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1. Introduction

Throughout the paper, R denotes the set of real numbers, x = (x1, x2, . . . , xn) denotes n-tuple
(n-dimensional real vector), the set of vectors can be written as

R
n =

{
x =

(
x1, . . . , xn

)
: xi ∈ R, i = 1, . . . , n

}
,

R
n
+ =

{
x =

(
x1, . . . , xn

)
: xi ≥ 0, i = 1, . . . , n

}
,

R
n
++ =

{
x =

(
x1, . . . , xn

)
: xi > 0, i = 1, . . . , n

}
.

(1.1)

In particular, the notations R, R+, and R++ denote R1, R1
+, and R

1
++, respectively.

In what follows, we assume that (a, b) ∈ R
2
+.

The classical Heronian means of a and b is defined as ([1], see also [2])

He(a, b) =
a +

√
ab + b

3
. (1.2)
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In [3], an analogue of Heronian means is defined by

H̃(a, b) =
a + 4

√
ab + b

6
. (1.3)

Janous [4] presented a weighted generalization of the above Heronian-type means, as
follows:

Hw(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

a +w
√
ab + b

w + 2
, 0 ≤ w < +∞,

√
ab, w = +∞.

(1.4)

Recently, the following exponential generalization of Heronian means was considered
by Jia and Cao in [5],

Hp = Hp(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

[
ap + (ab)p/2 + bp

3

]1/p
, p /= 0,

√
ab, p = 0.

(1.5)

Several variants as well as interesting applications of Heronian means can be found in
the recent papers [6–11].

The weighted and exponential generalizations of Heronian means motivate us to
consider a unified generalization of Heronian means (1.4) and (1.5), as follows:

Hp,w(a, b) =

⎧
⎪⎪⎨

⎪⎪⎩

[
ap +w(ab)p/2 + bp

w + 2

]1/p

, p /= 0,

√
ab, p = 0,

(1.6)

where w ≥ 0.
In this paper, the Schur convexity, Schur-geometric convexity, and monotonicity of

the generalized Heronian meansHp,w(a, b) are discussed. As consequences, some interesting
inequalities for generalized Heronian means are obtained.

2. Definitions and lemmas

We begin by introducing the following definitions and lemmas.

Definition 2.1 (see [12, 13]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ R
n.

(1) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤ ∑k
i=1 y[i] for k =

1, 2, . . . , n − 1 and
∑n

i=1 xi =
∑n

i=1 yi, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are
rearrangements of x and y in a descending order.

(2) x ≥ y means that xi ≥ yi for all i = 1, 2, . . . , n. Let Ω ⊂ R
n, ϕ : Ω → R is said to be

increasing if x ≥ y implies ϕ(x) ≥ ϕ(y). ϕ is said to be decreasing if and only if −ϕ is
increasing.
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(3) Let Ω ⊂ R
n, ϕ : Ω → R is said to be a Schur-convex function on Ω if x ≺ y on Ω

implies ϕ(x) ≤ ϕ(y). ϕ is said to be a Schur-concave function on Ω if and only if −ϕ
is Schur-convex function.

Definition 2.2 (see [14, 15]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ R
n
++.

(1) Ω is called a geometrically convex set if (xα
1y

β

1 , . . . , x
α
ny

β
n) ∈ Ω for any x and y ∈ Ω,

where α and β ∈ [0, 1] with α + β = 1.

(2) Let Ω ⊂ R
n
++, ϕ : Ω → R+ is said to be a Schur-geometrically convex function on

Ω if (lnx1, . . . , lnxn) ≺ (lny1, . . . , lnyn) on Ω implies ϕ(x) ≤ ϕ(y). ϕ is said to be a
Schur-geometrically concave function onΩ if and only if −ϕ is Schur-geometrically
convex function.

Lemma 2.3 (see [12, page 38]). A function ϕ(x) is increasing if and only if ∇ϕ(x) ≥ 0 for x ∈ Ω,
where Ω ⊂ R

n is an open set, ϕ : Ω → R is differentiable, and

∇ϕ(x) =
(
∂ϕ(x)
∂x1

, . . . ,
∂ϕ(x)
∂xn

)
∈ R

n. (2.1)

Lemma 2.4 (see [12, page 58]). Let Ω ⊂ R
n is symmetric and has a nonempty interior set. Ω0

is the interior of Ω. ϕ : Ω → R is continuous on Ω and differentiable in Ω0. Then, ϕ is the
Schur-convex(Schur-concave) function, if and only if ϕ is symmetric on Ω and

(
x1 − x2

)
(

∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0 (≤ 0) (2.2)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0.

