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1. Introduction

The scaled semiconductor drift-diffusion model reads

−∇·(∇ψ) = p − n + C(x), (1.1)

nt − ∇ · Jn = r(n, p)(1 − np) + g, Jn =
(∇(

nm
) − n∇ψ

)
, (1.2)

pt +∇ · Jp = r(n, p)(1 − np) + g, −Jp =
(∇(

pm
)
+ p∇ψ

)
, (1.3)

with x ∈ Ω ⊂ RN , which denotes the bounded domain occupied by semiconductor crystal.
Here, the unknowns ψ, n, and p denote the electrostatic potential, the electron density,
and the hole density, respectively. The Jn represents the electron current, and Jp is the
analogously defined physical quantity of the positively charged holes. Additionally, the given
function C(x) denotes the doping profile (fixed charged background ions) characterizing
the semiconductor under consideration, R(n, p) = r(n, p)(1 − np) the net recombination-
generation rate, and g the laser density. The constants m > 0 are the adiabatic or isothermal
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(if m = 1) exponents. The regime m > 1 describes a slow diffusion process in the electron
(hole) density, whereas 0 < m < 1 is related to fast diffusion.

We supplement these equations with physically motivated boundary conditions [1]:

(ψ, n, p) =
(
ψD, nD, pD

)
, (x, t) ∈ ΣD ≡ ΓD × (0, T), (1.4)

(
∂ψ

∂η
,
∂n

∂η
,
∂p

∂η

)
= (0, 0, 0), (x, t) ∈ ΣN ≡ ΓN × (0, T), (1.5)

(n, p) =
(
n0, p0

)
, x ∈ Ω, t = 0, (1.6)

where ∂Ω splits into two disjoint subsets ΓN and ΓD. ΓN models the union of insulating
boundary segments and ΓD the union of ohmic contacts.

The standard drift-diffusion model corresponding to m = 1 has been mathematically
and numerically investigated in many papers (see [1–4]). Existence and uniqueness of weak
solutions have been shown. Recently, the existence analysis of the bipolar drift-diffusion
problem in the adiabatic case has been studied by many authors [5–9]. But, as far as we
know, fewworks are concernedwith themixed boundary value problem of the drift-diffusion
model with the fast diffusion terms.

The phenomenon of extinction is an important property of solutions for many
evolutionary equations which have been studied extensively by many authors; see, for
example, [10, 11]. Especially, there are some papers concerning the extinction for fast diffusive
equations. For instance, in [12], the extinction and positivity for the evolutionary p-Laplacian
equation without sources were studied by some authors, and Li andWu [13] investigated the
extinction for a fast diffusive filtration equation with nonlinear source terms. But, most of the
work about extinction results is limited to single equation.

We prove first the global existence of weak solutions to problem (1.1)–(1.6) in the sense
of the definition below. When g ≡ 0 and the boundary condition is homogeneous and of
Dirichlet type, we show that the solutions n(x, t), p(x, t) vanish in finite time in the following
two cases.

(i) The initial data are appropriately small.

(ii) The doping profile is sufficiently small and generation rate grows very slowly even
if the initial data are very large.

Simultaneously, the decay estimates of solutions are obtained. For the proof of our result, we
employ Lp-integral model estimate method and a crucial lemma on differential inequality.
This technique has been successfully applied to the porous medium equation [14].

We make the following assumptions.

(H1) Ω ⊂ RN (N = 1, 2, 3) is bounded and ∂Ω ∈ C0,1, whose outward normal vector is η.

(H2) C(x), g(x) ∈ L∞(Ω) and g(x) ≥ 0 for a.e. x ∈ Ω.

(H3) r(n, p) is a locally Lipschitz continuous function defined for (n, p) and 0 ≤ r(n, p) ≤
r < ∞.

(H4) nm
D, p

m
D, ψD ∈ H1(Ω) ∩ L∞(Ω), and nD, pD ≥ 0 in Ω.

(H5) n0, p0 ∈ L∞(Ω) and a.e. n0, p0 ≥ 0 in Ω.
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Remark 1.1. It is obvious that (H4) implies that nD, pD ∈ H1(Ω) ∩ L∞(Ω).
Let

Y =
{
ω ∈ H1(Ω) | ω|ΓD = 0

}
(1.7)

and let Y ∗ denote the dual space of Y .

