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1. Introduction

Let Q be an open bounded subset of RN, N >2. Let gi>1,i=1,...,N. Denote

9= maxdy  PEmR4 4z = Ny (L1)

Throughout this paper, we will make use of the anisotropic Sobolev space

W Q) = {v €L

loc loc

Q) : % eL! (Q),Vi= 1,...,N}. (1.2)

Let xo € Q and t > 0, we denote by B; the ball of radius t centered at xj. For functions u and

k>0, let Ax = {x € Q: |u(x)| > k}, Axs = Ax N B;. Moreover, if p > 1, then p' is always the real

number p/(p — 1), and if s < N, s* is always the real number satisfying 1/s* =1/s-1/N.
This paper mainly considers the functions # minimizing the anisotropic functionals

I(;Q) = f ) f(x,u,Du)dx, ueW, Q) (1.3)

loc
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and weak solutions of the anisotropic equations

N
~dive(x, u, Du) = —le gf Louew Q). (1.4)
i- i
We refer to the classical books by LadyZenskaya and Ural’ceva [1], Morrey [2], Gilbarg and
Trudinger [3], and Giaquinta [4] for some details of isotropic cases.

For isotropic cases, global L°-summability was proved in the 1960s by Stampacchia [5]
for solutions of linear elliptic equations. This result was extended by Boccardo and Giachetti to
the nonlinear case in [6]. For anisotropic cases, Giachetti and Porzio recently proved in [7] the
local L*-summability for minima of anisotropic functionals and weak solutions of anisotropic
nonlinear elliptic equations. Precisely, the authors considered the minima of functionals whose
prototype is (1.3), f is a Carathéodory function satisfying the growth conditions

N N
aZ|§i|qi < f(x,s,¢) SbZ|§i|qi+(P1(x), (1.5)
i=1 i=1

where the function ¢; € L _(Q) with 1 < r < N/g. The authors also considered the local

solutions u € Wllo'cqi (Q) of the anisotropic equations (1.4), where o/ : Q x R xRN — RN is a
Carathéodory function satisfying the following structural conditions:

N
J(x/ u, g)é 2> mOZ |§z |qi/
- (1.6)

N 1-1/4;
oy, 8)| < <h<x>+Z|§i|qf> , j=1...N,
i=1

where my, | = 0,1 are positive constants, the function A is in LllOC (€2) and the functions f; belong,

respectively, to the spaces Ll(g;)/ (). Under the above conditions, the authors obtained some
local regularity results.

The aim of the present paper is to prove the local regularity property for minima of the
anisotropic functionals of type (1.3) with the more general growth conditions than (1.5), that
is, we assume the integrand f satisfies the following growth conditions:

N N
Z|§i|qi - blula - (PQ(X) < f(xlulg) < aZ|§i|qi + b|u|a + (Pl(x)/ (17)
i=1 i=1

where

poeL! (Q), ¢, el’(Q), r,n>1, a>1,b>0,

loc loc

(1.8)
p<a<p’, q<q°, g<N, 1<min{r1,r2}<§.

We also consider weak solutions of the type (1.4) with more general growth conditions than
(1.6), that is, we assume the operator & satisfies the following coercivity and growth condi-
tions:

N
A(x,1,8)-& 2 bo Y |&|" ~ balul™ — ga(x), (1.9)

i=1

N
|4(x,1,8)| < B2 > |&]|7 7 + bsful™ + k(x), (1.10)

i=1
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where by > 1,b; >0,i=1,2,3,g<q",g<N,p<a; <p,p-1<a, < N@p-1)/(N-p),
2 € L (Q) withry > 1,k € L'N(Q), fi € L (Q),i=1,...,N.

Remark 1.1. Notice that we have confined ourselves to the case § < N because when such
inequality is violated, every function in Wllo'gi (Q) is trivially in L] (£2) (for every fixed s < o0)
by [7, Lemma 3.2].