Lemma 2.5 (see [14, page 108]). Let Ω ⊂ R
n
++ is a symmetric and has a nonempty interior

geometrically convex set. Ω0 is the interior of Ω. ϕ : Ω → R+ is continuous on Ω and differentiable
in Ω0. If ϕ is symmetric on Ω and

(
lnx1 − lnx2

)
(
x1

∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (≤ 0) (2.3)

holds for any x = (x1, x2, . . . , xn) ∈ Ω0, then ϕ is the Schur-geometrically convex (Schur-
geometrically concave) function.

Lemma 2.6 (see [12, page 5]). Let x ∈ R
n and x = (1/n)

∑n
i=1 xi. Then,

(
x, . . . , x

) ≺ x. (2.4)
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Lemma 2.7 (see [16, page 43]). The generalized logarithmic means (Stolarsky’s means) of two
positive numbers a and b is defined as follows

Sp(a, b) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
bp − ap

p(b − a)

)1/(p−1)
, p /= 0, 1, a /= b,

e−1
(
aa

bb

)1/(a−b)
, p = 1, a /= b,

b − a

ln b − lna
, p = 0, a /= b,

b, a = b,

(2.5)

when a/= b, Sp(a, b) is a strictly increasing function for p ∈ R.

Lemma 2.8 (see [17]). Let a, b > 0 and a/= b. If x > 0, y ≤ 0 and x + y ≥ 0, then,

bx+y − ax+y

bx − ax
≤ x + y

x
(ab)y/2. (2.6)

3. Main results and their proofs

Our main results are stated in Theorems 3.1 and 3.2 below.

Theorem 3.1. For fixed (p,w) ∈ R
2,

(1) Hp,w(a, b) is increasing for (a, b) ∈ R
2
+;

(2) if (p,w) ∈ {p ≤ 1, w ≥ 0} ∪ {1 < p ≤ 3/2, w ≥ 1} ∪ {3/2 < p ≤ 2, w ≥ 2}, then,
Hp,w(a, b) is Schur concave for (a, b) ∈ R

2
+;

(3) if p ≥ 2, 0 ≤ w ≤ 2, then, Hp,w(a, b) is Schur convex for (a, b) ∈ R
2
+.

Proof. Let

ϕ(a, b) =
ap +w(ab)p/2 + bp

w + 2
, (3.1)

when p /= 0 and w ≥ 0, we have Hp,w(a, b) = ϕ1/p(a, b). It is clear that Hp,w(a, b) is symmetric
with (a, b) ∈ R

2
+.

Since

∂Hp,w(a, b)
∂a

=
1

w + 2

[
ap−1 +

wb

2
(ab)p/2−1

]
ϕ1/p−1 (a, b) ≥ 0,

∂Hp,w(a, b)
∂b

=
1

w + 2

[
bp−1 +

wa

2
(ab)p/2−1

]
ϕ1/p−1 (a, b) ≥ 0,

(3.2)

we deduce from Lemma 2.3 that Hp,w(a, b) is increasing for (a, b) ∈ R
2
+.
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Let

Λ := (b − a)

(
∂Hp,w(a, b)

∂b
− ∂Hp,w(a, b)

∂a

)

, (3.3)

when a = b, then Λ = 0. We assume a/= b below.
Let Λ = ((b − a)2/(w + 2))ϕ1/p−1(a, b)Q, where

Q =
bp−1 − ap−1

b − a
− w

2
(ab)p/2−1. (3.4)

We consider the following four cases.

Case 1. If p ≤ 1, w ≥ 0, then (bp−1 − ap−1)/(b − a) ≤ 0, which implies that Λ ≤ 0. It follows
from Lemma 2.4 that Hp,w(a, b) is Schur concave.

Case 2. If 1 < p ≤ 3/2, w ≥ 1, then p − 1 ≤ 1/2 ≤ w/2.
In Lemma 2.8, letting x = 1, y = p − 2, which implies x > 0, y < 0, x + y > 0. By

Lemma 2.8 we have

bp−1 − ap−1

b − a
≤ (p − 1)(ab)(p−2)/2 ≤ w

2
(ab)p/2−1. (3.5)

We conclude that Λ ≤ 0. Therefore, Hp,w(a, b) is Schur concave.