Definition 1.2. (ψ, n, p) is called the weak solution to problem (1.1)–(1.6) if n ∈ nD +
L2(0, T ;Y ), p ∈ pD + L2(0, T ;Y ), ψ ∈ ψD + L2(0, T ;Y ), nt, pt ∈ L2(0, T ;Y ∗), n|t=0 = n0, p|t=0 =
p0, and there hold

∫

Ω
∇ψ · ∇φdx =

∫

Ω
(p − n + C)φdx, ∀t ∈ (0, T), ∀φ ∈ Y,

〈
nt, v

〉
+
∫T

0

∫

Ω

(∇(
nm) − n∇ψ

) · ∇v dxdt

=
∫T

0

∫

Ω
[r(n, p)(1 − np) + g]v dxdt, ∀v ∈ L2(0, T ;Y ),

〈
pt, v

〉
+
∫T

0

∫

Ω

(∇(
pm

)
+ p∇ψ

) · ∇v dxdt

=
∫T

0

∫

Ω

[
r(n, p)(1 − np) + g

]
v dxdt, ∀v ∈ L2(0, T ;Y ).

(1.8)

2. Existence

This section is devoted to the proof of global existence of weak solutions to problem (1.1)–
(1.6). We will prove the following existence theorem.

Theorem 2.1. Under hypotheses (H1)–(H4), there exists at least one weak solution of problem (1.1)–
(1.6).

The following lemma will be used in the proof of existence result.

Lemma 2.2 (see [9]). Let (H1) hold, α, ν, F ∈ L∞(QT ), and F, ν ≥ 0 for a.e. (x, t) ∈ QT, θ0 ∈
L∞
+ (Ω), θ ∈ H1(Ω)∩L∞(Ω), γ ∈ (L2(QT ))

N
, γ ·η = 0, div γ = i ∈ L∞(QT ) weakly, and α ≥ ε >

0. Then, there exists a unique solution θ of the following problem:

θt − ∇ · (α∇θ − γθ) + νθ = F, (x, t) ∈ QT,

θ|ΣD = θ,
∂θ

∂η

∣∣∣∣
ΣN

= 0, θ(0) = θ0, x ∈ Ω,
(2.1)

such that θ ∈ L2(0, T ;Y ), θt ∈ L2(0, T ;Y ∗
0 ), and

0 ≤ θ ≤ leλt a.e. (x, t) ∈ QT, (2.2)

where l = (‖θ‖L∞(Ω) + ‖θ0‖L∞(Ω) + 1) and λ ≥ ‖i‖L∞(QT ) + ‖F‖L∞(QT ).
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Our main difficulty in the proof is that problem (1.1)–(1.6) is degenerate at points
where n, p = +∞, and is singular at points where n, p = 0. This difficulty leads us to consider
the following auxiliary regularized problem with the initial and boundary conditions (1.4)–
(1.6):

−∇ · (∇ψ) = pk − nk + C(x), (2.3)

nt − ∇ ·
(

m

(
1

nk + τ

)1−m
∇n − n∇ψ

)

= r
(
nk, pk

)(
1 − npk

)
+ g, (2.4)

pt − ∇ ·
(

m

(
1

pk + τ

)1−m
∇p + p∇ψ

)

= r
(
nk, pk

)(
1 − nkp

)
+ g, (2.5)

where 0 < τ < 1 and sk = min{k,max{0, s}}.
Now, we use the Schauder fixed point theorem [15] to prove the existence of weak

solution to the above regularized problem.

Lemma 2.3. Under hypotheses (H1)–(H4), there exists at least one weak solution of problem (2.3)–
(2.5), under conditions (1.4)–(1.6).

Proof. Define the set κ as

κ =
{
x ∈ L2(QT

) | x ≥ 0 a.e. x ∈ QT, ‖x‖L2(QT ) ≤ R
}
. (2.6)

It is obvious that κ is a closed convex set and weakly compact in L2(QT ). Given ñ, p̃ ∈ κ, we
consider the following problems:

−∇ · (∇ψ) = p̃k − ñk + C(x), (2.7)

ψ|ΣD = ψD,
∂ψ

∂η

∣∣∣∣
ΣN

= 0, (2.8)

nt − ∇ ·
(

m

(
1

ñk + τ

)1−m
∇n − n∇ψ

)

