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1. Introduction

As we all know, the Riccati equations are of great importance in both theory and practice in
the analysis and design of controllers and filters for linear dynamical systems (see [1–5]). For
example, consider the following linear system (see [5]):

ẋ(t) = Ax(t) + Bu(t), x(0) = x0, (1.1)

with the cost

J =
∫∞

0

(
xTQx + uTu

)
dt. (1.2)
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The optimal control rate u∗ the optimal cost J∗ of (1.1) and (1.2) are

u∗ = Px, P = BTK,

J∗ = xT
0Kx0,

(1.3)

where x0 ∈ Rn is the initial state of system (1.1) and (1.2) and K is the positive semidefinite
solution of the following algebraic Riccati equation (ARE):

ATK +KA −KRK = −Q, (1.4)

with R = BBT and Q being positive definite and positive semidefinite matrices, respectively.
To guarantee the existence of the positive definite solution to (1.4), wewill make the following
assumptions: the pair (A,R) is stabilizable, and the pair (Q,A) is observable.

In practice, it is hard to solve the ARE, and there is no general method unless the
system matrices are special and there are some methods and algorithms to solve (1.4);
however, the solution can be time-consuming and computationally difficult, particularly as
the dimensions of the systemmatrices increase. Thus, a number of works have been presented
by researchers to evaluate the bounds and trace bounds for the solution of the ARE (see [6–
16]). Moreover, in terms of [2, 6], we know that an interpretation of tr(K) is that tr(K)/n is the
average value of the optimal cost J∗ as x0 varies over the surface of a unit sphere. Therefore,
considering its applications, it is important to discuss trace bounds for the product of two
matrices. In symmetric case, a number of works have been proposed for the trace of matrix
products ([2, 6–8, 17–20]), and [18] is the tightest among the parallel results.

In 1995, Lasserre showed [18] the following given any matrix A ∈ Rn×n, B ∈ Sn, then
the following.

n∑
i=1

λ[i]
(
A
)
λ[n−i+1](B) ≤ tr(AB) ≤

n∑
i=1

λ[i]
(
A
)
λ[i](B), (1.5)

where A = (A +AT )/2.
This paper is organized as follows. In Section 2, we propose new trace bounds for

the product of two general matrices. The new trace bounds improve the previous results.
Then, we present some trace bounds for the solution of the algebraic Riccati equations, which
improve some of the previous results under certain conditions in Section 3. In Section 4,
we give numerical examples to demonstrate the effectiveness of our results. Finally, we get
conclusions in Section 5.

2. Trace Inequalities for Matrix Products

In the following, let Rn×n denote the set of n × n real matrices and let Sn denote the
subset of Rn×n consisting of symmetric matrices. For A = (aij) ∈ Rn×n, we assume that
tr(A), A−1, AT , d(A) = (d1(A), . . . , dn(A)), σ(A) = (σ1(A), . . . , σn(A)) denote the trace,
the inverse, the transpose, the diagonal elements, the singular values of A, respectively,
and define (A)ii = aii = di(A). If A ∈ Rn×n is an arbitrary symmetric matrix, then
λ(A) = (λ1(A), . . . , λn(A)) and Reλ(A) = (Reλ1(A), . . . ,Reλn(A)) denote the eigenvalues
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and the real part of eigenvalues of A. Suppose x = (x1, x2, . . . , xn) is a real n-element array
such as d(A), σ(A), λ(A), Reλ(A) which is reordered, and its elements are arranged in
nonincreasing order; that is, x[1] ≥ x[2] ≥ · · · ≥ x[n]. The notation A > 0 (A ≥ 0) is used
to denote that A is a symmetric positive definite (semidefinite) matrix.

Let α, β be two real n-element arrays. If they satisfy

k∑
i=1

α[i] ≤
k∑
i=1

β[i], k = 1, 2, . . . , n, (2.1)

then it is said that α is controlled weakly by β, which is signed by α≺wβ.
If α≺wβ and

n∑
i=1

α[i] =
n∑
i=1

β[i], (2.2)

then it is said that α is controlled by β, which is signed by α ≺ β.
The following lemmas are used to prove the main results.

