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1. Introduction and Main Results

Since the space Lp(x) and W1,p(x) were thoroughly studied by Kováčik and Rákosnı́k [1],
variable exponent Sobolev spaces have been used in the last decades to model various
phenomena. In [2], Růžička presented the mathematical theory for the application of variable
exponent spaces in electro-rheological fluids.

In recent years, the differential equations and variational problems with p(x)-growth
conditions have been studied extensively; see for example [3–6]. In [7], De Figueiredo and
Ding discussed the multiple solutions for a kind of elliptic systems on a smooth bounded
domain. Motivated by their work, we will consider the following sort of p(x)-Laplacian
systems with “concave and convex nonlinearity”:

−div
(∣∣∇u

∣∣p(x)−2∇u
)
+ |u|p(x)−2u = Hu(x, u, v), x ∈ Ω,

−div
(∣∣∇v

∣∣p(x)−2∇v
)
+ |v|p(x)−2v = −Hv(x, u, v), x ∈ Ω,

u(x) = v(x) = 0, x ∈ ∂Ω,

(1.1)

where Ω ⊂ R
N is a bounded domain, p is continuous on Ω and satisfies 1 < p− ≤ p(x) ≤ p+ <

N, and H : Ω × R
2 → R is a C1 function. In this paper, we are mainly interested in the class
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of Hamiltonians H such that

H(x, u, v) =
|u|α(x)
α(x)

+
|v|β(x)
β(x)

+ F(x, u, v), (1.2)

where 1 < α− ≤ α(x) ≤ p(x), p(x) � β(x) � p∗(x).Here we denote

p+ = sup
x∈Ω

p(x), p− = inf
x∈Ω

p(x), (1.3)

and denote by p(x) � β(x) the fact that infx∈Ω(β(x) − p(x)) > 0. Throughout this paper,
F(x, u, v) satisfies the following conditions:

(H1) F ∈ C1(Ω × R
2,R). Writing z = (u, v), F(x, 0) ≡ 0, Fz(x, 0) ≡ 0;

(H2) there exist p(x) < q1(x) � p∗(x), 1 < q2− ≤ q2(x) < p(x) such that

∣∣Fu(x, u, v)
∣∣, ∣∣Fv(x, u, v)

∣∣ ≤ a0
(
1 + |u|q1(x)−1 + |v|q2(x)−1), (1.4)

where a0 is positive constant;
(H3) there exist μ(x), ν(x) ∈ C1(Ω) with p(x) � μ(x) � p∗(x), 1 < ν− ≤ ν(x) ≤ p(x),

and R0 > 0 such that

1
μ(x)

Fu(x, u, v)u +
1

ν(x)
Fv(x, u, v)v ≥ F(x, u, v) > 0, (1.5)

when |(u, v)| ≥ R0.
As [8, Lemma 1.1], from assumption (H3), there exist b0, b1 > 0 such that

F(x, u, v) ≥ b0
(|u|μ(x) + |v|ν(x)) − b1, (1.6)

for any (x, u, v) ∈ Ω × R
2.We can also get that there exists b2 > 0 such that

1
μ(x)

Fu(x, u, v)u +
1

ν(x)
Fv(x, u, v)v + b2 ≥ F(x, u, v), (1.7)

for any (x, u, v) ∈ Ω × R
2. In this paper, we will prove the following result.

Theorem 1.1. Assume that hypotheses (H1)–(H3) are fulfilled. If F(x, z) is even in z, then problem
(1.1) has a sequence of solutions {zn} such that

I
(
zn

)
=
∫

Ω

( ∣∣∇un

∣∣p(x) + ∣∣un

∣∣p(x)
p(x)

−
∣∣∇vn

∣∣p(x) + ∣∣vn

∣∣p(x)
p(x)

−H
(
x, zn

))
dx −→ ∞, (1.8)

as n → ∞.
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2. Preliminaries

First we recall some basic properties of variable exponent spaces Lp(x)(Ω) and variable
exponent Sobolev spaces W1,p(x)(Ω), where Ω ⊂ R

N is a domain. For a deeper treatment
on these spaces, we refer to [1, 9–11].

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞) and

|u|p(x) = inf
{
λ > 0 :

∫

Ω

∣∣∣∣
u

λ

∣∣∣∣
p(x)

dx ≤ 1
}
. (2.1)

The variable exponent space Lp(x)(Ω) is the class of all functions u such that
∫
Ω|u(x)|p(x)dx <

∞. Under the assumption that p+ < ∞, Lp(x)(Ω) is a Banach space equipped with the norm
(2.1).

