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1. Introduction and Preliminaries

Let f and p be two positive measurable real valued functions defined on (a, b) ⊆ R with
∫b
ap(x)dx = 1. From theory of convex means (cf. [1, 2]), the well-known Jensen’s inequality
gives that for t < 0 or t > 1,

∫b

a

p(x)ft(x)dx ≥
(∫b

a

p(x)f(x)dx
)t

, (1.1)

and reverse inequality holds for 0 < t < 1. In [3], Simic considered the difference

Ds = Ds(a, b, f, p) =
∫b

a

p(x)fs(x)dx −
(∫b

a

p(x)f(x)dx
)s

. (1.2)

He has given the following.



2 Journal of Inequalities and Applications

Theorem 1.1. Let f and p be nonnegative and integrable functions on (a, b), with
∫b
ap(x)dx = 1,

then for 0 < r < s < t, r, s, t /= 1, one has

(
Ds

s(s − 1)

)t−r
≤
(

Dr

r(r − 1)

)t−s( Dt

t(t − 1)

)s−r
. (1.3)

Remark 1.2. For an extension of Theorem 1.1 see [3].

Let us write the well-known Favard’s inequality.

Theorem 1.3. Let f be a concave nonnegative function on [a, b] ⊂ R. If q > 1, then

2q

q + 1

(
1

b − a

∫b

a

f(x)dx
)q

≥ 1
b − a

∫b

a

fq(x)dx. (1.4)

If 0 < q < 1, the reverse inequality holds in (1.4).

Note that (1.4) is a reversion of (1.1) in the case when p(x) = 1/(b − a).
Let us note that Theorem 1.3 can be obtained from the following result and also

obtained by Favard (cf. [4, page 212]).

Theorem 1.4. Let f be a nonnegative continuous concave function on [a, b], not identically zero, and
let φ be a convex function on [0, 2f̃], where

f̃ =
1

b − a

∫b

a

f(x)dx. (1.5)

Then

1

2f̃

∫2f̃

0
φ(y)dy ≥ 1

b − a

∫b

a

φ
(
f(x)

)
dx. (1.6)

Karlin and Studden (cf. [5, page 412]) gave a more general inequality as follows.

Theorem 1.5. Let f be a nonnegative continuous concave function on [a, b], not identically zero; f̃
is defined in (1.5), and let φ be a convex function on [c, 2f̃ − c], where c satisfies 0 < c ≤ fmin (where
fmin is the minimum of f). Then

1

2f̃ − 2c

∫2f̃−c

c

φ(y)dy ≥ 1
b − a

∫b

a

φ
(
f(x)

)
dx. (1.7)

For φ(y) = yp, p > 1, we can get the following from Theorem 1.5.
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Theorem 1.6. Let f be continuous concave function such that 0 < c ≤ fmin; f̃ is defined in (1.5). If
p > 1, then

1
(
2f̃ − 2c

)
(p + 1)

((
2f̃ − c

)p+1 − cp+1
)
≥ 1

b − a

∫b

a

fp(x)dx. (1.8)

If 0 < p < 1, the reverse inequality holds in (1.8).

In this paper, we give a related results to (1.3) for Favard’s inequality (1.4) and (1.8).
We need the following definitions and lemmas.

Definition 1.7. It is said that a positive function f is log-convex in the Jensen sense on some
interval I ⊆ R if

f(s)f(t) ≥ f2
(
s + t

2

)
(1.9)

holds for every s, t ∈ I.

We quote here another useful lemma from log-convexity theory (cf. [3]).

Lemma 1.8. A positive function f is log-convex in the Jensen sense on an interval I ⊆ R if and only
if the relation

u2f(s) + 2uwf

(
s + t

2

)
+w2f(t) ≥ 0 (1.10)

holds for each real u,w and s, t ∈ I.

Throughout the paper, we will frequently use the following family of convex functions
on (0,∞):

ϕs(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xs

s(s − 1)
, s /= 0, 1;

− logx, s = 0;

x logx, s = 1.

(1.11)

The following lemma is equivalent to the definition of convex function (see [4, page
2]).