+ r
(
ñk, p̃k

)
p̃kn = r

(
ñk, p̃k

)
+ g, (2.9)

n|ΣD = nD,
∂n

∂η

∣∣∣∣
ΣN

= 0, n(0) = n0, x ∈ Ω, (2.10)

pt − ∇ ·
(

m

(
1

p̃k + τ

)1−m
∇p + p∇ψ

)

+ r
(
ñk, p̃k

)
ñkp = r

(
ñk, p̃k

)
+ g, (2.11)

p|ΣD = pD,
∂p

∂η

∣∣∣∣
ΣN

= 0, p(0) = p0, x ∈ Ω. (2.12)

We deduce the existence of a unique weak solution of (2.7) and (2.8) with the regularity
ψ ∈ L2(0, T ;H1(Ω)) ∩ L∞(QT ) from standard theory. Set α = m(1/(ñk + τ))1−m, γ = ∇ψ,
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ν = r(ñk, p̃k)p̃k, and F = r(ñk, p̃k) + g. Lemma 2.2 ensures the existence and uniqueness of
weak solution of problem (2.9)-(2.10)with the regularity n ∈ L2(0, T ;H1(Ω))∩L∞(QT ), where
L∞ estimate of n is dependent on k, τ and the known data, but independent of R by (2.2).
Similar results hold for problem (2.11)-(2.12).

Thus, the map

S : κ2 −→ (
L2(QT )

)2
,

(
ñ, p̃

) �−→ (n, p) (2.13)

is well defined and compact. For the above given R, S(κ2) ↪→ κ2 holds if we choose R
sufficiently large. By using the standard method (for details, see [5] or [9]), we can obtain
the continuity of map S. Thus, existence of a fixed point of S follows the weak solution of
problem (2.3)–(2.5), under conditions (1.4)–(1.6).

Lemma 2.4. The weak solutions of problem (2.3)–(2.5), under conditions (1.4)–(1.6), satisfy the
estimates

0 ≤ n(x, t), p(x, t) ≤ k, a.e. (x, t) ∈ QT, (2.14)

if one chooses k such that

k ≥ M := max
{
sup
Ω

{
n0, p0

}
, sup

ΣD

{
nD, pD

}
}
e(r+‖g‖L∞(Ω)+‖C(x)‖L∞(Ω))T . (2.15)

Proof. Set N = ne−βt and P = pe−βt; here β > 0 is to be determined. Then, (N,P) satisfies

Nt + βN − ∇ ·
(

m

(
1

(eβtN)k+τ

)1−m
∇N−N∇ψ

)

= e−βt
[
r
(
nk, pk

)(
1 − npk

)
+g

]
,

(2.16)

Pt + βP − ∇ ·
(

m

(
1

(eβtP)k+τ

)1−m
∇P+P∇ψ

)

= e−βt
[
r
(
nk, pk

)(
1 − nkp

)
+g

]
, (x, t) ∈ QT,

(2.17)
(
eβtN, eβtP

)
=
(
nD, pD

)
, (x, t) ∈ ΣD, (2.18)

(
∂N

∂η
,
∂P

∂η

)
= (0, 0), (x, t) ∈ ΣN, (2.19)

(N,P) =
(
n0, p0

)
, x ∈ Ω, t = 0. (2.20)

To obtain the upper bound, we compare N and P with z(t) := k0e
(μ−β)t, where

k0 ≥ max
{
sup
Ω

{
n0, p0

}
, sup

ΣD

{
nD, pD

}
}
, (2.21)
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and μ such that μ > β is a large constant which can be determined by the following
calculations. Then, we could take (N − z)+ and (P − z)+ as test functions in (2.16) and (2.17),
respectively, and obtain

1
2

∫

Ω

[
(N − z)+

2
(t) + (P − z)+

2
(t)

]
+ β

∫ t

0

∫

Ω

[
(N − z)+

2
+ (P − z)+

2]

+
∫ t

0

∫

Ω
m

(
1

(eβtN)k + τ

)1−m
∣
∣∇(N − z)+

∣
∣2 +

∫ t

0

∫

Ω
m

(
1

(eβtP)k + τ

)1−m
∣
∣∇(P − z)+

∣
∣2

≤ −μ
∫ t

0

∫

Ω
z
[
(N − z)+ + (P − z)+

]
+
∫ t

0

∫

Ω

[
N · ∇(N − z)+ − P · ∇(P − z)+

] · ∇ψ

+
∫ t

0

∫

Ω
e−βt

[
r
(
nk, pk

)
+ g

][
(N − z)+ + (P − z)+

]