The variable exponent Sobolev space W1,p(x)(Ω) is the class of all functions u ∈
Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω) and it can be equipped with the norm

‖u‖1,p(x) = |u|p(x) + |∇u|p(x). (2.2)

For u ∈ W1,p(x)(Ω), if we define

|||u||| = inf

{
λ > 0 :

∫

Ω

|u|p(x) + |∇u|p(x)
λp(x)

dx ≤ 1

}
, (2.3)

then |||u||| and ‖u‖1,p(x) are equivalent norms on W1,p(x)(Ω).

By W
1,p(x)
0 (Ω) we denote the subspace of W1,p(x)(Ω) which is the closure of C∞

0 (Ω)

with respect to the norm (2.2) and denote the dual space of W1,p(x)
0 (Ω) by W−1,p′(x)(Ω). We

know that if Ω ⊂ R
N is a bounded domain, ||u||1,p(x) and |∇u|p(x) are equivalent norms on

W
1,p(x)
0 (Ω).

Under the condition 1 < p− ≤ p+ < ∞,W
1,p(x)
0 (Ω) is a separable and reflexive Banach

space, then there exist {en}+∞n=1 ⊂ W
1,p(x)
0 (Ω) and {fm}+∞m=1 ⊂ W−1,p′(x)(Ω) such that

fm(en) =

{
1 if n = m,

0 if n/=m,

W
1,p(x)
0 (Ω) = span

{
ei : i = 1, . . . , n, . . .

}
,

W−1,p′(x)(Ω) = span
{
fj : j = 1, . . . , m, . . .

}
.

(2.4)

In the following, we will denote that E = E1 ⊕ E2, where

E1 = {0} ×W
1,p(x)
0 (Ω), E2 = W

1,p(x)
0 (Ω) × {0}. (2.5)
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For any z ∈ E, define the norm ||z|| = ||(u, v)|| = |||u||| + |||v|||. For any n ∈ N, set e1n =
(0, en), e2n = (en, 0) and

Xn = span
{
e11, . . . , e

1
n

} ⊕ E2, Xn = E1 ⊕ span
{
e21, . . . , e

2
n

}
, (2.6)

denote the complement of Xn in E by (Xn)⊥ = span{e2n+1, e2n+2, . . .}.

3. The Proof of Theorem 1.1

Definition 3.1. We say that z0 = (u0, v0) ∈ E is a weak solution of problem (1.1), that is,

∫

Ω

(∣∣∇u0
∣∣p(x)−2∇u0∇u +

∣∣u0
∣∣p(x)−2u0u − ∣∣∇v0

∣∣p(x)−2∇v0∇v

− ∣∣v0
∣∣p(x)−2v0v −Hu

(
x, u0, v0

)
u −Hv

(
x, u0, v0

)
v
)
dx = 0, ∀z ∈ E.

(3.1)

In this section, we denote that Vm = span{ei : i = 1, . . . , m}, for any m ∈ N, and ci is
positive constant, for any i = 0, 1, 2 . . . .

Lemma 3.2. Any (PS) sequence {zn} ⊂ E, that is, |I(zn)| ≤ c and I ′(zn) → 0, as n → ∞, is
bounded.

Proof. Let s > 0 be sufficiently small such that l1 = infx∈Ω( 1/p(x) − (1 + s)/μ(x)) > 0, l2 =
infx∈Ω((1 + s)/ν(x) − 1/p(x)) > 0, l3 = supx∈Ω(( 1/α(x) − (1 + s))/μ(x)) > 0, l4 = supx∈Ω((1 +
s)/ν(x) − 1/ β(x) ) > 0.

Let {zn} ⊂ E be such that |I(zn)| ≤ c and I ′(zn) → 0, as n → ∞.We get

I
(
zn

) −
〈
I ′
(
zn

)
,

(
1 + s

μ(x)
un,

1 + s

ν(x)
vn

)〉

=
∫

Ω

((
1

p(x)
− 1 + s

μ(x)

)(∣∣∇un

∣∣p(x) + ∣∣un

∣∣p(x)) +
(1 + s)un

μ(x)2
∣∣∇un

∣∣p(x)−2∇un∇μ

+
(

1 + s

ν(x)
− 1

p(x)