Lemma 1.9. If φ is convex on an interval I ⊆ R, then

φ
(
s1
)(
s3 − s2

)
+ φ

(
s2
)(
s1 − s3

)
+ φ

(
s3
)(
s2 − s1

) ≥ 0 (1.12)

holds for every s1 < s2 < s3, s1, s2, s3 ∈ I.

Now, we will give our main results.
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2. Favard’s Inequality

In the following theorem, we construct another interesting family of functions satisfying the
Lyapunov inequality. The proof is motivated by [3].

Theorem 2.1. Let f be a positive continuous concave function on [a, b]; f̃ is defined in (1.5), and

Δs(f) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s(s − 1)

[
2s

s + 1

(
1

b − a

∫b

a

f(x)dx
)s

− 1
b − a

∫b

a

fs(x)dx

]

, s /= 0, 1;

1 − log 2 − log f̃ +
1

b − a

∫b

a

log f(x)dx, s = 0;

log 2f̃ + f̃ log f̃ − 1
2
f̃ − 1

b − a

∫b

a

f(x) log f(x)dx, s = 1.

(2.1)

Then Δs(f) is log-convex for s ≥ 0, and the following inequality holds for 0 ≤ r < s < t < +∞:

Δt−r
s (f) ≤ Δt−s

r (f)Δs−r
t (f). (2.2)

Proof. Let us consider the function defined by

φ(x) = u2ϕs(x) + 2uwϕr(x) +w2ϕt(x), (2.3)

where r = (s + t)/2, ϕs is defined by (1.11), and u,w ∈ R. We have

φ′′(x) = u2xs−2 + 2uwxr−2 +w2xt−2

=
(
uxs/2−1 +wxt/2−1)2 ≥ 0, x > 0.

(2.4)

Therefore, φ(x) is convex for x > 0. Using Theorem 1.4,

1

2f̃

∫2f̃

0

(
u2ϕs(y) + 2uwϕr(y) +w2ϕt(y)

)
dy

≥ 1
b − a

∫b

a

(
u2ϕs

(
f(x)

)
+ 2uwϕr

(
f(x)

)
+w2ϕt

(
f(x)

))
dx,

(2.5)



Journal of Inequalities and Applications 5

or equivalently

u2

[
1

2f̃

∫2f̃

0
ϕs(y)dy − 1

b − a

∫b

a

ϕs

(
f(x)dx

)
]

+ 2uw

[
1

2f̃

∫2f̃

0
ϕr(y)dy − 1

b − a

∫b

a

ϕr

(
f(x)

)
dx

]

+w2

[
1

2f̃

∫2f̃

0
ϕt(y)dy − 1

b − a

∫b

a

ϕt

(
f(x)

)
dx

]

≥ 0.

(2.6)

Since

Δs(f) =
1

2f̃

∫2f̃

0
ϕs(y)dy − 1

b − a

∫b

a

ϕs

(
f(x)

)
dx, (2.7)

we have

u2Δs(f) + 2uwΔr(f) +w2Δt(f) ≥ 0. (2.8)

By Lemma 1.8, we have

Δs(f)Δt(f) ≥ Δ2
r(f) = Δ2

(s+t)/2(f), (2.9)

that is, Δs(f) is log-convex in the Jensen sense for s ≥ 0.
Note that Δs(f) is continuous for s ≥ 0 since

lim
s→ 0

Δs(f) = Δ0(f) and lim
s→ 1

Δs(f) = Δ1(f). (2.10)

This implies Δs(f) is continuous; therefore, it is log-convex.
Since Δs(f) is log-convex, that is, s 
→ logΔs(f) is convex, by Lemma 1.9 for 0 ≤ r <

s < t < +∞ and taking φ(s) = logΔs(f), we get

logΔt−r
s (f) ≤ logΔt−s

r (f) + logΔs−r
t (f), (2.11)

which is equivalent to (2.2).