Remark 1.2. Since we have assumed in (1.7), (1.9), and (1.10) that the integrand f and the
operator  satisfy some growth conditions depending on u, in the proof of the local regularity
results, we have to estimate the integral of some power of |u| by means of |Du|. To do this, we
will make use of the Sobolev inequality that has been used in [8].

2. Preliminary lemmas

In order to prove the local L*-integrability of the local unbounded minima of the anisotropic
functionals and weak solutions of anisotropic equations, we need a useful lemma from [7].

Lemma 2.1. Let u € W, " (), ¢o € L[ (L), where q,q, and r satisfy

loc loc

1<r<%, g<q*, g<N. (2.1)

Assume that the following integral estimates hold:

qidx < co[ odx + (t—7)" iluﬁ"dx] (2.2)

Akt Akt i=1

ou

N
fAk,‘l’ gl: a

forevery k € N and Ry < T <t < Ry, where ¢ is a positive constant that depends only on N, gqi, r, Ro,
Ry and |Q| and y is a real positive constant. Then u € L} _(Q), where

Xi

5= 94

- (23)

One will also need a lemma from [8].

Lemma 2.2. Let f(t) be a nonnegative bounded function defined for 0 < Ty < t < Ty. Suppose that for
To<t<s<T,

f(H)<A(s—1)7T +B+0f(s), (2.4)

where A, B, y, 0 are nonnegative constants, and @ < 1. Then there exists a constant c, depending only
on y and 0 such that for every @, R, To < ¢ < R < Ty, one has

f(Q) <c[A(R-@)" +B]. (2.5)
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3. Minima of anisotropic functionals
In this section, we prove a local regularity result for minima of anisotropic functionals.

Definition 3.1. By a local minimum of the anisotropic functional I in (1.3), we mean a function
ue Wllo’gi (Q), such that for every function ¢ € W4 (Q) with supp ¢ CC Q, it holds that

I(u; supp ¢) < I(u + ¢5; supp ¢). (3.1)

Theorem 3.2. Assume that the functional I satisfies the conditions (1.7). If u is a local minimum of I,
then it belongs to L} (£2), where
a4
s = — - . (3.2)
g-q"(1-1/min{r,n})

Proof. Owing to Lemma 2.1, it is sufficient to prove that u satisfies the integral estimates (2.2)
with y = gand ¢o = ¢o + ¢1. Let By, CC Q and 0 < Ry < 7 < t < Ry be arbitrarily but fixed. It is
no loss of generality to assume that R; — Ry < 1. For k > 0, let

A ={xeQ:u(x) >k}, AL ={xeQ:u(x) <-k}. (3.3)

It is obvious that Ay = A, UA,. Denote A;, = A_NB;and A, , = A, NB;. Let w = max(u -k, 0).
Choose ¢ = —nw in (3.1), where 7 is a cut-off function such that

suppnC B, 0<n<1,n=1inB,, |Dy|<2(t-1)". (3.4)

We obtain from the minimality of u that

f(x,u, Du)dx < I f(x,u+¢,Du+ Dyg)dx
’ ’ (3.5)

=f f(x,u—qw,Du—D(qw))dx+j f(x,u, Du)dx.
AL B

N{u<k}

This implies that
f(x,u, Du)dx < f f(x,u—nw, Du— D(nqw))dx. (3.6)
A A
By (1.7), we obtain

qi

ou dx

N
fAz,t 21: 0

<b u"‘dx+f (podx+aJ’
A7, At

+ .
kt Ak,t i=1

Xi

Niou o(qw) |t

(':)xi ax,-

dx + bJ’ (u—nw)dx + f prdx.
AL *

k,t

(3.7)
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We first estimate the 3rd term on the right-hand side of (3.7). Using the elementary inequality
(a+b)? <27 (a®+b7), ab>0,g>1, (3.8)

we obtain

N _ N |
ou o(qw) |7 ou o(nw) |0
QLLE ox ow | T aL;t\A; 1; ox;  oxi
B “A;,f\A;,T i=1 axi 6x,-