Lemma 2.1 (see [21, Page 92, H.2.c]). If x[1] ≥ · · · ≥ x[n], y[1] ≥ · · · ≥ y[n] and x ≺ y, then for
any real array u[1] ≥ · · · ≥ u[n],

n∑
i=1

x[i]u[i] ≤
n∑
i=1

y[i]u[i]. (2.3)

Lemma 2.2 (see [21, Page 218, B.1]). Let A = AT ∈ Rn×n, then

d(A) ≺ λ(A). (2.4)

Lemma 2.3 (see [21, Page 240, F.4.a]). Let A ∈ Rn×n, then

λ

(
A +AT

2

)
≺w

∣∣∣∣∣λ
(

A +AT

2

)∣∣∣∣∣≺wσ(A). (2.5)

Lemma 2.4 (see [22]). Let 0 < m1 ≤ ak ≤ M1, 0 < m2 ≤ bk ≤ M2, k = 1, 2, . . . , n, 1/p+1/q = 1,
then

n∑
k=1

akbk ≤
(

n∑
k=1

a
p

k

)1/p( n∑
k=1

b
q

k

)1/q

≤ cp,q
n∑

k=1

akbk, (2.6)
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where

cp,q =
M

p

1M
q

2 −m
p

1m
q

2[
p
(
M1m2M

q

2 −m1M2m
q

2

)]1/p[
q
(
m1M2M

p

1 −M1m2m
p

1

)]1/q . (2.7)

Note that if m1 = 0, m2 /= 0 or m2 = 0, m1 /= 0, obviously, (2.6) holds. If m1 = m2 = 0,
choose cp,q = +∞, then (2.6) also holds.

Remark 2.5. If p = q = 2, then we obtain Cauchy-Schwarz inequality:

n∑
k=1

akbk ≤
(

n∑
k=1

a2
k

)1/2( n∑
k=1

b2k

)1/2

≤ c2
n∑

k=1

akbk, (2.8)

where

c2 =

⎛
⎝
√

M1M2

m1m2
+
√

m1m2

M1M2

⎞
⎠. (2.9)

Remark 2.6. Note that

lim
p→∞

(
a
p

1 + a
p

2 + · · · + a
p
n

)1/p
= max

1≤k≤n
{ak},

lim
p→∞
q→ 1

cp,q = lim
p→∞
q→ 1

M
p

1M
q

2 −m
p

1m
q

2[
p
(
M1m2M

q

2 −m1M2m
q

2

)]1/p[
q
(
m1M2M

p

1 −M1m2m
p

1

)]1/q

= lim
p→∞
q→ 1

M
p

1

[
M

q

2 − (m1/M1)
pm

q

2

]

M
1/p
1

[
p
(
m2M

q

2−(m1/M1)M2m
q

2

)]1/p
M

q/p

1

[
q
(
m1M2−M1m2(m1/M1)

p)]1/q

= lim
p→∞
q→ 1

M2

M
1/p+p/q−p
1 m1M2

= lim
p→∞
q→ 1

1

M
1/p−1
1 m1

=
M1

m1
.

(2.10)

Let p → ∞, q → 1 in (2.6), then we obtain

m1

n∑
k=1

bk ≤
n∑

k=1

akbk ≤ M1

n∑
k=1

bk. (2.11)
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Lemma 2.7. If q ≥ 1, ai ≥ 0 (i = 1, 2, . . . , n), then

(
1
n

n∑
i=1

ai

)q

≤ 1
n

n∑
i=1

a
q

i . (2.12)

Proof. (1) Note that for q = 1, or ai = 0 (i = 1, 2, . . . , n),

(
1
n

n∑
i=1

ai

)q

=
1
n

n∑
i=1

a
q

i . (2.13)

(2) If q > 1, ai > 0, for x > 0, choose f(x) = xq, then f ′(x) = qxq−1 > 0 and f ′′(x) =
q(q − 1)xq−2 > 0. Thus, f(x) is a convex function. As ai > 0 and (1/n)

∑n
i=1 ai > 0, from the

property of the convex function, we have

(
1
n

n∑
i=1

ai

)q

= f

(
1
n

n∑
i=1

ai

)
≤ 1

n

n∑
i=1

f(ai) =
1
n

n∑
i=1

a
q

i . (2.14)

(3) If q > 1, without loss of generality, we may assume ai = 0 (i = 1, . . . , r), ai > 0 (i =
r + 1, . . . , n). Then from (2), we have

(
1

n − r

)q
(

n∑
i=1

ai

)q

=

(
1

n − r

n∑
i=1

ai

)q

≤ 1
n − r

n∑
i=1

a
q

i . (2.15)

Since ((n − r)/n)q ≤ (n − r)/n, thus

(
1
n

n∑
i=1

ai

)q

=
(
n − r

n

)q( 1
n − r

)q
(

n∑
i=1

ai

)q

≤ n − r

n

1
n − r

n∑
i=1

a
q

i =
1
n

n∑
i=1

a
q

i . (2.16)

This completes the proof.