Theorem 2.2. Let f ,Δs(f) be defined as in Theorem 2.1, and let t, s, u, v be nonnegative real numbers
such that s ≤ u, t ≤ v, s /= t, and u/=v. Then

(
Δt(f)
Δs(f)

)1/(t−s)
≤
(
Δv(f)
Δu(f)

)1/(v−u)
. (2.12)
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Proof. An equivalent form of (1.12) is

ϕ
(
x2
) − ϕ(x1)

x2 − x1
≤ ϕ

(
y2
) − ϕ

(
y1
)

y2 − y1
, (2.13)

where x1 ≤ y1, x2 ≤ y2, x1 /=x2, and y1 /=y2. Since by Theorem 2.1,Δs(f) is log-convex, we can
set in (2.13): ϕ(x) = logΔx(f), x1 = s, x2 = t, y1 = u, and y2 = v. We get

logΔt(f) − logΔs(f)
t − s

≤ logΔv(f) − logΔu(f)
v − u

, (2.14)

from which (2.12) trivially follows.

The following extensions of Theorems 2.1 and 2.2 can be deduced in the same way
from Theorem 1.5.

Theorem 2.3. Let f be a continuous concave function on [a, b] such that 0 < c ≤ fmin; f̃ is defined
in (1.5), and

Δ̃s(f) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
s(s − 1)

[ (
2f̃ − c

)s+1

(
2f̃ − 2c

)
(s + 1)

− cs+1
(
2f̃ − 2c

)
(s + 1)

− 1
b − a

∫b

a

fs(x)dx

]

, s /= 0, 1;

1

2f̃ − 2c

[
2f̃ + c log c − 2c − (

2f̃ − c
)
log

(
2f̃ − c

)]
+

1
b − a

∫b

a

log f(x)dx, s = 0;

1

2(2f̃ − 2c)

[(
2f̃ − c

)2 log
(
2f̃ − c

) − 2f̃2 + 2cf̃ − c2 log c + 2c
]

− 1
b − a

∫b

a

f(x) log f(x)dx, s = 1.

(2.15)

Then Δ̃s(f) is log-convex for s ≥ 0, and the following inequality holds for 0 ≤ r < s < t < +∞:

Δ̃t−r
s (f) ≤ Δ̃t−s

r (f)Δ̃s−r
t (f). (2.16)

Theorem 2.4. Let f , Δ̃s(f) be defined as in Theorem 2.3, and let t, s, u, v be nonnegative real numbers
such that s ≤ u, t ≤ v, s /= t, and u/=v, one has

(
Δ̃t(f)

Δ̃s(f)

)1/(t−s)
≤
(
Δ̃v(f)

Δ̃u(f)

)1/(v−u)
. (2.17)

3. Weighted Favard’s Inequality

The weighted version of Favard’s inequality was obtained by Maligranda et al. in [6].
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Theorem 3.1. (1) Let f be a positive increasing concave function on [a, b]. Assume that φ is a convex
function on [0,∞), where

f̃i =
(b − a)

∫b
af(t)w(t)dt

2
∫b
a(t − a)w(t)dt

. (3.1)

Then

1
b − a

∫b

a

φ
(
f(t)

)
w(t)dt ≤

∫1

0
φ
(
2rf̃i

)
w
[
a(1 − r) + br

]
dr. (3.2)

If f is an increasing convex function on [a, b] and f(a) = 0, then the reverse inequality in (3.2) holds.
(2) Let f be a positive decreasing concave function on [a, b]. Assume that φ is a convex

function on [0,∞), where

f̃d =
(b − a)

∫b
af(t)w(t)dt

2
∫b
a(b − t)w(t)dt

. (3.3)

Then

1
b − a

∫b

a

φ
(
f(t)

)
w(t)dt ≤

∫1

0
φ
(
2rf̃d

)
w
[
ar + b(1 − r)

]
dr. (3.4)

If f is a decreasing convex function on [a, b] and f(b) = 0, then the reverse inequality in (3.4) holds.