)(∣∣∇vn

∣∣p(x) + ∣∣vn

∣∣p(x)) − (1 + s)vn

ν(x)2
∣∣∇vn

∣∣p(x)−2∇vn∇ν

+
1 + s

μ(x)
Fu

(
x, un, vn

)
un +

1 + s

ν(x)
Fv

(
x, un, vn

)
vn − F

(
x, un, vn

)

+
(

1 + s

μ(x)
− 1

α(x)

)∣∣un

∣∣α(x) +
(

1 + s

ν(x)
− 1

β(x)

)∣∣vn

∣∣β(x)
)
dx

≥
∫

Ω

(
l1
∣∣∇un

∣∣p(x) + l2
∣∣∇vn

∣∣p(x) + sF
(
x, un, vn

) − l3
∣∣un

∣∣α(x) + l4
∣∣vn

∣∣β(x)

+
(1 + s)un

μ(x)2
∣∣∇un

∣∣p(x)−2∇un∇μ − (1 + s)vn

ν(x)2
∣∣∇vn

∣∣p(x)−2∇vn∇ν − (1 + s)b2
)
dx.

(3.2)
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As μ(x), ν(x) ∈ C1(Ω), by the Young inequality, we can get that for any ε1, ε2 ∈ (0, 1),

∣∣∣∣
(1 + s)un

μ(x)2
∣∣∇un

∣∣p(x)−2∇un∇μ

∣∣∣∣ ≤ c0
∣∣∇un

∣∣p(x)−1∣∣un

∣∣

≤ c0

(
ε1(p(x) − 1)

p(x)
∣∣∇un

∣∣p(x) + ε
1−p(x)
1

p(x)
∣∣un

∣∣p(x)
)

≤ c0
(
ε1
∣∣∇un

∣∣p(x) + ε
1−p+
1

∣∣un

∣∣p(x)),
∣∣∣∣
(1 + s)vn

ν(x)2
∣∣∇vn

∣∣p(x)−2∇vn∇ν

∣∣∣∣ ≤ c1
(
ε2
∣∣∇vn

∣∣p(x) + ε
1−p+
2

∣∣vn

∣∣p(x)).

(3.3)

Let ε1, ε2 be sufficiently small such that

c0ε1 ≤ l1
2
, c1ε2 ≤ l2

2
, (3.4)

then

I
(
zn

) −
〈
I ′
(
zn

)
,

(
1 + s

μ(x)
un,

1 + s

ν(x)
vn

)〉

≥
∫

Ω

(
l1
2
∣∣∇un

∣∣p(x) + l2
2
∣∣∇vn

∣∣p(x) + s
(
b0
∣∣un

∣∣μ(x) + b0
∣∣vn

∣∣ν(x) − b1
)

−
(
l3
∣∣un

∣∣α(x) + c0ε
1−p+
1

∣∣un

∣∣p(x)) +
(
l4
∣∣vn

∣∣β(x) − c1ε
1−p+
2

∣∣vn

∣∣p(x)) − (1 + s)b2
)
dx.

(3.5)

Note that α(x) ≤ p(x) � μ(x), p(x) � β(x), by the Young inequality, for any ε3, ε4, ε5 ∈ (0, 1),
we get

∣∣un

∣∣α(x) ≤ ε3α(x)
∣∣un

∣∣μ(x)
μ(x)

+
μ(x) − α(x)

μ(x)
ε
α(x)/(α(x)−μ(x))
3

≤ ε3
∣∣un

∣∣μ(x) + ε
−α+/(μ−α)−
3 ,

∣∣un

∣∣p(x) ≤ ε4p(x)
μ(x)

∣∣un

∣∣μ(x) + μ(x) − p(x)
μ(x)

ε
p(x)/(p(x)−μ(x))
4

≤ ε4
∣∣un

∣∣μ(x) + ε
−p+/(μ−p)−
4 ,

∣∣vn

∣∣p(x) ≤ ε5p(x)
β(x)

∣∣vn

∣∣β(x) + β(x) − p(x)
β(x)

ε
p(x)/ (p(x)−β(x))
5

≤ ε5
∣∣vn

∣∣β(x) + ε
−p+/ (β−p)−
5 .