Theorem 2.8. Let A,B ∈ Rn×n, and let B be diagonalizable with the following decomposition:

B = Udiag(λ1(B), λ2(B), . . . , λn(B))U−1, (2.17)

whereU ∈ Rn×n is nonsingular. Then

n∑
i=1

Reλ[i](B)d[n−i+1]
(
U−1AU

)
≤ tr(AB) ≤

n∑
i=1

Reλ[i](B)d[i]

(
U−1AU

)
. (2.18)
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Proof. Note that (U−1AU)ii is real; by the matrix theory we have

tr(AB) = Re tr(AB) = Re tr
[
AUdiag(λ1(B), λ2(B), . . . , λn(B))U−1

]

= Re tr
[
U−1AUdiag(λ1(B), λ2(B), . . . , λn(B))

]

= Re
n∑
i=1

λi(B)
(
U−1AU

)
ii

=
n∑
i=1

Re
[
λi(B)

(
U−1AU

)
ii

]

=
n∑
i=1

(
U−1AU

)
ii
Reλi(B)

=
n∑
i=1

⎡
⎣U−1AU +

(
U−1AU

)T
2

⎤
⎦

ii

Reλi(B)

=
n∑
i=1

(
U−1AU

)
ii Reλi(B).

(2.19)

Since Reλ[1](B) ≥ Reλ[2](B) ≥ · · · ≥ Reλ[n](B) ≥ 0, without loss of generality, we may assume
Reλ(B) = (Reλ[1](B),Reλ[2](B), . . . ,Reλ[n](B)). Next, we will prove the left-hand side of
(2.18):

n∑
i=1

Reλ[i](B)d[n−i+1]
(
U−1AU

)
≤

n∑
i=1

Reλ[i](B)di

(
U−1AU

)
. (2.20)

If

d
(
U−1AU

)
=
(
d[n]

(
U−1AU

)
, d[n−1]

(
U−1AU

)
, . . . , d[1]

(
U−1AU

))
, (2.21)

then we obtain the conclusion. Now assume that there exists j < k such that dj(U−1AU) >

dk(U−1AU), then

Reλ[j](B)dk

(
U−1AU

)
+ Reλ[k](B)dj

(
U−1AU

)
− Reλ[j](B)dj

(
U−1AU

)

− Reλ[k](B)dk

(
U−1AU

)
=
[
Reλ[j](B) − Reλ[k](B)

][
dk

(
U−1AU

)
− dj

(
U−1AU

)]
≤ 0.

(2.22)
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We use d̃(U−1AU) to denote the vector of d(U−1AU) after changing dj(U−1AU) and
dk(U−1AU), then

n∑
i=1

σ[i](B)d̃i

(
U−1AU

)
≤

n∑
i=1

σ[i](B)di

(
U−1AU

)
. (2.23)

After a limited number of steps, we obtain the left-hand side of (2.18). For the right-hand side
of (2.18)

n∑
i=1

Reλ[i](B)di

(
U−1AU

)
≤

n∑
i=1

Reλ[i](B)d[i]

(
U−1AU

)
. (2.24)

If

d
(
V TAU

)
=
(
d[1]

(
U−1AU

)
, d[2]

(
U−1AU

)
, . . . , d[n]

(
U−1AU

))
, (2.25)

then we obtain the conclusion. Now assume that there exists j > k such that dj(U−1AU) <

dk(U−1AU), then

σ[j](B)dk

(
U−1AU

)
+ σ[k](B)dj

(
U−1AU

)
− σ[j](B)dj

(
U−1AU

)
− σ[k](B)dk

(
U−1AU

)

=
[
σ[j](B) − σ[k](B)

][
dk

(
U−1AU

)
− dj

(
U−1AU

)]
≥ 0.