Theorem 3.2. (1) Let f be a positive increasing concave function on [a, b]; f̃i is defined in (3.1), and

Πs(f) :=
∫1

0
ϕs

(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

ϕs

(
f(t)

)
w(t)dt. (3.5)

ThenΠs(f) is log-convex on [0,∞), and the following inequality holds for 0 ≤ r < s < t < +∞:

Πt−r
s (f) ≤ Πt−s

r (f)Πs−r
t (f). (3.6)

(2) Let f be an increasing convex function on [a, b], f(a) = 0, Π̃s(f) := −Πs(f). Then Π̃s(f)
is log-convex on [0,∞), and the following inequality holds for 0 ≤ r < s < t < +∞:

Π̃t−r
s (f) ≤ Π̃t−s

r (f)Π̃s−r
t (f). (3.7)

Proof. As in the proof of Theorem 2.1, we use Theorem 3.1(1) instead of Theorem 1.4.
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Theorem 3.3. (1) Let f andΠs(f) be defined as in Theorem 3.2(1), and let t, s, u, v ≥ 0 be such that
s ≤ u, t ≤ v, s /= t, and u/=v. Then

(
Πt(f)
Πs(f)

)1/(t−s)
≤
(
Πv(f)
Πu(f)

)1/(v−u)
. (3.8)

(2) Let f and Π̃s(f) be defined as in Theorem 3.2(2), and let t, s, u, v ≥ 0 be such that s ≤ u,
t ≤ v, s /= t, and u/=v. Then,

(
Π̃t(f)

Π̃s(f)

)1/(t−s)
≤
(
Π̃v(f)

Π̃u(f)

)1/(v−u)
. (3.9)

Proof. Similar to the proof of Theorem 2.2.

Theorem 3.4. (1) Let f be a positive decreasing concave function on [a, b]; f̃d is defined as in (3.3),
and

Γs(f) :=
∫1

0
ϕs

(
2rf̃d

)
w
[
ar + b(1 − r)

]
dr − 1

b − a

∫b

a

ϕs

(
f(t)

)
w(t)dt. (3.10)

Then Γs(f) is log-convex on [0,∞), and the following inequality holds for 0 ≤ r < s < t < +∞:

Γt−rs (f) ≤ Γt−sr (f)Γs−rt (f). (3.11)

(2) Let f be a decreasing convex function on [a, b], f(b) = 0, Γ̃s(f) := −Γs(f). Then Γ̃s is
log-convex on [0,∞), and the following inequality holds for 0 ≤ r < s < t < +∞:

Γ̃t−rs (f) ≤ Γ̃t−sr (f)Γ̃s−rt (f). (3.12)

Proof. As in the proof of Theorem 2.1, we use Theorem 3.1(2) instead of Theorem 1.4.

Theorem 3.5. (1) Let f and Γs(f) be defined as in Theorem 3.4(1), and let t, s, u, v ≥ 0 be such that
s ≤ u, t ≤ v, s /= t, and u/=v. Then

(
Γt(f)
Γs(f)

)1/(t−s)
≤
(
Γv(f)
Γu(f)

)1/(v−u)
. (3.13)

(2) Let f and Γ̃s(f) be defined as in Theorem 3.4(2), and let t, s, u, v ≥ 0 be such that s ≤ u,
t ≤ v, s /= t, and u/=v. Then

(
Γ̃t(f)

Γ̃s(f)

)1/(t−s)
≤
(
Γ̃v(f)

Γ̃u(f)

)1/(v−u)
. (3.14)
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Proof. Similar to the proof of Theorem 2.2.

Remark 3.6. Let w ≡ 1. If f is a positive concave function on [a, b], then the decreasing
rearrangement f∗ is concave on [a, b]. By applying Theorem 3.4 to f∗, we obtain that Γs(f∗) is
log-convex. Equimeasurability of f with f∗ gives Γs(f) = Γs(f∗) and we see that Theorem 3.4
is equivalent to Theorem 2.1.

Remark 3.7. Letw(t) = tα with α > −1. Then Theorem 3.2 gives that if f is a positive increasing
concave function on [0, 1], then Πα

s is log-convex, and

Πα
s =

1
s(s − 1)

[
(α + 2)s

(α + s + 1)

(∫1

0
f(t)tαdt

)s

−
∫1

0
fs(t)tαdt

]

, s /= 0, 1,

Πα
0 =

∫1

0
log f(t)tαdt − log

(
(α + 2)

∫1
0f(t)t

αdt
)

α + 1
+

1

(α + 1)2
,

Πα
1 = log

(
(α + 2)