Case 3. If 3/2 < p ≤ 2, w ≥ 2, then p − 1 ≤ 1 ≤ w/2.
In Lemma 2.8, letting x = 1, y = p − 2, which implies x > 0, y ≤ 0, x + y > 0. By

Lemma 2.8 we have

bp−1 − ap−1

b − a
≤ (p − 1)(ab)(p−2)/2 ≤ w

2
(ab)p/2−1, (3.6)

it follows that Λ ≤ 0. Therefore, Hp,w(a, b) is Schur concave.

Case 4. If p ≥ 2, 0 ≤ w ≤ 2. Note that

Q = (p − 1)
[
Sp−1(a, b)

]p−2 − w

2
[
S−1(a, b)

]p−2
. (3.7)

By Lemma 2.7, we obtain that Sp(a, b) is increasing for p ∈ R. Thus, we conclude that
[Sp−1(a, b)]

p−2 ≥ [S−1(a, b)]
p−2. Then, using p − 1 ≥ 1 ≥ w/2, we have Λ ≥ 0. Therefore,

Hp,w(a, b) is Schur convex.

This completes the proof of Theorem 3.1.
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Theorem 3.2. For fixed (p,w) ∈ R
2,

(1) if p < 0, w ≥ 0, thenHp,w(a, b) is Schur-geometrically concave for (a, b) ∈ R
2
++;

(2) if p > 0, w ≥ 0, thenHp,w(a, b) is Schur-geometrically convex for (a, b) ∈ R
2
++.

Proof. Since

a
∂Hp,w(a, b)

∂a
=

1
w + 2

[
ap +

wb

2
(ab)p/2

]
ϕ1/p−1(a, b),

b
∂Hp,w(a, b)

∂b
=

1
w + 2

[
bp +

wa

2
(ab)p/2

]
ϕ1/p−1(a, b),

(3.8)

we have

Δ := (ln b − lna)

(

a
∂Hp,w(a, b)

∂b
− b

∂Hp,w(a, b)
∂a

)

=
(ln b − lna)

(
bp − ap

)

w + 2
ϕ1/p−1(a, b),

(3.9)

when p < 0, w ≥ 0, then (ln b − lna)(bp − ap) ≤ 0, which implies that Δ ≤ 0. Therefore,
Hp,w(a, b) is Schur-geometrically concave.

When p > 0, w ≥ 0, then (ln b − lna)(bp − ap) ≥ 0, which implies that Δ ≥ 0. Therefore,
Hp,w(a, b) is Schur-geometrically convex.

The proof of Theorem 3.2 is complete.

4. Some applications

In this section, we provide several interesting applications of Theorems 3.1 and 3.2.

Theorem 4.1. Let 0 < a ≤ b, A(a, b) = (a+b)/2, u(t) = tb+(1− t)a, v(t) = ta+(1− t)b, and let
1/2 ≤ t2 ≤ t1 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1/2. If (p,w) ∈ {p ≤ 1, w ≥ 0} ∪ {1 < p ≤ 3/2, w ≥ 1} ∪ {3/2 <
p ≤ 2, w ≥ 2}, then,

A(a, b) ≥ Hp,w

(
u
(
t2
)
, v

(
t2
)) ≥ Hp,w

(
u
(
t1
)
, v

(
t1
)) ≥ Hp,w(a, b). (4.1)

If p ≥ 2, 0 ≤ w ≤ 2, then each of the inequalities in (4.1) is reversed.

Proof. When 1/2 ≤ t2 ≤ t1 ≤ 1. From 0 < a ≤ b, it is easy to see that u(t1) ≥ v(t1), u(t2) ≥
v(t2), b ≥ u(t1) ≥ u(t2), and u(t2) + v(t2) = u(t1) + v(t1) = a + b.

We thus conclude that

(
u
(
t2
)
, v

(
t2
)) ≺ (

u
(
t1
)
, v

(
t1
)) ≺ (a, b). (4.2)

When 0 ≤ t1 ≤ t2 ≤ 1/2, then 1/2 ≤ 1 − t2 ≤ 1 − t1 ≤ 1, it follows that

(
u
(
1 − t2

)
, v

(
1 − t2

)) ≺ (
u
(
1 − t1

)
, v

(
1 − t1

)) ≺ (a, b). (4.3)
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Since u(1 − t2) = v(t2), v(1 − t2) = u(t2), u(1 − t1) = v(t1), v(1 − t1) = u(t1), we also have

(
u
(
t2
)
, v

(
t2
)) ≺ (

u
(
t1
)
, v

(
t1
)) ≺ (a, b). (4.4)

On the other hand, it follows from Lemma 2.6 that ((a+b)/2, (a+b)/2) ≺ (u(t2), v(t2)).
Applying Theorem 3.1 gives the inequalities asserted by Theorem 4.1.