≤ −μ
∫ t

0

∫

Ω
z
[
(N − z)+ + (P −N)+

]
+
1
2

∫ t

0

∫

Ω

(
pk − nk + C(x)

)[
(N − z)+

2 − (P − z)+
2
]

+
∫ t

0

∫

Ω

(
r + g

)
z
[
(N − z)+(P −N)+

]
+
∫ t

0

∫

Ω
z
(
pk − nk + C(x)

)[
(N − z)+ + (P − z)+

]

≤ ( − μ + r + ‖g‖L∞(Ω) + ‖C(x)‖L∞(Ω)
)
∫ t

0

∫

Ω
z
[
(N − z)+ + (P − z)+

]

+
1
2
‖C(x)‖L∞(Ω)

∫ t

0

∫

Ω

[
(N − z)+

2
+ (P − z)+

2
]
,

(2.22)

where in the last inequality we have used

(
pk − nk

)[
(N − z)+ − (P − z)+

]
= e−βt

(
pk − nk

)[(
n − k0e

μt)+ − (
p − k0e

μt)+
]
≤ 0. (2.23)

Choosing β = (1/2)‖C(x)‖L∞(Ω) and μ ≥ r + ‖g‖L∞(Ω) + ‖C(x)‖L∞(Ω), we get

1
2

∫

Ω

[
(N − z)+

2
(t) + (P − z)+

2
(t)

]
+m

(
1

k + τ

)1−m∫ t

0

∫

Ω

[∣∣∇(N − z)+
∣∣2 +

∣∣∇(P − z)+
∣∣2] ≤ 0.

(2.24)

Hence, (N − z)+ + (P − z)+ = 0 a.e. (x, t) ∈ QT ; this implies n ≤ k0e
μt and p ≤ k0e

μt.
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Thus, we obtain a weak solution of the following problem:

−∇ · (∇ψ) = p − n + C(x), (2.25)

nt − ∇ ·
(

m

(
1

n + τ

)1−m
∇n − n∇ψ

)

= r(n, p)(1 − np) + g, (2.26)

pt − ∇ ·
(

m

(
1

p + τ

)1−m
∇p + p∇ψ

)

= r(n, p)(1 − np) + g, (2.27)

with the initial and boundary conditions (1.4)–(1.6).
In what follows, we give some estimates of the weak solutions to the above problem

uniformly in τ , which are necessary in the proof of Theorem 2.1.

Lemma 2.5. The solutions of problem (2.25)–(2.27), under conditions (1.4)–(1.6), satisfy the
estimates

m2
∫T

0

∫

Ω

[(
1

n + τ

)2−2m∣∣∇n
∣∣2 +

(
1

p + τ

)2−2m∣∣∇p
∣∣2
]

≤ C, (2.28)

where C is independent of τ .

Proof. First of all, a standard elliptic estimate gives

‖∇ψ‖L2(QT ) ≤ C
(
1 + ‖n‖L2(QT ) + ‖p‖L2(QT )

) ≤ C. (2.29)

Let

ϕ
(
n, nD

)
= m

∫n

nD

(
1

s + τ

)1−m
ds. (2.30)

Since ϕ(n, nD)|ΓD = 0 and

∫T

0

∫

Ω

∣∣∇ϕ
(
n, nD

)∣∣2 ≤ 2m2
∫T

0

∫

Ω

[(
1

n + τ

)2−2m∣∣∇n
∣∣2 +

(
1

nD + τ

)2−2m∣∣∇nD

∣∣2
]

≤ 2m2
(
1
τ

)2−2m(∥∥n
∥∥2
L2(0,T ;H1(Ω)) +

∥∥nD

∥∥2
L2(0,T ;H1(Ω))

)
≤ C(τ),

(2.31)

we have ϕ(n, nD) ∈ L2(0, T ;Y ). Then,

m2
∫T

0

∫

Ω

(
1

n + τ

)2−2m
|∇n|2 = m2

∫T

0

∫

Ω

(
1

n + τ

)1−m
∇n·

(
1

nD + τ

)1−m
∇nD

−
∫T

0

∫

Ω
ntϕ

(
n, nD

)
+
∫T

0

∫

Ω
n∇ψ · ∇ϕ

(
n, nD

)

+
∫T

0

∫

Ω

[
r(n, p)(1 − np) + g

]
ϕ
(
n, nD

)

= I1 + I2 + I3 + I4.