(2.26)

We use d̃(U−1AU) to denote the vector of d(U−1AU) after changing dj(U−1AU) and
dk(U−1AU), then

n∑
i=1

σ[i](B)di

(
U−1AU

)
≤

n∑
i=1

σ[i](B)d̃i

(
U−1AU

)
. (2.27)

After a limited number of steps, we obtain the right-hand side of (2.18). Therefore, we have

n∑
i=1

Reλ[i](B)d[n−i+1]
(
U−1AU

)
≤ tr(AB) ≤

n∑
i=1

Reλ[i](B)d[i]

(
U−1AU

)
. (2.28)
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Since tr(AB) = tr(BA), applying (2.18) with B in lieu of A, we immediately have the
following corollary.

Corollary 2.9. Let A,B ∈ Rn×n, and let A be diagonalizable with the following decomposition:

A = V diag(λ1(A), λ2(A), . . . , λn(A))V −1, (2.29)

where V ∈ Rn×n is nonsingular. Then

n∑
i=1

Reλ[i](A)d[n−i+1]
(
V −1BV

)
≤ tr(AB) ≤

n∑
i=1

Reλ[i](A)d[i]

(
V −1BV

)
. (2.30)

Theorem 2.10. Let A ∈ Rn×n, B ∈ Rn×n be normal. Then

n∑
i=1

Reλ[i](B)λ[n−i+1]
(
A
)
≤ tr(AB) ≤

n∑
i=1

Reλ[i](B)λ[i]
(
A
)
. (2.31)

Proof. Since B is normal, from [23, page 101, Theorem 2.5.4], we have

B = Udiag(λ1(B), λ2(B), . . . , λn(B))U−1, (2.32)

where U ∈ Rn×n is orthogonal. Since UT = U−1 and UUT = I, then for i = 1, 2, . . . , n, we have

λ[i]
(
U−1AU

)
= λ[i]

(
UTAU

)

= λ[i]

⎛
⎝UTAU +

(
UTAU

)T
2

⎞
⎠

= λ[i]

⎛
⎝UT

⎛
⎝AUUT +

(
AUUT

)T
2

⎞
⎠U

⎞
⎠

= λ[i]

⎛
⎝AUUT +

(
AUUT

)T
2

⎞
⎠ = λ[i]

(
A
)
.

(2.33)
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In terms of Lemmas 2.1 and 2.2, (2.18) implies

n∑
i=1

Reλ[i](B)λ[n−i+1]
(
A
)
=

n∑
i=1

Reλ[i](B)λ[n−i+1]
(
U−1AU

)

≤
n∑
i=1

Reλ[i](B)d[n−i+1]
(
U−1AU

)

≤ tr(AB) ≤
n∑
i=1

Reλ[i](B)d[i]

(
U−1AU

)

≤
n∑
i=1

Reλ[i](B)λ[i]
(
U−1AU

)

=
n∑
i=1

Reλ[i](B)λ[i]
(
A
)
.

(2.34)

This completes the proof.

Note that if B ∈ Sn, Reλ[i](B) = λ[i](B), then from (2.34) we obtain (1.5) immediately.
This implies that (2.18) improves (1.5).

Since tr(AB) = tr(BA), applying (2.31) with B in lieu of A, we immediately have the
following corollary.

Corollary 2.11. Let B ∈ Rn×n, A ∈ Rn×n be normal, then

n∑
i=1

Reλ[i](A)λ[n−i+1]
(
B
)
≤ tr(AB) ≤

n∑
i=1

Reλ[i](A)λ[i]
(
B
)
. (2.35)

3. Trace Bounds for the Solution of the Algebraic Riccati Equations

Komaroff (1994) in [16] obtained the following. Let K be the positive semidefinite solution
of the ARE (1.4). Then the trace of K has the upper bound given by

tr(K) ≤ n

2
λ[1](S) +

n

2

√
λ2[1](S) +

4tr
(
QR−1)
n

, (3.1)

where S = R−1AT +AR−1.
In this section, by appling our new trace bounds in Section 2, we obtain some lower

trace bounds for the solution of the algebraic Riccati equations. Furthermore, we obtain some
upper trace bounds which improve (3.1) under certain conditions.
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Theorem 3.1. If 1/p + 1/q = 1, and K is the positive semidefinite solution of the ARE (1.4).
(1) There are both, upper and lower, bounds:

λ[n](R)λ[n](S) + λ[n](R)

√[
λ[n](S)

]2 + (4/λ[n](R))
[∑n

i=1 λ
p

[i](R)
]1/p

tr
(
QR−1)

2
[∑n

i=1 λ
p

[i](R)
]1/p

≤ tr(K) ≤
λ[1](S) +

√
λ2[1](S) +

(
4/cp,qn2−1/qλ[1](R)

)[∑n
i=1 λ

p

[i](R)
]1/p

tr
(
QR−1)

2
[∑n

i=1 λ
p

[i](R)
]1/p

/cp,qn2−1/qλ[1](R)
.

