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1. Introduction, definitions, and notations

Higher-order twisted Bernoulli and Euler numbers and polynomials were studied bymany au-
thors (see for details [1–10]). In [1, 3], Kim constructed p-adic, q-Volkenborn integral identities.
He proved p-adic, q-integral representation of q-Euler and Bernoulli numbers and polynomi-
als. In [11], the second author constructed a new approach to the complete sums of products
of (h, q)-extension of higher-order Euler polynomials and numbers. Kim and Rim [12], by us-
ing q-deformed fermionic integral on Zp, defined twisted generating functions of the q-Euler
numbers and polynomials, respectively. By using these functions, they also constructed inter-
polation functions of these numbers and polynomials.

By the same motivation of the above studies, in this paper, we construct a new approach
to the complete sums of products of twisted (h, q)-extension of Euler polynomials and num-
bers.

Throughout this paper, Z, Z+, Zp, Qp, and Cp will denote the ring of rational integers,
the set of positive integers, the ring of p-adic integers, the field of p-adic rational numbers, and
the completion of the algebraic closure ofQp, respectively. Let vp be the normalized exponential
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valuation of Cp with |p|p = p−vp(p) = p−1. Here, q is variously considered as an indeterminate,
a complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ Cp, then we assume that |q − 1|p <
p−1/(p−1), so that qx = exp (x log q) for |x|p ≤ 1. If q ∈ C, then we assume that |q| < 1 (cf.
[1, 3, 4, 9]).

We use the following notations:

[x]q =
1 − qx

1 − q
, [x]−q =

1 − (−q)x
1 + q

. (1.1)

Note that lim q→1[x]q = x.
Let UD(Zp) be the set of uniformly differentiable functions on Zp. Let f ∈ UD(Zp,Cp)

= {f | f : Zp → Cp is uniformly differentiable function}. For f ∈ UD(Zp,Cp), let

1
[pN]q

pN−1∑

x=0

f(x)qx =
pN−1∑

x=0

f(x)μq

(
a + dpNZp

)
(1.2)

representing the q-analogue of the Riemann sums for f . The integral of f on Zp is defined as the
limit (N → ∞) of the above sums when it exists. Thus, Kim [1, 3] defined the p-adic invariant
q-integral on Zp as follows:

Iq(f) =
∫

Zp

f(x)dμq(x) = lim
N→∞

1
[
pN

]
q

pN−1∑

x=0

f(x)qx, (1.3)

where

μq

(
a + dpNZp

)
=

qa
[
dpN

]
q

, N ∈ Z
+. (1.4)

Note that if f ∈ UD(Zp,Cp), then

∣∣∣∣

∫

Zp

f(x)dμq(x)
∣∣∣∣
p

≤ p‖f‖1, (1.5)

where

‖f‖1 = sup

{
∣∣f(0)

∣∣
p,sup

x/=y

∣∣∣∣
f(x) − f(y)

x − y

∣∣∣∣
p

}
(cf. [3]). (1.6)

The bosonic integral was considered from a physical point of view to the bosonic limit q → 1,
I1(f) = lim q→1Iq(f) (cf. [1, 3, 4, 12]). By using the q-bosonic integral on Zp, not only generating
functions of the Bernoulli numbers and polynomials are constructed but alsoWitt-type formula
of these numbers and polynomials are defined (cf. for detail [1, 9, 10, 13, 14]).

The fermionic integral, which is called the q-deformed fermionic integral on Zp, is de-
fined by

I−q(f) = lim
q→−q

Iq(f) =
∫

Zp

f(x)dμ−q(x), (1.7)
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where

μ−q
(
a + dpNZp

)
=

(−q)a
[dpN]−q

, N ∈ Z
+ (cf. [3, 4, 6, 12]). (1.8)

In view of the notation I−1 is written symbolically by

I−1(f) = lim
q→−1

Iq(f). (1.9)

By using q-deformed fermionic integral on Zp, generating functions of the Euler numbers and
polynomials, Genocchi numbers and polynomials, and Frobenius-Euler numbers and polyno-
mials are constructed (cf. for detail [1, 3, 6–8, 10–12, 15]).

The main motivation of this paper is to construct generating functions of higher-order
twisted (h, q)-extension of Euler polynomials and numbers by using q-deformed fernionic in-
tegral on Zp. Moreover, by this integral, we also define Witt-type formula of the higher-order
twisted (h, q)-extension of Euler polynomials and numbers. By applying these generating func-
tions and q-deformed fernionic integral, we obtain complete sums of products of the twisted
(h, q)-extension of Euler polynomials and numbers as well.

The twisted (h, q)-Bernoulli and Euler numbers and polynomials have been studied by
several authors (cf. [5, 8, 9, 11, 15–17]).

In [3, 6], Kim defined the following integral equation: for f1(x) = f(x + 1),

I−1
(
f1
)
+ I−1(f) = 2f(0). (1.10)

Let

Tp =
⋃

n≥1
Cpn = lim

n→∞
Cpn, (1.11)

where Cpn = {w | wpn = 1} is the cyclic group of order pn. For w ∈ Tp, φw : Zp → Cp is the
locally constant function x → wx (cf. [9, 14, 16]).