(2.32)
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By Young’s inequality and (2.29), we have

I1 ≤ m2

4

∫

0

∫

Ω

(
1

n + τ

)2−2m
|∇n|2 +

∫T

0

∫

Ω

∣
∣∇(

nm
D

)∣∣2, (2.33)

I3 ≤ 1
8

∫T

0

∫

Ω

∣
∣∇ϕ

(
n, nD

)∣∣2 + 4
∫T

0

∫

Ω
|n∇ψ|2

≤ m2

4

∫T

0

∫

Ω

(
1

n + τ

)2−2m
|∇n|2 + m2

4

∫T

0

∫

Ω

∣
∣∇(

nm
D

)∣∣2 + 4M2‖∇ψ‖2
L2(QT )

≤ m2

4

∫T

0

∫

Ω

(
1

n + τ

)2−2m
|∇n|2 + C.

(2.34)

Furthermore,

I4 ≤ m
[
r
(
1 +M2) + ‖g‖L∞(Ω)

]
∫T

0

∫

Ω

[∫n

0

(
1

s + τ

)1−m
ds +

∫nD

0

(
1

s + τ

)1−m
ds

]

≤ 2m
[
r
(
1 +M2) + ‖g‖L∞(Ω)

]∣∣QT

∣∣
∫M

0

(
1

s + τ

)1−m
ds ≤ C.

(2.35)

For the term I2, we see that

∣∣I2
∣∣ ≤

∣∣∣∣

∫T

0

∫

Ω
nϕt

(
n, nD

)
∣∣∣∣ +

∣∣∣∣

∫

Ω
n(T)ϕ

(
n, nD

)
(T)

∣∣∣∣ +
∣∣∣∣

∫

Ω
n(T)ϕ

(
n, nD

)
(0)

∣∣∣∣

≤ m

∣∣∣∣∣

∫T

0

∫

Ω
nnt

(
1

n + τ

)1−m∣∣∣∣∣
+ 4M|Ω|

∫M

0

(
1

s + τ

)1−m
ds

≤ m

∣∣∣∣∣

∫T

0

∫

Ω

∂

∂t

(∫n

0
s

(
1

s + τ

)1−m
ds

)∣∣∣∣∣
+ C

≤ m

∣∣∣∣∣

∫

Ω

∫n(x,T)

n0(x)
s

(
1

s + τ

)1−m
ds

∣∣∣∣∣
+ C ≤ C.

(2.36)

Inserting (2.33)–(2.36) into (2.32), we finally get

m2
∫T

0

∫

Ω

(
1

n + τ

)2−2m
|∇n|2 ≤ C. (2.37)

A similar estimate holds for p, and then we complete the proof.

Lemma 2.6. The weak solutions n and p of problem (2.25)–(2.27), under conditions (1.4)–(1.6),
satisfy the following estimate:

‖∇n‖L2(QT ), ‖∇p‖L2(QT ) ≤ C. (2.38)
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Proof. We will only prove that (2.38) holds for n. The rest can be derived similarly. Without
loss of generality, we assume 0 < τ < 1. Then, we conclude that

∫T

0

∫

Ω
|∇n|2 =

∫T

0

∫

Ω
(n + τ)2−2m

[(
1

n + τ

)1−m
|∇n|

]2

≤ (M + 1)2−2m
∫T

0

∫

Ω

[(
1

n + τ

)1−m
|∇n|

]2

≤ C.

(2.39)

Following Lemmas 2.5 and 2.6, we can easily get the following lemma.

Lemma 2.7. The weak solutions n and p of problem (2.25)–(2.27), under conditions (1.4)–(1.6),
satisfy the following estimate:

∥∥nt

∥∥
L2(0,T ;Y ∗),

∥∥pt
∥∥
L2(0,T ;Y ∗) ≤ C. (2.40)

Proof of Theorem 2.1. Let {ψτ , nτ , pτ} be the sequence of solutions of problem (2.25)–(2.27),
under conditions (1.4)–(1.6). By passing to a subsequence, if necessary, from Lemmas 2.4–
2.7, we infer that

((
nε

)
t,
(
pε)t

) −→ (
nt, pt

)
weakly in L2(0, T ;Y ∗),

(
ψε, nε, pε

) −→ (ψ, n, p) strongly in L2(QT

)
, a.e. in QT,

(
ψε, nε, pε

) −→ (ψ, n, p) weakly in L2(0, T ;H1(Ω)
)
,

(∇(n + τ)m,∇(p + τ)m
) −→ (∇(

nm
)
,∇(

pm
))

weakly in L2(QT

)
.