(3.2)

(2) If S ≥ 0, then the trace of K has the lower and upper bounds given by

(
1/c′p,qn

1−1/q
)
H +

√[(
1/c′p,qn1−1/q)H]2 + (4/λ[n](R))�tr(QR−1)

2�/λ[n](R)

≤ tr(K) ≤
H +

√[∑n
i=1 λ

p

[i](S)
]2/p

+
(
4/cp,qn2−1/qλ[1](R)

)
�tr
(
QR−1)

2�/cp,qn2−1/qλ[1](R)
,

(3.3)

whereH denotes [
∑n

i=1 λ
p

[i](S)]
1/p

and � denotes [
∑n

i=1 λ
p

[i](R)]
1/p

.
(3) If S ≤ 0, then the trace of K has the lower and upper bounds given by

−[∑n
i=1

∣∣λ[i](S)∣∣p]1/p +
√[∑n

i=1

∣∣λ[i](S)∣∣p]2/p + 4/λ[n](R)
[∑n

i=1 λ
p

[i](R)
]1/p

tr
(
QR−1)

2
[∑n

i=1 λ
p

[i](R)
]1/p

/λ[n](R)

≤ tr(K) ≤ cp,qn
2−1/qλ[1](R)

2
[∑n

i=1 λ
p

[i](R)
]1/p

×
⎧⎨
⎩

1
c′p,qn1−1/q

[
−

n∑
i=1

∣∣λ[i](S)∣∣p
]1/p

+

√√√√[ 1
c′p,qn1−1/qN

]2
+

4
cp,qn2−1/qλ[1](R)

Str(QR−1)
⎫⎪⎬
⎪⎭,

(3.4)

whereN denotes [
∑n

i=1 |λ[i](S)|p]1/p and S denotes [
∑n

i=1 λ
p

[i](R)]
1/p

,
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We have

cp,q =
M

p
rM

q

k
−m

p
rm

q

k[
p
(
MrmkM

q

k
−mrMkm

q

k

)]1/p[
q
(
mrMkM

p
r −Mrmkm

p
r

)]1/q ,

Mr = λ[1](R), mr = λ[n](R), Mk = λ[1](K), mk = λ[n](K),

c′p,q=
M

p
sM

q

k
−m

p
sm

q

k[
p
(
MsmkM

q

k
−msMkm

q

k

)]1/p[
q
(
msMkM

p
s −M1mkm

p
s

)]1/q ,

Ms = λ[1](S), ms = λ[n](S), S = R−1AT +AR−1.

(3.5)

Proof. (1) Multiply (1.4) on the right and on the left by R−1/2 to get

R−1/2QR−1/2 = KT
1K1 − R−1/2

(
ATK +KA

)
R−1/2, (3.6)

where K1 = R1/2KR−1/2. Take the trace of all terms in (3.6) to get

tr
(
KT

1K1

)
− tr
(
R−1ATK +KAR−1

)
− tr
(
QR−1

)
= 0. (3.7)

Since K is positive semidefiniteness, λ(K) = Reλ(K), tr(K) =
∑n

i=1 λ[i](K) =
∑n

i=1 Reλ[i](K),
and from Lemma 2.7, we have

tr(K)
n1−1/q ≤ [tr(Kq)]1/q ≤ tr(K), (3.8)

n∑
i=1

λ[i](KK) =
n∑
i=1

λ2[i](K) ≤
[

n∑
i=1

λ[i](K)

]2
= [tr(K)]2. (3.9)

By Cauchy-Schwarz inequality (2.8), it can be shown that

n∑
i=1

λ[i](KK) =
n∑
i=1

λ2[i](K) ≥
[∑n

i=1 λ[i](K)
]2

n
=

[tr(K)]2

n
. (3.10)
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SinceK,Q are positive semidefiniteness, R is positive definiteness, then by (1.5), note that for
i = 1, 2, . . . , n, λ[i](R−1) = λ[i](R−1) = 1/λ[n−i+1](R), and considering (2.6), (3.8), and (3.9), we
have

tr
(
KT

1K1

)
= tr
(
R−1KRK

)
≤

n∑
i=1

λ[i]
(
R−1
)
λ[i](KRK)

=
n∑
i=1

λ[i](KRK)
λ[n−i+1](R)

≤ 1
λ[n](R)

tr(KRK)

≤ 1
λ[n](R)

[
n∑
i=1

λ
p

[i](R)

]1/p
[tr(K)]2.