Theorem 4.1 enables us to obtain a large number of refined inequalities by assigning
appropriate values to the parameters p, w, t1, and t2, for example, putting p = 1/2, w =
1, t1 = 3/4, t2 = 1/2 in (4.1), we obtain

a + b

2
≥
(√

a + 3b + 4
√
(a + 3b)(3a + b) +

√
3a + b

6

)2

≥
(√

a + 4
√
ab +

√
b

3

)2

. (4.5)

Putting p = 2, w = 1, t1 = 3/4, t2 = 1/2 in (4.1), we get

a + b

2
≤
√

(a + 3b)2 + (a + 3b)(3a + b) + (3a + b)2

48
≤
√

a2 + ab + b2

3
. (4.6)

Theorem 4.2. Let 0 < a ≤ b, c ≥ 0. If (p,w) ∈ {p ≤ 1, w ≥ 0} ∪ {1 < p ≤ 3/2, w ≥ 1} ∪ {3/2 <
p ≤ 2, w ≥ 2}, then

Hp,w(a + c, b + c)
a + b + 2c

≥ Hp,w(a, b)
a + b

. (4.7)

If p ≥ 2, 0 ≤ w ≤ 2, then the inequality (4.7) is reversed.

Proof. From the hypotheses 0 ≤ a ≤ b, c ≥ 0, we deduce that

a + c

a + b + 2c
≤ b + c

a + b + 2c
,

a

a + b
≤ b

a + b
,

b + c

a + b + 2c
≤ b

a + b
,

a + c

a + b + 2c
+

b + c

a + b + 2c
=

a

a + b
+

b

a + b
= 1.

(4.8)

We hence have

(
a + c

a + b + 2c
,

b + c

a + b + 2c

)
≺
(

a

a + b
,

b

a + b

)
. (4.9)

Using Theorem 3.1 yields the inequalities asserted by Theorem 4.2.
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Theorem 4.3. Let 0 < a ≤ b, G(a, b) =
√
ab, ũ(t) = bta1−t, ṽ(t) = atb1−t, and let 1/2 ≤ t2 ≤ t1 ≤

1 or 0 ≤ t1 ≤ t2 ≤ 1/2. If p > 0, w ≥ 0, then

G(a, b) ≤ Hp,w

(
ũ
(
t2
)
, ṽ

(
t2
)) ≤ Hp,w

(
ũ
(
t1
)
, ṽ

(
t1
)) ≤ Hp,w(a, b). (4.10)

If p < 0, w ≥ 0, then each of the inequalities in (4.10) is reversed.

Proof. From the hypotheses 0 < a ≤ b, 1/2 ≤ t2 ≤ t1 ≤ 1 (or 0 ≤ t1 ≤ t2 ≤ 1/2), it is easy to
verify that

(
ln ũ

(
t2
)
, ln ṽ

(
t2
)) ≺ (

ln ũ
(
t1
)
, ln ṽ

(
t1
)) ≺ (lna, ln b). (4.11)

In addition, from Lemma 2.6 we have (ln
√
ab, ln

√
ab) ≺ (ln ũ(t2), ln ṽ(t2)).

By applying Theorem 3.2, we obtain the desired inequalities in Theorem 4.3.

Combining the inequalities (4.1) and (4.10), we obtain the following refinement of
arithmetic-geometric means inequality.

Theorem 4.4. Let 0 < a ≤ b, u(t) = tb+(1− t)a, v(t) = ta+(1− t)b, ũ(t) = bta1−t, ṽ(t) = atb1−t,
and let 1/2 ≤ t2 ≤ t1 ≤ 1 or 0 ≤ t1 ≤ t2 ≤ 1/2. If (p,w) ∈ {0 < p ≤ 1, w ≥ 0} ∪ {1 < p ≤ 3/2, w ≥
1} ∪ {3/2 < p ≤ 2, w ≥ 2}, then

G(a, b) ≤ Hp,w

(
ũ
(
t2
)
, ṽ

(
t2
))

≤ Hp,w

(
ũ
(
t1
)
, ṽ

(
t1
))

≤ Hp,w(a, b)

≤ Hp,w

(
u
(
t1
)
, v

(
t1
))

≤ Hp,w

(
u
(
t2
)
, v

(
t2
))

≤ A(a, b).

(4.12)
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