(2.41)

Now, we can conclude that (ψ, n, p) is a weak solution of problem (1.1)–(1.6) by standard
method, and then complete the proof of Theorem 2.1.

3. Extinction

Besides the assumptions (H1)–(H5), we need for our extinction result the following structural
condition on r(n, p).

(H6) r(n, p) ≤ ρ0(n + p) for some positive constant ρ0.
Because r(n, p) denotes the generation term in the recombination-generation rate, this

condition means that the generation rate grows very slowly in (n, p)when ρ0 is very small.
Additionally, we replace boundary conditions (1.4)-(1.5)with homogeneous Dirichlet

conditions

n = p = ψ = 0, x ∈ ∂Ω × (0, T). (3.1)

It is obvious that the existence of weak solutions of problem (1.1)–(1.3), under conditions
(3.1) and (1.6), can be obtained in easier way than the case of mixed boundary value problem.



10 Journal of Inequalities and Applications

Before stating our main result in this section, we list the following important condi-
tions in Theorem 3.1:

∥
∥C(x)

∥
∥
L∞(Ω) + 2ρ0≤ 1

2
C−2

0 |Ω|−2m/(m+1)+(N−2)/N

×
(∥
∥n0

∥
∥m+1
Lm+1(Ω)+

∥
∥p0

∥
∥m+1
Lm+1(Ω)

)(m−1)/(m+1)
,

(3.2)

∥
∥n0

∥
∥m+1
Lm+1(Ω) +

∥
∥p0

∥
∥m+1
Lm+1(Ω) ≤

(
C−2

0 |Ω|−2m/(m+1)+(N−2)/N

‖C(x)‖L∞(Ω) + 2ρ0

)(1+m)/(1−m)

, (3.3)

∥
∥C(x)

∥
∥
L∞(Ω) + 2ρ0 ≤ 2ms

(m + s)2
C−2

0

(∥
∥n0

∥
∥s+1
Ls+1(Ω) +

∥
∥p0

∥
∥s+1
Ls+1(Ω)

)(m−1)/(s+1)
, (3.4)

∥∥n0
∥∥s+1
Ls+1(Ω) +

∥∥p0
∥∥s+1
Ls+1(Ω) ≤

[
4msC−2

0

(m + s)2
(∥∥C(x)

∥∥
L∞(Ω) + 2ρ0

)

](1+s)/(1−m)

, (3.5)

where s = (N(1 −m)/2) − 1 and C0 is the embedding constant of the following inequality:

‖u‖L2N/(N−2)(Ω) ≤ C0‖∇u‖L2(Ω), ∀u ∈ H1
0(Ω). (3.6)

Theorem 3.1. Let (H1)–(H6) be fulfilled, let g(x) ≡ 0, and let (ψ, n, p) be a weak solution of problem
(1.1)–(1.3), under conditions (3.1) and (1.6). Then, one has the following.

(i) If (3.2) or (3.3) below is satisfied, then u(x, t) and p(x, t) vanish in the finite time for
(N − 2)/(N + 2) ≤ m < 1, and

∥∥n(·, t)∥∥m+1
Lm+1(Ω) +

∥∥p(·, t)∥∥m+1
Lm+1(Ω) ≤ B1e

−α1t, t ∈ [
0, T01

)
,

∥∥n(·, t)∥∥m+1
Lm+1(Ω) +

∥∥p(·, t)∥∥m+1
Lm+1(Ω)

≤
[(∥∥n

(·, T01
)∥∥m+1

Lm+1(Ω)+
∥∥p

(·, T01
)∥∥m+1

Lm+1(Ω)

)(1−m)/(1+m)− C1(1−m)
1+m

t

](1+m)/(1−m)

,

t ∈ [
T01, T1

)
,

∥∥n(·, t)∥∥m+1
Lm+1(Ω) +

∥
∥p(·, t)∥∥m+1

Lm+1(Ω) ≡ 0, t ∈ [
T1,∞

)
.