(3.9)
N | ou

ox;

qi 22q—1 a N
dx + f wlidx
AL \A

Y
Jar\ar, i3 (t-7) )

qi 22q—1a N
dx + 7 j ulidx
(t=7)" Japap, =

N ou

axi

J Azlt\A;,T i=1

since w? < u4 in A;t and t — 7 < 1. The summation of the 1st and the 4th terms on the right-
hand side of (3.7) can be estimated as

')

Substituting (3.9) and (3.10) into (3.7) yields

u*dx + bf

(u —nqw)“dx < be u*dx. (3.10)
A

+ + +
k.t k,t Ak,t

N )
ou |4
j Z _au dx
Ay, im 19X
N i - N
ou |4 224-1
< I (¢po + ¢p1)dx + ZbI udx + Zq‘laf U ax + aq I Zuq"dx.
e Ao A\Ay, 1710 (E=m)T A, =

(3.11)

We know from [8] that if # € W'P(B;) and |supp | < (1/2)|B;|, we then have the Sobolev
inequality

p/p
<f ﬁp*dx> <c1(N,p) j |Dii|Pdx. (3.12)
Bt Bt
Let
u, xE€ A; b
7= ’ (3.13)
0, xeQ\ A,
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By assumption, p < a < p*, which implies

5 i l-a/p" . p/p’
utdx = | @%dx < ||al],." | By u dx
y B By

< el |5~ [ Dipdx
B;

= —a/p* on |7
< C1||u||a*p|Bt|1 «/p max {1,2//*7} dx
P B, o1 0xi
e ) ou |7
- c1||u||0£*’g|Bt|1 a/p max{l,Zp/z_l} dx,
b 4y, 5710xi

provided that [supp u|p,| < (1/2)|B;|. We can choose T so small that for t < T we get

~ 11— —a * _ 1
Cl||u||p*p|Bt|1 P max {1,2°/271} < e

It is obvious that

K| AL <Nl g

and therefore, there exists a constant kg, such that for k > ky, we have

1
7] < 31Bral.

For such values of k we then have [supp ui| < (1/2)|Br/2| and therefore, if T/2 <t <T,

1 N oy d
gy < — M
f[ztu T A}tz| |

Thus, from (3.11) and, we get

J- N
Apyi=1

< 2f (o + ¢p1)dx + 2qaj
Ak AL N\AL L im1

gi

ou dx

8xi

q qi
Ou dx.

- u
ax,‘

2% il
1>
(t-7) AL \AL T

Supposenow T/2< o<1 <t<R<LT,we get

N
[, >
ko =1

< ZJ (g0 +(pl)dx+2‘7aj

Afr A\, i=1

qi

ou dx

axi

N ou |7

ox;

an N
ey f Z|u|q dx.

lel

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)
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Adding to both sides 27a times the left-hand side, we get eventually

N _
du |1
f Z U1 dx
Ap,i=1 0x;
2 29a ou |1 2%a -
< d Yo "d
_an+1jA; (o +¢1) x+2qa+1f < | dx; zqa+1 (t - T)qf+ 21:|u| X,

(3.21)

we can now apply Lemma 2.2 to conclude that

f N
e i=1

where ¢ depends only on g and a.
Since —u minimizes the functional

dulf
axi

i 2 2% g
< qi .
dx < C{an | L;t (o + ¢p1)dx + e+l (o T)q f Z|u| dx}, (3.22)

kll

F(;Q) = fg f(x,v, Dv)dx, (3.23)

where f (x,v,p) = f(x,—v,—p) satisties the same growth conditions (1.7), inequality (3.22)
holds with u replaced by —u. We then conclude that

Ik i=1

Adding (3.22) and (3.24) yields

’[Akr i=1

This shows that u satisfies estimates (2.2) with y = g and ¢y = ¢o + ¢1. Theorem 3.2 follows
from Lemma 2.1. O

22

{zq +1f (‘P0+<p1)dx+2q e T)q Zlul%dx}' (3.24)

kll

22g

2 1 N
. q,'
C{an+1J‘Aklt((P0+(Pl )dx+2qa+1 (t—1)7 ), Z|u| dx}. (3.25)

kt i=1

axl

4. Local solutions of anisotropic equations

In this section we prove a local regularity result for weak solutions of anisotropic equations.