(3.11)

Note that S = R−1AT +AR−1, λ[i](S) = λ[i](S), then from (1.5)we have

λ[n](S)tr(K) ≤
n∑
i=1

λ[n−i+1]
(
R−1AT +AR−1

)
λ[i](K)

≤ tr
(
R−1ATK +AR−1K

)
= tr
(
R−1ATK +KAR−1

)

≤
n∑
i=1

λ[i]
(
R−1AT +AR−1

)
λ[i](K) ≤ λ[1](S)tr(K).

(3.12)

Combining (3.11) with (3.12), we obtain

1
λ[n](R)

[
n∑
i=1

λ
p

[i](R)

]1/p
[tr(K)]2 − tr(K)λ[n](S) − tr

(
QR−1

)
≥ 0. (3.13)

Solving (3.13) for tr(K) yields the left-hand side of (3.2).
Since K,Q are positive semidefiniteness, R is positive definiteness, then by (1.5), note

that for i = 1, 2, . . . , n, λ[n−i+1](R−1) = λ[n−i+1](R−1) = 1/λ[i](R), and considering (2.6), (3.8),
and (3.10), we have

tr
(
KT

1K1

)
= tr
(
R−1KRK

)
≥

n∑
i=1

λ[n−i+1]
(
R−1
)
λ[i](KRK)

=
n∑
i=1

λ[i](KRK)
λ[i](R)

≥ 1
λ[1](R)

tr(KRK)

≥ 1
cp,qλ[1](R)

[
n∑
i=1

λ
p

[i](R)

]1/p[ n∑
i=1

λ
q

[i](K
2)

]1/q

≥ 1
cp,qn2−1/qλ[1](R)

[
n∑
i=1

λ
p

[i](R)

]1/p
[tr(K)]2.

(3.14)



Journal of Inequalities and Applications 13

Combining (3.12) with (3.14), we obtain

1
cp,qn2−1/qλ[1](R)

[
n∑
i=1

λ
p

[i](R)

]1/p
[tr(K)]2 − tr(K)λ[1](S) − tr

(
QR−1

)
≤ 0. (3.15)

Solving (3.15) for tr(K) yields the right-hand side of (3.2).
(2) Note that when S ≥ 0, by (1.5), (2.6), and (3.8), we have

tr
(
R−1ATK +KAR−1

)
≥

n∑
i=1

λ[n−i+1](S)λ[i](K)

≥ 1
c′p,q

[
n∑
i=1

λ
p

[i](S)

]1/q[ n∑
i=1

λ
q

[i](K)

]1/q

≥ 1
c′p,qn1−1/q

[
n∑
i=1

λ
p

[i](S)

]1/p
tr(K).

(3.16)

Combining (3.11) with (3.16), we obtain

1
λ[n](R)

[
n∑
i=1

λ
p

[i](R)

]1/p
[tr(K)]2 − 1

c′p,qn1−1/q

[
n∑
i=1

λ
p

[i](S)

]1/p
tr(K) − tr

(
QR−1

)
≥ 0. (3.17)

Solving (3.17) for tr(K) yields the left-hand side of (3.3).
By (1.5), (2.6), and (3.8), we have

tr
(
R−1ATK +KAR−1

)
≤

n∑
i=1

λ[i](S)λ[i](K)

≤
[

n∑
i=1

λ
p

[i](S)

]1/p[ n∑
i=1

λ
q

[i](K)

]1/q

≤
[

n∑
i=1

λ
p

[i](S)

]1/p
tr(K).

(3.18)

Combining (3.14) with (3.18), we obtain

1
cp,qn2−1/qλ[1](R)

[
n∑
i=1

λ
p

[i](R)

]1/p
[tr(K)]2 −

[
n∑
i=1

λ
p

[i](S)

]1/p
tr(K) − tr

(
QR−1

)
≤ 0. (3.19)

Solving (3.19) for tr(K) yields the right-hand side of (3.3).
(3) Note that when S ≤ 0, by (3.3), we obtain (3.4) immediately. This completes the

proof.
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Remark 3.2. From Remark 2.6 and Theorem 3.1, we have the following results.
(1) Let p → ∞, q → 1 in (3.2), then we have

λ[n](R)λ[n](S) + λ[n](R)
√
λ2[n](S) +

(
4/λ[n](R)

)
λ[1](R)tr

(
QR−1)

2λ[1](R)

≤ tr(K) ≤ n

2
λ[1](S) +

n

2

√
λ2[1](S) +

4tr
(
QR−1)
n

.