(3.7)

(ii) If (3.4) or (3.5) below is satisfied, then u(x, t) and p(x, t) vanish in the finite time for
0 < m < (N − 2)/(N + 2), and

∥∥n(·, t)∥∥s+1
Ls+1(Ω) +

∥∥p(·, t)∥∥s+1
Ls+1(Ω) ≤ B2e

−α2t, t ∈ [
0, T02

)
,

∥∥n(·, t)∥∥s+1
Ls+1(Ω) +

∥∥p(·, t)∥∥s+1
Ls+1(Ω)

∥∥n(·, t)∥∥s+1
Ls+1(Ω) +

∥∥p(·, t)∥∥s+1
Ls+1(Ω)

≤
[(∥∥n

(·, T02
)∥∥s+1

Ls+1(Ω)+
∥∥p

(·, T02
)∥∥s+1

Ls+1(Ω)

)(1−m)/(1+s)− C2(1−m)
1+s

t

](1+s)/(1−m)

,

t ∈ [
T02, T2

)
,

∥∥n(·, t)∥∥s+1
Ls+1(Ω) +

∥∥p(·, t)∥∥s+1
Ls+1(Ω) ≡ 0, t ∈ [

T2,∞
)
.

(3.8)

Here, C1, C2, T1, and T2 will be given by (3.22), (3.32), (3.25), and (3.33), respectively.
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To obtain the above result, we will use the following lemma which is of crucial impor-
tance to the proof.

Lemma 3.2. Let 0 < k < q ≤ 1, and let y(t) ≥ 0 be a solution of the differential inequality

dy
dt

+ βyk ≤ σyq (t ≥ 0), y(0) = y0 ≥ 0, (3.9)

where β and σ are positive constants. If

(i) y0 <

(
β

σ

)1/(q−k)
or (ii) σ ≤ βy

k−q
0

2
(3.10)

holds, then there exist α > 0 and B > 0 such that

0 ≤ y(t) ≤ Be−αt, t ≥ 0. (3.11)

Proof. We will use upper and lower solutions’ methods to complete the proof. The proof of
case (i) is basically the same as method of case (ii). So, we are only devoted to the proof of
case (i). In fact, we only need to choose α, B properly such that Be−αt is an upper solution of
(3.9). That is, α and B must satisfy

−αBe−αt + βBke−αkt ≥ σBqe−αqt (t ≥ 0), B ≥ y0. (3.12)

Choose B such that lnB < ln(β/σ)/(q − k) and α sufficiently small. Then,

σ

β
Bq−k +

α

β
B1−k ≤ 1, (3.13)

which implies that

α(q − k)t ≥ ln

(
σ

β
Bq−k +

α

β
B1−k

)

, ∀t ≥ 0. (3.14)

Noting that 0 < q ≤ 1, therefore we have

e−α(k−q)t ≥ σ

β
Bq−k +

α

β
B1−ke−(1−q)αt, ∀t ≥ 0, (3.15)

which is equivalent to (3.12) if y0 ≤ B < (β/σ)1/(q−k). The lemma is proved.

Proof of Theorem 3.1. We consider first the case (N−2)/(N+2) ≤ m < 1. Multiplying (1.2) and
(1.3) by nm and pm, respectively, and employing the Poisson equation (1.1), we get

1
m + 1

d
dt

∫

Ω

(
nm+1 + pm+1)dx +

∫

Ω

[∣∣∇(
nm)∣∣2 +

∣∣∇(
pm

)∣∣2]dx

=
m

m + 1

∫

Ω

(
p − n + C(x)

)(
nm+1 + pm+1)dx +

∫

Ω
r(n, p)(1 − np)

(
nm + pm

)
dx

= I1 + I2.

(3.16)
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The embedding theorem gives

‖n‖m
Lm+1(Ω) ≤ |Ω|m/(m+1)−(N−2)/2N‖nm‖L2N/(N−2)(Ω)

≤ C0|Ω|m/(m+1)−(N−2)/2N∥
∥∇(

nm)
∥
∥
L2(Ω

),
(3.17)

and similarly for p.
By Young’s inequality, we have

I2 ≤ ρ0

∫

Ω
(n + p)

(
nm + pm

)
dx ≤ 2ρ0

∫

Ω

(
nm+1 + pm+1)dx. (3.18)

By (3.16)–(3.18), taking into account (p − n)(nm+1 − pm+1) ≤ 0, we obtain

d
dt

f1(t) + (m + 1)C−2
0 |Ω|−2m/(m+1)+(N−2)/Nf1(t)