Letue W, L4 - (Q) be alocal solution of the anisotropic equation (1.4), where / : QxRxR" — R"
isa Caratheodory function satisfying the structural conditions (1.9) and (1.10).

Definition 4.1. By a weak solution of (1.4) we mean a function u € Wllo’gi (), such that for every
function ¢ € W14 (Q) with supp ¢ CC Q it holds

f HA(x,u, Du)-Dy dx = j f-Dydx, (4.1)
supp ¢ supp ¢

where f = (f1, f2,..., fN)
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Theorem 4.2. Under the previous assumptions (1.9) and (1.10), if one assumes that ¢, € L (Q),

loc
fieL! (Q),i=1,2,...,N, ke L (Q),andr,i=0,...,N +1satisfy

; N
1<r=min{r—,,r0,rN—,+l}<:, (4.2)
l<isN  g; p q

then u € Lj (£2), where

___4d4
Ciga-un -

Proof. By virtue of Lemma 2.1, it is sufficient to prove that u satisfies the integral estimates (2.2)
withy = gand ¢o = o +|k|P' + 3N, | f:| 7. Let B, cC Qand 0 < Ry < 7 < t < Ry be arbitrarily but
fixed. Assume again that Ry - Ry < 1. Let w = max{u—k,0}. Choose ¢ = w as a test function in

(4.1), where the cut-off function 7 satisfies the conditions (3.4). We obtain from Definition 4.1
that

A (x,u, Du)-D(nw)dx = f f-D(nw)dx. (4.4)
AL

+
Ak,t

We now estimate the integrals in (4.4). Applying the assumption (1.9), we deduce from (4.4)

that
N | ou | m 2
by >, I dx < by |u|"dx+ |  ¢odx+ f-Dudx+; | f|w dx
Ai,., i=1 ! E,t AZ,f A;,t Az,t ( 4 5)
2
+— |4 (x, 1, Du)|w dx.

t—1
A;t\AZ,T

The 3rd term on the right-hand side of the above inequality can be estimated as

N du Nl ou
f-Dudx=f+ Zfi-gdxﬁsj‘+ Z
A 1 ki i=

i il 710x;

qi N !
dx + > C(¢, q:) I | fi|"dx. (4.6)
i=1 Ay

+
Ak,t

By Young’s inequality, the 4th term on the right-hand side of inequality (4.5) can be estimated
as

o Ty e D XUR LS of (VLY @7)
— wdx < ——— u-— X+ i|dx. .
t=7 Ja;, t-1)7 ), 5 i=1 7 Ay,

By (1.10), the last term on the right-hand side of (4.5) can be estimated as

N

b

i=1

qi-1

2
+ bslul® + k

2
— |4 (x, u, Du)|lw dx < ——
E=7 Ja;p\ar, E=7 Ja;\az,

ou

wdx = Il +Iz +Ig.
axi

(4.8)
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By Young’s inequality, we derive that

ou |?

