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1. Introduction

In the literature, very few researchers considered approximating Brownian motion using
Bernstein polynomials. Kowalski [1] is the first one who uses this method. In fact, if we
restrict Brownian motion on [0, 1], it is a real process with finite second order moment. In this
paper, we will approximate all of the complex second order moment processes on [a, b] by
Bernstein polynomials and other classical operators by [2]. Therefore the research obtained
generalize that of [1].

On the other hand, it is well known that the sampling theorem is one of the most
powerful tools in signal analysis. It says that to recover a function in certain function spaces,
it suffices to know the values of the function on a sequence of points.

Due to physical reasons, for example, the inertia of the measurement apparatus, the
measured sampled values obtained in practice may not be values of f(t) precisely at times
tk (k ∈ Z), but only local average of f(t) near tk. Specifically, the measured sampled values
are

〈
f, uk

〉
=
∫
f(t)uk(t)dt (1.1)
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for some collection of averaging functions uk(t), k ∈ Z, which satisfy the following properties:

supp uk ⊂
[
tk − δ

2
, tk +

δ

2

]
, uk(t) ≥ 0,

∫
uk(t)dt = 1. (1.2)

Gröchenig [3] proved that every band-limited signal can be reconstructed exactly by local
averages providing tk+1 − tk ≤ δ < 1/

√
2Ω, where Ω is the maximal frequency of the signal

f(t). Recently, several average sampling theorems have been established, for example, see
[4–7].

Since signals are often of random characters, random signals play an important role in
signal processing, especially in the study of sampling theorems. For this purpose, one usually
uses stochastic processes which are stationary in the wide sense as a model [8, 9]. A wide
sense stationary process is only a kind of second order moment processes. In this paper, we
study complex second order moment processes on [a, b] by some classical operators.

Given a probability space (A,F, P), a stochastic process {X(t, ω) : t ∈ T, T ⊂ R} is
said to be a second order moment process on T if E|X(t, ·)|2 = E(X(t, ·)X(t, ·)) = RX(t, t) < ∞,
∀t ∈ T . Now for each n ∈ Z+, let tk,n = k/n and 0 ≤ δ1(n), δ2(n) ≤ C1/n, where k ∈ Z and
C1 is a constant. Then for each n ∈ Z+, let the averaging functions uk,n(t), k ∈ Z, satisfy the
following properties:

supp uk,n ⊂ [tk,n − δ1(n), tk,n + δ2(n)], uk,n(t) ≥ 0,
∫
uk,n(t)dt = 1, (1.3)

∫ tk,n+δ2(n)

tk,n−δ1(n)
tiuk,n(t)dt =

(
k

n

)i

+ o

(
1
n

)
, for i = 0, 1, 2. (1.4)

The local averages of X(t, ω) near tk,n = k/n are

〈X(·, ω), uk,n(·)〉 =
∫
X(t, ω)uk,n(t)dt. (1.5)

The operator Mn is defined as

[MnX](t, ω) =
+∞∑

k=0

〈X(·, ω), uk,n(·)〉Kk,n(t), (1.6)

where Kk,n(t) ≥ 0 are kernel functions and satisfy the following equations for all constant C

+∞∑

k=0

CKk,n(t) = C +O

(
1
n

)
. (1.7)

2. Main Results

In this paper, let T = [a, b] and let C[a, b] denote the space of all continuous real functions on
[a, b]. M[a, b] denotes the space of all bounded real functions on [a, b]. H(A, [a, b]) denotes
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the space of all second order moment processes on [a, b]. HC(A, [a, b]) denotes the space of
all second order moment processes in quadratic mean continuous on [a, b]. Let us begin with
the following proposition.

Proposition 2.1 (Korovkin [10]). Assume that Ln : C[a, b] → M[a, b] are a sequence of linear
positive operators. If for f(t) = 1, t, and t2, one has

lim
n→∞

∥
∥[Lnf

]
(t) − f(t)

∥
∥
M = 0, (2.1)

where

∥
∥f(t)

∥
∥
M = sup

t∈[a,b]

{∣∣f(t)
∣
∣ : f(t) ∈ M

}
, (2.2)

then for any f ∈ C[a, b], one has

lim
n→∞

∥∥[Lnf
]
(t) − f(t)

∥∥
M = 0. (2.3)

Notice that for X(t, ω) = f(t) ∈ C[a, b], (1.6) can be changed as

[
Mnf

]
(t) =

+∞∑

k=0

〈
f(·), uk,n(·)

〉
Kk,n(t). (2.4)

Then our main result is the following.