(3.6)
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Let ε3, ε4, ε5 be sufficiently small such that l3ε3 + c0ε
1−p+
1 ε4 ≤ sb0 and c1ε

1−p+
2 ε5 ≤ l4, then we

get

I
(
zn

) −
〈
I ′
(
zn

)
,

(
1 + s

μ(x)
un,

1 + s

ν(x)
vn

)〉
≥
∫

Ω

(
l1
2
∣∣∇un

∣∣p(x) + l2
2
∣∣∇vn

∣∣p(x) − c2

)
dx. (3.7)

Note that

∣∣∣∣
〈
I ′
(
zn

)
,

(
1 + s

μ(x)
un,

1 + s

ν(x)
vn

)〉∣∣∣∣ ≤
∣∣∣∣I ′(zn)

∣∣∣∣ ·
(∣∣∣∣

∣∣∣∣
∣∣∣∣
1 + s

μ(x)
un

∣∣∣∣
∣∣∣∣
∣∣∣∣ +

∣∣∣∣
∣∣∣∣
∣∣∣∣
1 + s

ν(x)
vn

∣∣∣∣
∣∣∣∣
∣∣∣∣
)

≤ c3
∣∣∣∣I ′(zn

)∣∣∣∣ ·
(∣∣∣∣∇

(
1 + s

μ(x)
un

)∣∣∣∣
p(x)

+
∣∣∣∣∇

(
1 + s

ν(x)
vn

)∣∣∣∣
p(x)

)

≤ c4
∣∣∣∣I ′(zn

)∣∣∣∣ ·
(∣∣∇un

∣∣
p(x) +

∣∣∇vn

∣∣
p(x)

)
,

(3.8)

and for n ∈ N being large enough, we have

c4
∣∣∣∣I ′(zn

)∣∣∣∣ ≤ min
{

l1
4
,
l2
4

}
. (3.9)

It is easy to know that if |∇un|p(x) ≥ 1 and |∇vn|p(x) ≥ 1,

∣∣∇un

∣∣
p(x) ≤

∫

Ω

∣∣∇un

∣∣p(x)dx, ∣∣∇vn

∣∣
p(x) ≤

∫

Ω

∣∣∇vn

∣∣p(x)dx, (3.10)

thus we get

I
(
zn

) ≥
∫

Ω

(
l1
4
∣∣∇un

∣∣p(x) + l2
4
∣∣∇vn

∣∣p(x) − c2

)
dx, (3.11)

then |∇un|p(x), |∇vn|p(x) are bounded. Similarly, if |∇un|p(x) < 1 or |∇vn|p(x) < 1, we can also
get that |∇un|p(x), |∇vn|p(x) are bounded. It is immediate to get that {zn} is bounded in E.

Lemma 3.3. Any (PS) sequence contains a convergent subsequence.

Proof. Let {zn} ⊂ E be a (PS) sequence. By Lemma 3.2, we obtain that {zn} is bounded in E.
As E is reflexive, passing to a subsequence, still denoted by {zn}, we may assume that there
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exists z ∈ E such that zn → z weakly in E. Then we can get un → u weakly in W
1,p(x)
0 (Ω).

Note that

〈
I ′
(
zn

) − I ′(z),
(
un − u, 0

)〉
=
∫

Ω

((∣∣∇un

∣∣p(x)−2∇un −
∣∣∇u

∣∣p(x)−2∇u
)
∇(

un − u
)

+
(∣∣un

∣∣p(x)−2un − |u|p(x)−2u
)(

un − u
)

−
(∣∣un

∣∣α(x)−2un − |u|α(x)−2u
)(

un − u
)

− (
Fu

(
x, un, vn

) − Fu(x, u, v)
)(
un − u

))
dx.

(3.12)

It is easy to get that

〈
I ′
(
zn

) − I ′(z),
(
un − u, 0

)〉 −→ 0,
∫

Ω
Fu(x, u, v)

(
un − u

)
dx −→ 0,

(3.13)

and un → u in Lp(x)(Ω), un → u in Lα(x)(Ω), as n → ∞. Then

∫

Ω

(∣∣un

∣∣p(x)−2un − |u|p(x)−2u
)(

un − u
)
dx −→ 0,

∫

Ω

(∣∣un

∣∣α(x)−2un − |u|α(x)−2u
)(

un − u
)
dx −→ 0,

(3.14)

as n → ∞. By condition (H2), we obtain

∫

Ω

∣∣Fu

(
x, un, vn

)(
un − u

)∣∣dx

≤
∫

Ω
a0

(
1 +

∣∣un

∣∣q1(x)−1 + ∣∣vn

∣∣q2(x)−1)∣∣un − u
∣∣dx

≤ a1

(∣∣un − u
∣∣
1 +

∣∣∣
∣∣un

∣∣q1(x)−1∣∣∣
q′1(x)

· ∣∣un − u
∣∣
q1(x)

+
∣∣∣
∣∣vn

∣∣q2(x)−1∣∣∣
q′2(x)

· ∣∣un − u
∣∣
q2(x)

)
.