,. b2 & ,.
o, dx + ——— f Z(u - k)%dx. (4.9)

(t_T)q A*t\Ale =1

|
I < bzf
AL \AL L =1

Holder’s inequality and Young’s inequality yield

) C(e, p)2F
L< bg,gf ||V dx + (S—p)p j (u - k)Pdx
+ \A? (t-T1) :\Af
o) : N (4.10)
<b sf [u|®? dx + — 222 f (u—k)%dx,
) \A* N(t-71)7 )4 \AL, ;
where ¢ is a positive constant to be determined later. Further,
I f |k|P'd 2! f i( k)7id (4.11)
< X+ —— u—k)Tdx. :
’ :\AF Nt -1)7Jar\a;, 5
Combining (4.6)—(4.11) with (4.5) yields
N qi
bof LY
;,T i=1 axl
< j ( ¢y + |k + Z(C(e, qgi) + 1)|fl|q,> dx + by j |u|" dx + b3ef [u|®" dx
AL, N
¢ N _ (4.12)
ql
+S,[ > Ou dx+b7_f Ou
A 1= 10%i Ap\ay, 1510
+ (by+C(e,p) +2) Z(u — k)7 dx.

(t )q ktl =1

Since p < &y < p*, then as in the proof of Theorem 3.2, we know that there exist a sufficiently
small T and a sufficiently large ko, such that forall T/2 <t < T and k > ko, we have

EN g
J |u|*dx < Z

Oul™ 1y (4.13)

axi

Similarly, sincep -1 < a, < N(p—-1)/(n—p), then p < app’ < p*, therefore

qi

oul® iy (4.14)

N
lu|®? dx < CI

kit

Xi
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Thus, from (4.12)—(4.14) we can derive that

[ S [2 e[ (e (e s DI )
fr i=1 Ag i=1
N qi
< +(Cbs + 1)g>j Z a—” dx+bzf \ % dx  (4.15)
kit = A\AL, =1 1O
+ (b2+C(£,p)+2) )qf Z(u—k)q"dx.
Apyi=1
Adding to both sides
N ou |
b j —| dx, (4.16)
2 A+T 12; axl

we get eventually

S| ou | 1 " N a
< — ; i
J‘ZTE axi dx_ b0+b2 IAZt <(P2+|k| +§(C<S,ql)+1)|f1| >dx
1 1 du by & | ou |
+<§+<Cb3+1)€>bo+sz+zaxl +b0+b2J‘;t§8_x,- dx
+ (b2 +Cle,p) +2) e — f S (- k)" dx.
bo + b (t-1)7 A, aS
(4.17)
Choosing ¢ small enough, such that
1/2+ (Cbs +1)e + b,
= o <1, (4.18)
(4.17) implies that
&\ ou | p q q c 9
- < i i
J, 2] axscf, (oenr S )axeof 3 Slon] i j& S - ke
(4.19)
Suppose now that T/2 <o <7 <t<R<T,we get
S| ou | AL B
fz ; P CLL ((p2+ k| +§|fi|%>dx
! ' N (4.20)
ou |1 J’ .
+0 (u—-k)"dx.
Alg i=1 0x; R Q)q ot ;
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Applying Lemma 2.2, we conclude that

ou

N
Lz,r 21: 0

Since —u is a weak solution of

Xi

i X , cC N
dx < ch <(p2 + |k|P + E | fi]* )dx + 7 J‘ E (u-k)dx. (4.21)
A7 ) (t=1)1 )a:

k,t l=1

—divj(x u,Du) = —i ofi
s Uy < a.X'i’

(4.22)

where o (x,s,¢) = HA(x,—s,—¢) satisfies the same conditions (1.9) and (1.10), inequality (4.21)
holds with u replaced by —u. We then conclude that

ou |7

N

Xi

kt

kt l=1

i / N ! CC N
dx < CCI <(p2 +|k|P + Z|fi|q")dx + o7 f Z(u -k)dx.  (4.23)
i=1 - A

Adding (4.21) with (4.23) yields

ou |*

N
J‘Ak,r ; 0

Thus, u satisfies (2.2) with ¢o = 2 + k|’ + Zf\:’1| f,~|q;' and a = g. Theorem 4.2 follows from
Lemma 2.1. ]

) N , cC N
dx < cC <(p2 + kP + E |fl~|q">dx + f E (u-k)dx. (4.24)
Akt A

Xi i1 t-7)1)a, G
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