∫1

0
f(t)tαdt

)∫1

0
f(t)tαdt −

∫1
0f(t)t

αdt

α + 2
−
∫1

0
f(t) log f(t)tαdt,

(3.15)

with zero for the function f(t) = t.
If f is a positive decreasing concave function on [0, 1], then Theorem 3.4 gives that Γαs

is log-convex, and

Γαs =
1

s(s − 1)

[

(α + 1)s(α + 2)sB(s + 1, α + 1)
(∫1

0
f(t)tαdt

)s

−
∫1

0
fs(t)tαdt

]

, s /= 0, 1,

Γα0 =
∫1

0
log f(t)tαdt +

1
α + 1

H(α + 1) − 1
α + 1

log
[
(α + 1)(α + 2)

∫1

0
f(t)tαdt

]
,

Γα1 =
(
1 −H(α + 2) + log

[
(α + 1)(α + 2)

])
∫1

0
f(t)tαdt

+
∫1

0
f(t)tαdt log

∫1

0
f(t)tαdt −

∫1

0
f(t) log f(t)tαdt,

(3.16)

with zero for the function f(t) = 1 − t, where B(·, ·) is the beta function, and H(α) is the
harmonic number defined for α > −1 with H(α) = ψ(α + 1) + γ , where ψ is the digamma
function and γ = 0.577215 . . . the Euler constant.

4. Cauchy Means

Let us note that (2.12), (2.17), (3.8), (3.9), (3.13), and (3.14) have the form of some known
inequalities between means (e.g., Stolarsky means, Gini means, etc.). Here we will prove
that expressions on both sides of (3.8) are also means. The proofs in the remaining cases are
analogous.
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Lemma 4.1. Let h ∈ C2(I), I interval in R, be such that h′′ is bounded, that is, m ≤ h′′ ≤ M. Then
the functions φ1, φ2 defined by

φ1(t) =
M

2
t2 − h(t), φ2(t) = h(t) − m

2
t2, (4.1)

are convex functions.

Theorem 4.2. Let w be a nonnegative integrable function on (a, b) with
∫b
aw(x)dx = 1. Let f be a

positive increasing concave function on [a, b], h ∈ C2([0, 2f̃i]). Then there exists ξ ∈ [0, 2f̃i], such
that

∫1

0
h
(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

h
(
f(t)

)
w(t)dt

=
h′′(ξ)
2

[∫1

0
(2rf̃i)

2
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

f2(t)w(t)dt
]
.

(4.2)

Proof. Set m = minx∈[0,2f̃i]h
′′(x), M = maxx∈[0,2f̃i]h

′′(x). Applying (3.2) for φ1 and φ2 defined
in Lemma 4.1, we have

∫1

0
φ1(2rf̃i)w

[
a(1 − r) + br

]
dr ≥ 1

b − a

∫b

a

φ1
(
f(t)

)
w(t)dt,

∫1

0
φ2(2rf̃i)w

[
a(1 − r) + br

]
dr ≥ 1

b − a

∫b

a

φ2
(
f(t)

)
w(t)dt,

(4.3)

that is,

M

2

[∫1

0
(2rf̃i)

2
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

f2(t)w(t)dt
]

≥
∫1

0
h(2rf̃i)w

[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

h
(
f(t)

)
w(t)dt,

(4.4)

∫1

0
h
(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

h
(
f(t)

)
w(t)dt

≥ m

2

[∫1

0

(
2rf̃i

)2
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

f2(t)w(t)dt
]
.

(4.5)

By combining (4.4) and (4.5), (4.2) follows from continuity of h′′.
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Theorem 4.3. Let f be a positive increasing concave nonlinear function on [a, b], and let w be a
nonnegative integrable function on (a, b) with

∫b
aw(x)dx = 1. If h1, h2 ∈ C2([0, 2f̃i]), then there

exists ξ ∈ [0, 2f̃i] such that

h′′
1(ξ)

h′′
2(ξ)

=

∫1
0h1

(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
ah1

(
f(t)

)
w(t)dt

∫1
0h2

(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
ah2

(
f(t)

)
w(t)dt

, (4.6)

provided that h′′
2(x)/= 0 for every x ∈ [0, 2f̃i].