(3.15)

It is immediate to get that |un − u|1 → 0, ||un|q1(x)−1|q′1(x), ||vn|q2(x)−1|q′2(x) are bounded and
|un − u|q1(x) → 0, |un − u|q2(x) → 0, then we get

∫

Ω
Fu

(
x, un, vn

)(
un − u

)
dx −→ 0,

∫

Ω

(∣∣∇un

∣∣p(x)−2∇un −
∣∣∇u

∣∣p(x)−2∇u
)
∇(

un − u
)
dx −→ 0,

(3.16)

as n → ∞. Similar to [3, 4, Theorem 3.1], we divide Ω into two parts:

Ω1 = {x ∈ Ω : p(x) < 2}, Ω2 = {x ∈ Ω : p(x) ≥ 2}. (3.17)
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On Ω1, we have

∫

Ω1

∣∣∇un − ∇u
∣∣p(x)dx

≤ c5

∫

Ω1

((∣∣∇un

∣∣p(x)−2∇un −
∣∣∇u

∣∣p(x)−2∇u
)(∇un − ∇u

))p(x)/ 2

×
(∣∣∇un

∣∣p(x) + ∣∣∇u
∣∣p(x))(2−p(x))/2

dx

≤ c6
∣∣∣
((∣∣∇un

∣∣p(x)−2∇un −
∣∣∇u

∣∣p(x)−2∇u
)(∇un − ∇u

))p(x)/ 2∣∣∣
2/p(x) ,Ω1

×
∣∣∣
(∣∣∇un

∣∣p(x) + ∣∣∇u
∣∣p(x))(2−p(x))/2∣∣∣

2/(2−p(x)),Ω1
,

(3.18)

then
∫
Ω1
|∇un − ∇u|p(x)dx → 0. On Ω2,we have

∫

Ω2

|∇un − ∇u|p(x)dx ≤ c7

∫

Ω2

(|∇un|p(x)−2∇un − |∇u|p(x)−2∇u)(∇un − ∇u)dx −→ 0. (3.19)

Thus we get
∫
Ω|∇un − ∇u|p(x)dx → 0. Then un → u in W

1,p(x)
0 (Ω), as n → ∞. Similarly,

vn → v inW
1,p(x)
0 (Ω).

Lemma 3.4. There exists Rm > 0 such that I(z) ≤ 0 for all z ∈ Xm with ||z|| ≥ Rm.

Proof. For any z = (u, v) ∈ Xm, u ∈ Vm,we have

I(z) ≤
∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)
p(x)

−
∣∣∇v

∣∣p(x) + |v|p(x)
p(x)

− F(x, u, v)

)
dx

≤
∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)

p−
−

∣∣∇v
∣∣p(x) + |v|p(x)

p+
− b0|u|μ(x) + b1

)
dx.

(3.20)

In the following, we will consider
∫
Ω((|∇u|p(x) + |u|p(x))/p− − b0|u|μ(x))dx.

(i) If |||u||| ≤ 1. We have

∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)

p−
− b0|u|μ(x)

)
dx ≤ 1

p−
. (3.21)

(ii) If |||u||| > 1. Note that μ, p ∈ C(Ω), p(x) � μ(x). For any x ∈ Ω, there exists Q(x)
which is an open subset of Ω such that

px = sup
y∈Q(x)

p(y) < μx = inf
y∈Q(x)

μ(y), (3.22)
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then {Q(x)}x∈Ω is an open covering of Ω. As Ω is compact, we can pick a finite subcovering
{Q(x)}ni=1 for Ω. Thus there exists a sequence of open set {Ωi}ni=1 such that Ω =

⋃n
i=1Ωi and

pi+ = sup
x∈Ωi

p(x) < μi− = inf
x∈Ωi

μ(x), (3.23)

for i = 1, . . . , n. Denote that ri = |||u|||Ωi
, then we have

∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)

p−
− b0|u|μ(x)

)
dx

=
n∑
i=1

∫

Ωi

( ∣∣∇u
∣∣p(x) + |u|p(x)

p−
− b0|u|μ(x)

)
dx

=
∑
ri>1

∫

Ωi

( ∣∣∇u
∣∣p(x) + |u|p(x)

p−
− b0|u|μ(x)