Theorem 2.2. Let {[Mnf](t), n ≥ 0} be a sequence of operators defined as (2.4) such that for f(t) =
1, t, and t2, one has

lim
n→∞

∥∥[Mnf
]
(t) − f(t)

∥∥
M = 0. (2.5)

Then for any second order moment processes in quadratic mean continuous X(t, ω) on any finite
closed interval [a, b] , one has

lim
n→∞

E[[MnX](t, ω) −X(t, ω)]2 = 0, (2.6)

where {[MnX](t, ω), n ≥ 0} is a sequence of operators defined as (1.6).

Proof. LetX(t, ω) ∈ H
C(A, [a, b]), and let RX(t, s) be the correlation functions ofX(t, ω). Then

we have RX(t, s) ∈ C([a, b] × [a, b]). For any fixed ε > 0, there exists δ > 0, such that

|R(t, t) − R(t, t∗)| < ε

3
, (2.7)
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whenever |t− t∗| < δ. Then there isN > 0 such that 0 ≤ δ1(n), δ2(n) ≤ δ/2 for all n ≥ N. Thus
when n ≥ N and |tk,n − t| ≤ δ/2, we have

E|〈X(·, ω), uk,n(·)〉 −X(t, ω)|2

= E|〈[X(·, ω) −X(t, ω)], uk,n(·)〉|2

=
∫∫ tk,n+δ2(n)

tk,n−δ1(n)

[
RX

(
x, y

) − RX(x, t) − RX

(
t, y

)
+ R(t, t)

]
uk,n(x)uk,n

(
y
)
dxdy

=
∫∫ tk,n+δ2(n)

tk,n−δ1(n)

[[
RX

(
x, y

) − RX(x, t)
]
+ [RX(x, t) − RX(x, t)]

+
[
R(t, t) − RX

(
t, y

)]]
uk,n(x)uk,n

(
y
)
dx dy

≤ ε.

(2.8)

At the same time, since X(t, ω) ∈ H
C(A, [a, b]), E|X(t, ω)|2 = RX(t, t) ≤ M < ∞. Then

using (2.8), that for any given ε > 0 and any tk,n, t ∈ [a, b], we have

E|〈X(·, ω), uk,n(·)〉 −X(t, ω)|2 ≤ ε +
16M
δ2

(t − tk,n)
2. (2.9)

From (1.7), (2.5), and (2.9), we have

E[[MnX](t, ω) −X(t, ω)]2

= E

[

[MnX](t, ω) −X(t, ω)
+∞∑

k=0

Kk,n(t) +X(t, ω)
+∞∑

k=0

Kk,n(t) −X(t, ω)

]2

≤ 2E

[

[MnX](t, ω) −X(t, ω)
+∞∑

k=0

Kk,n(t)

]2

+ 2E

[

X(t, ω)
+∞∑

k=0

Kk,n(t) −X(t, ω)

]2

= 2E

[

[MnX](t, ω) −X(t, ω)
+∞∑

k=0

Kk,n(t)

]2

+ 2

∣∣∣∣∣

+∞∑

k=0

1 ·Kk,n(t) − 1

∣∣∣∣∣

2

RX(t, t)

= 2E

∣∣∣∣∣

+∞∑

k=0

(〈X(·, ω), uk,n(·)〉 −X(t, ω))Kk,n(t)

∣∣∣∣∣

2

+O

(
1
n

)

≤ 2

∣∣∣∣∣

+∞∑

k=0

E|〈X(·, ω), uk,n(·)〉 −X(t, ω)|2Kk,n(t)

∣∣∣∣∣

∣∣∣∣∣

+∞∑

k=0

Kk,n(t)

∣∣∣∣∣
+O

(
1
n

)

= 2

∣∣∣∣∣

+∞∑

k=0

E|〈X(·, ω), uk,n(·)〉 −X(t, ω)|2Kk,n(t)

∣∣∣∣∣
+O

(
1
n

)
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= 2

∣
∣
∣
∣
∣

+∞∑

k=0

(
ε +

16M
δ2 (t − tk,n)2

)
Kk,n(t)

∣
∣
∣
∣
∣
+O

(
1
n

)

=
32M
δ2

∣
∣
∣
∣
∣

+∞∑

k=0

(
t2 − 2tk,nt + t2k,n

)
Kk,n(t)

∣
∣
∣
∣
∣
+ 2ε +O

(
1
n

)

≤ 32M
δ2

∣
∣
∣
(
t2[Mn1](t) − 2t[Mnx](t) +

[
Mnx

2
]
(t)

)∣∣
∣
2
+ 2ε +O

(
1
n

)

−→ 0 (when n −→ ∞). (2.10)

This completes the proof.