Proof. Define the functional Φ : C2([0, 2f̃i
]) → R with

Φ(h) =
∫1

0
h
(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

h
(
f(t)

)
w(t)dt, (4.7)

and set h0 = Φ(h2)h1 − Φ(h1)h2. Obviously, Φ(h0) = 0. Using Theorem 4.2 , there exists ξ ∈
[0, 2f̃i] such that

Φ(h0) =
h′′
0(ξ)
2

[∫1

0

(
2rf̃i

)2
w
[
a(1 − r) + br

]
dr − 1

b − a

∫b

a

f2(t)w(t)dt
]
. (4.8)

We give a proof that the expression in square brackets in (4.8) is nonzero (actually strictly
positive by inequality (3.2)) for nonlinear function f . Suppose that the expression in square
brackets in (4.8) is equal to zero, which is by simple rearrangements equivalent to equality

∫b

a

(t − a)2w(t)dt =
∫b

a

g2(t)w(t)dt, where g(t) =

∫b
a(t − a)w(t)dt
∫b
af(t)w(t)dt

f(t). (4.9)

Since g is positive concave function, it is easy to see that g(t)/(t − a) is decreasing function
on (a, b] (see [6]), thus

1 =
1

∫b
a(t − a)w(t)dt

∫b

a

g(t)w(t)dt ≤ 1
∫x
a(t − a)w(t)dt

∫x

a

g(t)w(t)dt, x ∈ (a, b], (4.10)

so
∫x
a(t − a)w(t)dt ≤ ∫x

ag(t)w(t)dt for every x ∈ [a, b]. Set

F(x) =
∫x

a

[
(t − a) − g(t)

]
w(t)dt. (4.11)
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Obviously, F(x) ≤ 0, F(a) = F(b) = 0. By (4.9), obvious estimations and integration by parts,
we have

0 =
∫b

a

[
(t − a)2 − g2(t)

]
w(t)dt ≥

∫b

a

2g(t)
[
(t − a) − g(t)

]
w(t)dt

=
∫b

a

2g(t)dF(t) = −
∫b

a

F(t)d
[
2g(t)

] ≥ 0.

(4.12)

This implies
∫b
a[(t − a)2 − g2(t)]w(t)dt =

∫b
a2g(t)[(t − a) − g(t)]w(t)dt, which is equivalent to

∫b
a[(t − a) − g(t)]2w(t)dt = 0. This gives that g is a linear function, which obviously implies
that f is a linear function.

Since the function f is nonlinear, the expression in square brackets in (4.8) is strictly
positive which implies that h′′

0(ξ) = 0, and this gives (4.6). Notice that Theorem 4.2 for h = h2

implies that the denominator of the right-hand side of (4.6) is nonzero.

Corollary 4.4. Let w be a nonnegative integrable function with
∫b
aw(x)dx = 1. If f is a positive

increasing concave nonlinear function on [a, b], then for 0 < s/= t /= 1/= s there exists ξ ∈ (0, 2f̃i] such
that

ξt−s =
s(s − 1)
t(t − 1)

∫1
0

(
2rf̃i

)t
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
af

t(r)w(r)dr
∫1
0(2rf̃i)

s
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
af

s(r)w(r)dr
. (4.13)

Proof. Set h1(x) = xt and h2(x) = xs, t /= s /= 0, 1 in (4.6), then we get (4.13).

Remark 4.5. Since the function ξ 
→ ξt−s is invertible, then from (4.13)we have

0 <

⎛

⎝s(s − 1)
t(t − 1)

∫1
0

(
2rf̃i

)t
w
[
a(1 − r) + br

]
dr− (1/(b − a))

∫b
af

t(r)w(r)dr
∫1
0

(
2rf̃i

)s
w
[
a(1 − r) + br

]
dr− (1/(b − a))

∫b
af

s(r)w(r)dr

⎞

⎠

1/(t−s)

≤ 2f̃i .