(3.20)

(2) Let p → ∞, q → 1 in (3.3), then we obtain (3.20).
(3) Let p → ∞, q → 1 in (3.4). Note that when S ≤ 0,

lim
p→∞

[
n∑
i=1

|λ[i](S)|p
]1/p

= max
1≤i≤n

∣∣λ[i](S)∣∣ = −λ[n](S),

lim
p→∞
q→ 1

1
c′p,qn1−1/q

[
n∑
i=1

|λ[i](S)|p
]1/p

= min
1≤i≤n

∣∣λ[i](S)∣∣ = −λ[1](S).
(3.21)

Then we can also obtain (3.20).

Note that the right-hand side of (3.20) is (3.1), which implies that Theorem 3.1
improves (3.1).

4. Numerical Examples

In this section, firstly, we will give an example to illustrate that our new trace bounds are
better than those of the recent results. Then, to illustrate that the application in the algebraic
Riccati equations of our results will have different superiority if we choose different p and q,
we will give two examples.

Example 4.1. Let

A =

⎛
⎜⎜⎝

0.2563 0.2588 0.1422

0.2358 2.0451 0.4177

0.8942 0.2547 0.9852

⎞
⎟⎟⎠,

B =

⎛
⎜⎜⎝

0.2587 0.5236 0.8541

0.5236 1.1254 0.3654

0.8541 0.3654 1.2541

⎞
⎟⎟⎠.

(4.1)

Then tr(AB) = 4.9933 and B is symmetric. Using (1.5) yields

0.2173 ≤ tr(AB) ≤ 5.5656. (4.2)
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Using (2.18) yields

0.6079 ≤ tr(AB) ≤ 5.1255, (4.3)

where both lower and upper bounds are better than those of the main result of [18], that is,
(1.5).

Example 4.2. Consider the system (1.1), (1.2)with

A =

⎛
⎜⎜⎝

−15 −23 27

26 −9 4

35 72 18

⎞
⎟⎟⎠, BBT =

⎛
⎜⎜⎝

6 1 3

1 7 4

3 4 8

⎞
⎟⎟⎠, Q =

⎛
⎜⎜⎝

485 49 38

49 64 −92
38 −92 192

⎞
⎟⎟⎠ (4.4)

and consider the corresponding ARE (1.4) with R = BBT ; (A,R) is stabilizable and (Q,A) is
observable. Using (3.20) yields

39.0104 ≤ tr(K) ≤ 682.1538. (4.5)

Using (3.2), when p = q = 2, then we obtain

201.9801 ≤ tr(K) ≤ 271.4, (4.6)

where the upper bound is better than that of the main result of [16], that is, (3.1).

Example 4.3. Consider the system (1.1), (1.2)with

A =

⎛
⎜⎜⎝

20 3 7.5

5 7 9

2 0 4

⎞
⎟⎟⎠, BBT =

⎛
⎜⎜⎝

9 1 3

1 5 2

3 2 6

⎞
⎟⎟⎠, Q =

⎛
⎜⎜⎝

455 332 209

332 304 127.5

209 127.5 125

⎞
⎟⎟⎠ (4.7)

and consider the corresponding ARE (1.4) with R = BBT ; (A,R) is stabilizable and (Q,A) is
observable. Using (3.2), when p = q = 2, then we obtain

5.2895 ≤ tr(K) ≤ 97.2209. (4.8)

Using (3.20) yields

5.6559 ≤ tr(K) ≤ 25.9683, (4.9)

where the lower and upper bounds are better than those of (4.8).
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5. Conclusions

In this paper, we have proposed lower and upper bounds for the trace of the product of
two real square matrices in which one is diagonalizable. We have shown that our bounds
for the trace are the tightest among the parallel trace bounds in symmetric case. Then, we
have obtained some trace bounds for the solution of the algebraic Riccati equations, which
improve some of the previous results under certain conditions. Finally, numerical examples
have illustrated that our bounds are better than those of the previous results.
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