3. Applications

As the application of Theorem 2.2, we give a new kind of operators.
For a signal function defined as

sgn(t) =

⎧
⎨

⎩

1, t ≥ 0,

0, t < 0,
(3.1)

let {αn, n ∈ R
+} be a monotonic sequence that satisfies

lim
n→+∞

αn = +∞, (3.2)

and let

hn(c, t) =

⎧
⎨

⎩

e−nt, c = 0,

(1 + ct)−sgn(c)·αn , c /= 0.
(3.3)

Obviously, function h(c, t) is continuous in R, now we let

bk,n(c, t) = (−1)k t
k

k!
h
(k)
n (c, t). (3.4)

Using Gamma-function, bn,k(c, t) can be noted by

bk,n(c, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−nt
(nt)k

k!
, c = 0,

Γ
(
sgn(c) · αn + k

)

Γ
(
sgn(c) · αn

)
k!

(ct)k(1 + ct)−sgn(c)·αn−k, c /= 0,

(3.5)
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where

Γ
(
sgn(c) · αn + k

)

Γ
(
sgn(c) · αn

) =
(
sgn(c) · αn + k − 1

)(
sgn(c) · αn + k − 2

) · · · (sgn(c) · αn

)
. (3.6)

If c < 0, t ∈ [0,−1/c] we need {αn, n ∈ Z
+}; if c ≥ 0, t ∈ [0,+∞) , then {αn, n ∈ R

+} is
enough. Let c = −1, 0, 1 and αn = n thenwe have the kernel function of Bernstein polynomials,
Szász-Mirakian operators, and Baskakov operators [11].

Now we define Gamma-Radom operators by local averages

[M∗
nX](t, ω, c) =

+∞∑

k=0

〈X(·, ω), uk,n(·)〉bk,n(c, t), (3.7)

where uk,n(t), k ∈ Z satisfy (1.3).
Similarly, let

tk,n =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k

(−cαn)
, c < 0, k = 0, 1, 2, . . . − cαn,

k

n
, c = 0, k = 0, 1, 2, . . . ,
k

(cαn)
, c > 0, k = 0, 1, 2, . . . .

(3.8)

The Nyquist rate is 1/(|c|αn) or 1/n.
For c = −1, 1, let uk,n = δ(· − k/|c|αn), for c = 0, let uk,n = δ(· − k/n), for example, using

Dirac-function, then for deterministic signals we have the Bernstein polynomials, Szász-
Mirakian operators and Baskakov operators [11]. Let uk,n be a uniform ditributed function
on [k/(n + 1), (k + 1)/(n + 1)] or [k/n, (k + 1)/n]. We can get the BernsteinKantorovich
operators, Szász- Kantorovich operators, and Baskakov-Kantorovich operators [11]. For
random signals, the following results can be setup.

Corollary 3.1. For a second order moment processes X(t), t ∈ [0, D] in quadratic mean continuous
on [0, D], one has

lim
n→∞

E[[M∗
nX](t, ω, c) −X(t)]2 = 0, (3.9)

where D = −1/c for c < 0, D > 0 for c ≥ 0, and [M∗
nX](t, ω, c) is defined by (3.7).

Proof. A simple computation shows that for c = 0, t ∈ [0,+∞), we have

+∞∑

k=0

1 · bk,n(0, t) = 1,

+∞∑

k=0

k

n
· bk,n(0, t) = t,

+∞∑

k=0

(
k

n

)2

· bk,n(0, t) = t2 +
t

n
,

(3.10)



Journal of Inequalities and Applications 7

and for c /= 0, t ∈ [0,+∞), we have

+∞∑

k=0

1 · bk,n(c, t) = 1,

+∞∑

k=0

k

|c| · αn
· bk,n(c, t) = t,

+∞∑

k=0

(
k

|c| · αn

)2

· bk,n(c, t) = t2 +
t(1 + ct)
(|c|n) .

(3.11)

For 0 ≤ δ1(n), δ2(n) ≤ C1/n → 0 (when n → ∞), t ∈ [0, D], we have

[M∗
n1](t, c) = 1 +O

(
1
n

)
,

[M∗
nx](t, c) = t +O

(
1
n

)
,

[
M∗

nx
2
]
(t, c) = t2 +O

(
1
n

)
.

(3.12)

Using Theorem 2.2, we have (3.9).
Obviously, let c = −1, αn = n, uk,n = δ(· − k/n) in Corollary 3.1, we get the first result

of Kowalski [1].
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