(4.14)

In fact, similar result can also be given for (4.6). Namely, suppose that h′′
1/h

′′
2 has

inverse function. Then from (4.6), we have

ξ =
(
h′′
1

h′′
2

)−1
⎛

⎝
∫1
0h1

(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
ah1

(
f(t)

)
w(t)dt

∫1
0h2

(
2rf̃i

)
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
ah2

(
f(t)

)
w(t)dt

⎞

⎠ . (4.15)

So, we have that the expression on the right-hand side of (4.15) is also a mean.
By the inequality (4.14), we can consider

Mt,s(f ;w) =

⎛

⎝s(s − 1)
t(t − 1)

∫1
0

(
2rf̃i

)t
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
af

t(r)w(r)dr
∫1
0

(
2rf̃i

)s
w
[
a(1 − r) + br

]
dr − (1/(b − a))

∫b
af

s(r)w(r)dr

⎞

⎠

1/(t−s)

(4.16)
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for 0 < t /= s /= 1/= t as means in broader sense. Moreover, we can extend these means in other
cases.

Denote, μ(r) = w[a(1 − r) + br] and ν(r) = w(r). So by limit, we have

logMt,t(f ;w)

=

∫1
0

(
2rf̃i

)t
log

(
2rf̃i

)
μ(r)dr − (1/(b − a))

∫b
af

t(r) log f(r)ν (r)dr
∫1
0

(
2rf̃i

)t
μ(r)dr − (1/(b − a))

∫b
af

t(r)ν(r)dr
− 2t − 1
t(t − 1)

, t /= 0, 1,

logM0,0(f ;w)

=
(1/(b − a))

∫b
alog

2f(r)ν(r)dr − ∫1
0log

2(2rf̃i
)
μ(r)dr

(2/(b − a))
∫b
a log f(r)ν(r)dr − 2

∫1
0 log

(
2rf̃i

)
μ(r)dr

− 2
∫1
0 log(2rf̃i)μ (r)dr − (2/(b − a))

∫b
a log f(r)ν(r)dr

(2/(b − a))
∫b
a log f(r)ν(r)dr − 2

∫1
0 log

(
2rf̃i

)
μ(r)dr

,

logM1,1(f ;w)

=
2f̃i

∫1
0r log

(
2rf̃i

)(
log

(
2rf̃i

) − 2
)
μ(r)dr − (1/(b − a))

∫b
af(r) log f(r)

(
log f(r) − 2

)
ν(r)dr

2
∫1
02rf̃i log

(
2rf̃i

)
μ(r)dr − (2/(b − a))

∫b
af(r) log f(r)ν(r)dr

.

(4.17)

In our next result, we prove that this new mean is monotonic.

Theorem 4.6. Let t ≤ u, r ≤ s, then the following inequality is valid:

Mt,r(f ;w) ≤ Mu,s(f ;w). (4.18)

Proof. Since Πs is log-convex, therefore by (3.8) we get (4.18).

Remark 4.7. If w ≡ 1, then the above means become

Mt,s(f ; 1) =

⎛

⎝
(1/2f̃)

∫2f̃
0 ϕt(y)dy − (1/(b − a))

∫b
aϕt

(
f(x)

)
dx

(1/2f̃)
∫2f̃
0 ϕs(y)dy − (1/(b − a))

∫b
aϕs

(
f(x)

)
dx

⎞

⎠

1/(t−s)

, 0 < t /= s,

logMt,t(f ; 1)

=

(
2t/(t + 1)

)
f̃
t
log f̃ + f̃ t

(
2t log 2/(t + 1)

) − f̃ t
(
2t/(t + 1)2

) − (1/(b − a))
∫b
af

t(x) log f(x)dx
t(t − 1)Δt(f)

− 2t − 1
t(t − 1)

, t /= 0, 1,
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logM0,0(f ; 1)

=
(1/(b − a))

∫b
alog

2f(x)dx + (2/(b − a))
∫b
a log f(x)dx − log2f̃ − 2 log 2 log f̃ − log22

2 + (2/(b − a))
∫b
a log f(x)dx − 2 log

(
2f̃

) ,

logM1,1(f ; 1)

=
f̃ log f̃ log(4f̃/e3) + f̃

(
log22 − log 8 + 3/2

) − (1/(b − a))
∫b
af(x) log f(x)

(
log f(x) − 2

)
dx

2f̃ log
(
2f̃

) − f̃ − (2/(b − a))
∫b
af(x) log f(x)dx

.

(4.19)

In this way (4.18) for w ≡ 1 gives an extension of (2.12) (see Remark 3.6).
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