Ozden and Simsek [7] defined new (h, q)-extension of Euler numbers and polynomials.
In [15], Ozden et al. also defined twisted (h, q)-extension of Euler polynomials, E(h)

n,w(x, q), as
follows:

F
(h)
w,q(t, x) = F

(h)
w,q(t)etx =

2etx

wqhet + 1
=

∞∑

n=0

E
(h)
n,w(x, q)

tn

n!
. (1.12)

Note that if w → 1, then E
(h)
n,w(q) → E

(h)
n (q) and

F
(h)
w,q(t) −→ F

(h)
q (t) =

2
qhet + 1

(1.13)

(cf. [7]). If q → 1, then

F
(h)
q (t) −→ F(t) =

2
et + 1

=
∞∑

n=1

En
tn

n!
, (1.14)

where En is usual Euler numbers (cf. [3, 8, 10]).
For x = 0, we have

F
(h)
q (t) =

2
wqhet + 1

=
∞∑

n=0

E
(h)
n,w(q)

tn

n!
(cf. [7]). (1.15)
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Theorem 1.1 ([15]Witt formula). For h ∈ Z, q ∈ Cp with |1 − q|p < p−1/(p−1),
∫

Zp

qhxwnxndμ−1(x) = E
(h)
n,w(q), (1.16)

∫

Zp

qhy(x + y)ndμ−1(y) = E
(h)
n,w(x, q). (1.17)

2. Higher-order twisted (h, q)-Euler polynomials and numbers

Here, we study on higher-order twisted (h, q)-Euler polynomials and numbers and complete
sums of products of these polynomials and numbers, our method is similar to that of [11]. For
constructions of them, we use multiple the q-deformed fermionic integral on Zp:

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
v-times

(
wqh

)∑ v
j=1xjexp

(
t

v∑

j=1

xj

)
v∏

j=1

dμ−1
(
xj

)
=

∞∑

n=0

E
(h,v)
n,w (q)

tn

n!
, (2.1)

where
∏ v

j=1dμ−1(xj) = dμ−1(x1)dμ−1(x2) · · ·dμ−1(xv). By using the above equation, we easily
have

∞∑

n=0

(∫

Zp

· · ·
∫

Zp

(
wqh

)∑ v
j=1xj

(
v∑

j=1

xj

)n v∏

j=1

dμ−1
(
xj

)
)

tn

n!
=

∞∑

n=0

E
(h,v)
n,w (q)

tn

n!
. (2.2)

By comparing coefficients of tn/n! in the above equation, we have the following theorem.

Theorem 2.1. For positive integers n, v, and h ∈ Z, then

E
(h,v)
n,w (q) =

∫

Zp

· · ·
∫

Zp

(
wqh

)∑ v
j=1xj

(
v∑

j=1

xj

)n v∏

j=1

dμ−1
(
xj

)
. (2.3)

By (2.1), twisted (h, q)-Euler numbers of higher-order, E(h,v)
n,w (q), are defined by means of

the following generating function:
(

2
wqhet + 1

)v

=
∞∑

n=0

E
(h,v)
n,w (q)

tn

n!
. (2.4)

Observe that for v = 1, the above equation reduces to (1.15):

∫

Zp

· · ·
∫

Zp︸ ︷︷ ︸
v-times

(
wqh

)∑ v
j=1xjexp

(
tz +

v∑

j=1

txj

)
v∏

j=1

dμ−1
(
xj

)
=

∞∑

n=0

E
(h,v)
n,w (z, q)

tn

n!
. (2.5)

By using Taylor series of exp (tx) in the above equation, we have

∞∑

n=0

(∫

Zp

· · ·
∫

Zp

(
wqh

)∑ v
j=1xj

(
z +

v∑

j=1

xj

)n v∏

j=1

dμ−1
(
xj

)
)

tn

n!
=

∞∑

n=0

E
(h,v)
n,w (z, q)

tn

n!
. (2.6)

By comparing coefficients of tn/n! in the above equation, we arrive at the following theorem.
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Theorem 2.2 (Witt-type formula). For z ∈ Cp and positive integers n, v, and h ∈ Z , then

E
(h,v)
n,w (z, q) =

∫

Zp

· · ·
∫

Zp

(
qhw

)∑ v
j=1xj

(
z +

v∑

j=1

xj

)n v∏

j=1

dμ−1
(
xj

)
. (2.7)

By (2.1), (h, q)-Euler polynomials of higher-order, E(h,v)
n,q (z), are defined by means of the

following generating function:

F
(h,v)
q,w (z, t) = etz

(
2

wqhet + 1

)v

=
∞∑

n=0

E
(h,v)
n,w (z, q)

tn

n!
. (2.8)

Note that when v = 1, then we have (1.12); when q → 1 and w → 1, then we have

F(v)(z, t) = etz
(

2
et + 1

)v

=
∞∑

n=0

E
(v)
n (z)

tn

n!
, (2.9)

where E(v)
n (z) denote classical higher-order Euler polynomials (cf. [10]).