2m/(m+1) ≤ (m + 1)
(∥∥C(x)

∥
∥
L∞(Ω) + 2ρ0

)
f1(t),

(3.19)

where

f1(t) = ‖n‖m+1
Lm+1(Ω) + ‖p‖m+1

Lm+1(Ω). (3.20)

By Lemma 3.2, there exist α1 and B1 such that

0 ≤ f1(t) ≤ B1e
−α1t, t ≥ 0, (3.21)

if (3.2) or (3.3) holds.
Furthermore, there exist T01 such that

(1 +m)
[
C−2

0 |Ω|−2m/(m+1)+(N−2)/N − (∥∥C(x)
∥∥
L∞(Ω) + 2ρ0

)
f1(t)

(1−m)/(1+m)]

≥ (1 +m)
[
C−2

0 |Ω|−2m/(m+1)+(N−2)/N − (∥∥C(x)
∥∥
L∞(Ω) + 2ρ0

)(
B1e

−α1T01
)(1−m)/(1+m)]

:= C1 > 0
(3.22)

holds for t ∈ [T01,∞). Thus, when t ∈ [T01,∞), (3.19) turns to

d
dt

f1(t) + C1f1(t)
2m/(m+1) ≤ 0, t ≥ T01. (3.23)

By a direct calculation, we deduce that

f1(t) ≤
[

f1
(
T01

)(1−m)/(1+m) − C1(1 −m)
1 +m

t

](1+m)/(1−m)

, t ∈ [
T01, T1

)
,

f1(t) ≡ 0, t ∈ [
T1,∞

)
,

(3.24)

where

T1 =
1 +m

C1(1 −m)

(∥∥n
(·, T01

)∥∥m+1
Lm+1(Ω) +

∥∥p
(·, T01

)∥∥m+1
Lm+1(Ω)

)(1−m)/(1+m)
. (3.25)
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For the case 0 < m < (N − 2)/(N + 2), using ns and ps as test functions in (1.2) and
(1.3), respectively, we obtain

1
s + 1

d
dt

∫

Ω

(
ns+1 + ps+1

)
dx +

4ms

(m + s)2

∫

Ω

[∣∣∇(
n(m+s)/2)∣∣2 +

∣
∣∇(

p(m+s)/2)∣∣2]dx

=
s

s + 1

∫

Ω

(
p − n + C(x)

)(
ns+1 + ps+1

)
dx +

∫

Ω
r(n, p)(1 − np)

(
ns + ps

)
dx.

(3.26)

To simplify, we denote

f2(t) = ‖n‖s+1
Ls+1(Ω) + ‖p‖s+1

Ls+1(Ω). (3.27)

Hence, we have

d
dt

f2(t) +
4(s + 1)ms

(m + s)2
C−2

0 f2(t)
(m+s)/(1+s) ≤ (s + 1)

(∥∥C(x)
∥∥
L∞(Ω) + 2ρ0

)
f2(t), (3.28)

where we have used

‖u‖(m+s)/2
Ls+1(Ω) =

(∫

Ω
u(m+s)/2 · 2N/(N−2)dx

)(N−2)/2N
≤ C0

∥∥∇(
u(m+s)/2)∥∥

L2(Ω), ∀u ∈ H1
0(Ω).

(3.29)

By Lemma 3.2, there exist α2 and B2 such that

0 ≤ f2(t) ≤ B2e
−α2t, t ≥ 0, (3.30)

if (3.4) or (3.5) holds.
By a simple analysis similar to that of the case (N − 2)/(N + 2) ≤ m < 1, we obtain

f2(t) ≤
[
f2
(
T02

)(1−m)/(1+s) − C2(1 −m)
1 + s

t

](1+s)/(1−m)

, t ∈ [
T02, T2

)
,

f2(t) ≡ 0, t ∈ [
T2,∞

)
,

(3.31)

where

C2 = (s + 1)
[

4ms

(m + s)2
C−2

0 − (∥∥C(x)
∥∥
L∞(Ω) + 2ρ0

)(
B2e

−α2T02
)(1−m)/(1+s)

]
> 0, (3.32)

T2 =
1 + s

C2(1 −m)

(∥∥n
(·, T02

)∥∥s+1
Ls+1(Ω) +

∥∥p
(·, T02

)∥∥s+1
Ls+1(Ω)

)(1−m)/(1+s)
. (3.33)
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