best constant
factor. O
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Example 3.2. For A > 0,1 = (\/r;) (i=1,...,n), 35, 1/r) =1L ky(x1,...,x0) =1/ (324 xi)A,
we obtain ky = (1/T(A)TTT(A/7) (cf. [7, (9.1.19)]. By Theorem 3.1, it follows that ||T|| =
ky = (1/T()ITLT(A/7i), and then by (3.7), we find that

F;(x;)d
jrw(zzlx» Hl e

1 & A C (=)~ 1 1/pi
< —— I’(—){f X VU FP N (xg)dx; .
roy LITGe ()

Setting Fi(x;) = x/" fi(x;) and \; = \/ri=f/n(i = 1,...,n) in (3.13), we obtain 3, \; =
A = p, minygi<n{Ai} > —p/n and

(3.13)

(X xz') i1 (3.14)

It is obvious that (3.13) and (3.14) are equivalent in which the constant factors are all the best

possible. Hence for ky_p(x1,...,x,) = (\"/H?:1x1> /(SE 1xl) (X > 0, minycicn {Ni} > —p/n),
we can show that ||T|| = ky_p = (1/T(A) [T, T (X + B/n).

Example 3.3. For A > 0\, = AMri (i = 1,...n),25,0/ri) = Lki(xi,...,xs) =
1/ (maxi<i<n{x;})*, we obtain ky = (/A" DTTE, i (cf. [7, (9.1.24)]. By Theorem 3.1, it follows
that ||T|| = ky = (1/A" )%, 7, and then by (3.7), we find that

1 n
[ T TRGodx -,

R} (Maxici<n{Xi})" =1 (3.15)

1 . pi(1-1/1)=1 1 p; Vi
< = HT,' X; F; ‘(xi)dxi .
0

i=1

Setting Fi(x;) = x'/" fi(x;) and A; = \/ri—f/n(i = 1,...,n) in (3.15), we obtain 3", \; =
A - ﬂ, minlsis,l{)»i} > —ﬁ/ﬂ and

n . ﬁ n
f <— Mnfi(xi)dxl“'dx

R: (MaXi<i<n {Xi})” i1 (3.16)

n 1 pi-1)-1 ; p, 1p
<)‘Hx+ﬁ/n{f x! fi (x)dx,} )
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p

Hence for ky _p(x1,...,x,) = ( H?zlxi> /(rr1ax15i5n{xi})A (A > 0, mini<i<p {Ai} > =p/n), we

can show that ||T|| = ki = ATTiL; (1/ (A + B/n)).

Example 3.4. For A > 0,4 = =M1, > Q/ri) = 1G = 1,...,n),k(x1,...,x,) =
(ming<j<n {xi} )A, by mathematical induction, we can show that

k= . 1 )erl —)L/rj—ld d _ H?:ﬂ‘i
-\ = - (min{uy, ..., upq,1}) 1_1[uj Up---duy1 = = (3.17)
+ ]=
In fact, for n = 2, we obtain
1 [oe] 1
k)= f ui‘/rz_ldul +J’ uI)'/rl_ldul = N (3.18)
0 1
Assuming that for n(> 2) (3.17) is valid, then for n + 1, it follows that
B [ (. A —A/r-1
k_y = Hu. (min{uy, ..., u,, 1)) uy dui|duy -+ - du,
Rf’l j=2 ] 0
n N min{uy,..., 1,1}
= f Hu;A/r’ ! f w1 duy
Ry 0
+f (min{u, ..., 1, 1)) uy " dug |duy - du, (3.19)
min{uy,...,u,,1}
= —r12 j (min{u u 1}))‘(1_1/”)f-[ufm_l/rl)/(1_1/rl)rj_ldu ~du
,/\,(rl _1) qu 2y Un, ]=2 I 2 n

rZ 1 n+l 1 1 n+1
1
= | | 1-— - _| | .
./\(7"1 ( r >rl A i=1 i

“Da-1/rm)]" s

Then by mathematical induction, (3.17) is valid for n € N \ {1}.
By Theorem 3.1, it follows that ||T|| = k_y = (1/A")[%,r;, and by (3.7), we find that

Aon
J'Rﬂ (Psilgrrlz{xio E[Fi(xi)dxl-..dxn

1 P /1)1 1pi
< = Hri{j x; ' Fip‘(x,-)dxi} )
0

i=1

(3.20)
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Setting Fi(x;) = xi_ﬂ/nfi(xi) and \; = -A/r; + p/n (i = 1,...,n) in (3.20), we obtain
St di = f— A, maxici<n {Ai} < p/nand

(ming<jcn {xi } ))L -
== T [filx)dax - dx,
,[Ra ( H:-l:lxi>p i=1

n 1 © ()1 o, 1/pi
A Tgmop ], 4" 50 s}
i=1 i

(3.21)

B
Hence for kg_y(x1,...,x,) = (minlsign{xi})k/( ' H?:lxl) (A > 0, maxi<i<n {Ai} < p/n), we can
show that ||T|| = kg_y = AJTiL, (1/(B/n - ).
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