)
dx

+
∑
ri≤1

∫

Ωi

( ∣∣∇u
∣∣p(x) + |u|p(x)

p−
− b0|u|μ(x)

)
dx

≤
∑
ri>1

( |||u|||pi+Ωi

p−
− b0kmi |||u|||μi−

Ωi

)
+

n

p−
,

(3.24)

where kmi = infu∈Vm|Ωi
, |||u|||Ωi

=1
∫
Ωi
|u|μ(x)dx. As Vm|Ωi is a finite dimensional space, we have

kmi > 0, for i = 1, . . . , n.
We denote by si the maximum of polynomial tpi+ /p− − b0kmit

μi− on [0,∞), for i =
1, . . . , n. Then there exists t0 > 1 such that

tpi+

p−
− b0kmit

μi− + c8 ≤ 0, (3.25)

for t > t0 and i = 1, . . . , n,where c8 =
∑n

i=1si + n/p− + b1 measΩ.

Let Rm = max{2, 2(p+(c8 + 1/p− ))
1/p− , 2nt0}. If ||z|| ≥ Rm, we get |||u||| ≥ Rm/2 or

|||v||| ≥ Rm/2.

(i) If |||u||| ≥ Rm/2, |||u||| ≥ nt0 > 1. It is easy to verify that there exists at least i0 such
that |||u|||Ωi0

≥ t0 > 1, thus

I(z) ≤
|||u|||pi0+Ωi0

p−
− b0kmi0

|||u|||μi0−
Ωi0

+ c8 ≤ 0. (3.26)
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(ii) If |||v||| ≥ Rm/2, |||v||| ≥ (p+(c8 + 1/p−))
1/p− .We obtain

I(z) ≤ c8 +
1
p−

− |||v|||p−
p+

≤ 0. (3.27)

Now we get the result.

Lemma 3.5. There exist rm > 0 and am → ∞ (m → ∞) such that I(z) ≥ am, for any z ∈ (Xm−1)⊥

with ||z|| = rm.

Proof. For z = (u, v) ∈ (Xm−1)⊥, v = 0. By condition (H2), there exists c9 > 0 such that

∣∣F(x, u, 0)∣∣ ≤ c9|u|q1(x) + c9. (3.28)

Let ||z|| ≥ 1, we get

I(z) =
∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)
p(x)

− |u|α(x)
α(x)

− F(x, u, 0)

)
dx

≥
∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)

p+
− |u|α(x)

α−
− c9|u|q1(x) − c9

)
dx

≥
∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)

p+
− c10|u|q1(x)

)
dx − c11.

(3.29)

Denote that

θm = sup
u∈V ⊥

m

|||u|||≤1

∫

Ω
|u|q1(x)dx, (3.30)

thus

I(z) ≥ |||u|||p−
p+

− c10θm‖u‖q1+ − c11. (3.31)

Let

rm = max
{
1,
(

p−
c10p+q1+θm

)1/(q1+−p−)
,

(
2c11p+q1+
q1+ − p−

)1/p−}
. (3.32)
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By [5, Lemma 3.3], we get that θm → 0, asm → ∞, then

I(z) ≥ r
p−
m

(
q1+ − p−

)

p+q1+
− c11

� am,

(3.33)

whenm is sufficiently large and ||z|| = rm. It is easy to get that am → ∞, as m → ∞.

Lemma 3.6. I is bounded from above on any bounded set of Xm.

Proof. For z = (u, v) ∈ Xm. We get

I(z) ≤
∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)
p(x)

− F(x, u, v)

)
dx. (3.34)

By conditions (H2) and (H3), we know that if |(u, v)| ≥ R0, F(x, u, v) ≥ 0 and if |(u, v)| <
R0 , |F(x, u, v)| ≤ c0. Then

I(z) ≤
∫

Ω

( ∣∣∇u
∣∣p(x) + |u|p(x)
p(x)

+ c12

)
dx, (3.35)

and it is easy to get the result.

Proof of Theorem 1.1. By Lemmas 3.2–3.6 above, and [7, Proposition 2.1 and Remark 2.1], we
know that the functional I has a sequence of critical values ck → ∞, as k → ∞. Now we
complete the proof.
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[1] O. Kováčik and J. Rákosnı́k, “On spaces Lp(x) and Wk,p(x),” Czechoslovak Mathematical Journal, vol.
41(116), no. 4, pp. 592–618, 1991.
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