Theorem 2.3. For z ∈ Cp and positive integers n, v, and h ∈ Z , then

E
(h,v)
n,w (z, q) =

n∑

l=0

(
n
l

)
zn−lE(h,v)

l,w
(q). (2.10)

Proof. By using binomial expansion in (2.7), we have

E
(h,v)
n,w (z, q) =

n∑

l=0

(
n
l

)
zn−l

∫

Zp

· · ·
∫

Zp

(
qhw

)∑ v
j=1xj

(
v∑

j=1

xj

)l v∏

j=1

dμ−1
(
xj

)
. (2.11)

By (2.3) in the above, we arrive at the desired result.

Remark 2.4. If w → 1, then E
(h,v)
n,w (q) → E

(h,v)
n (q) (cf. [11]). If q → 1, v = 1 , then E

(h,v)
n,w (q) → En,

where E(v)
n,w is usual twisted Euler numbers (cf. [10]).

3. The complete sums of products of (h, q)-extension of
Euler polynomials and numbers

In this section, we prove main theorems related to the complete sums of products of (h, q)-
extension of Euler polynomials and numbers. Firstly, we need the multinomial theorem, which
is given as follows (cf. [18, 19]).

Theorem 3.1 (multinomial theorem). Let
(

v∑

j=1

xj

)n

=
∑

l1,l2,...,lv≥0
l1+l2+···+lv=n

(
n

l1, l2, . . . , lv

)
v∏

a=1

xla
a , (3.1)

where ( n
l1,l2,...,lv ) are the multinomial coefficients, which are defined by ( n

l1,l2,...,lv ) = n!/l1!l2! · · · lv!.
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Theorem 3.2. For positive integers n, v, then

E
(h,v)
n,w (q) =

∑

l1,l2,...,lv≥0
l1+l2+···+lv=n

(
n

l1, l2, . . . , lv

)
v∏

j=1

E
(h)
lj ,w

(q), (3.2)

where ( n
l1,l2,...,lv ) is the multinomial coefficient.

Proof. By using Theorem 3.1 in (2.3), we have

E
(h,v)
n,w (q) =

∑

l1,l2,...,lv≥0
l1+l2+···+lv=n

(
n

l1, l2, . . . , lv

)
v∏

j=1

∫

Zp

(
wqh

)xj
x
lj
j dμ−1

(
xj

)
. (3.3)

By (1.16) in the above, we obtain the desired result.

By substituting (3.2) into (2.10), we have the following corollary.

Corollary 3.3. For z ∈ Cp and positive integers n, v, then

E
(h,v)
n,w (z, q) =

n∑

m=0

∑

l1,l2,...,lv≥0
l1+l2+···+lv=m

(
n
m

)(
m

l1, l2, . . . , lv

)
zn−m

v∏

j=1

E
(h)
lj ,w

(q). (3.4)

Complete sum of products of the twisted (h, q)-Euler polynomials is given by the fol-
lowing theorem.

Theorem 3.4. For y1, y2, . . . , yv ∈ Cp and positive integers n, v, then

E
(h,v)
n,w

(
y1 + y2 + · · · + yv, q

)
=

∑

l1,l2,...,lv≥0
l1+l2+···+lv=n

(
n

l1, l2, . . . , lv

)
v∏

j=1

E
(h)
lj ,w

(
yj, q

)
. (3.5)

Proof. By substituting z = y1 + y2 + · · · + yv into (2.7), we have

E
(h,v)
n,w

(
y1 + y2 + · · · + yv, q

)
=
∫

Zp

· · ·
∫

Zp

(
wqh

)∑ v
j=1xj

(
v∑

j=1

(
yj + xj

)
)n v∏

j=1

dμ−1
(
xj

)
. (3.6)

By using Theorem 3.1 in the above, and after some elementary calculations, we get

E
(h,v)
n,w

(
y1 + y2 + · · · + yv, q

)

=
∑

l1,l2,...,lv≥0
l1+l2+···+lv=n

(
n

l1, l2, . . . , lv

)
v∏

j=1

∫

Zp

(
wqh

)xj
(
yj + xj

)lj dμ−1
(
xj

)
. (3.7)

By substituting (1.17) into the above, we arrive at the desired result.
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Remark 3.5. If we take y1 = y2 = · · · = yv = 0 in Theorem 3.4, then Theorem 3.4 reduces to
Theorem 3.2. Substituting q → 1 and w → 1 into (3.5), we obtain the following relation:

E
(v)
n

(
y1 + y2 + · · · + yv

)
=

∑

l1,l2,...,lv≥0
l1+l2+···+lv=m

(
m

l1, l2, . . . , lv

)
v∏

j=1

Elj

(
yj

)
(cf. [11]). (3.8)

I.-C. Huang and S.-Y. Huang [20] found complete sums of products of Bernoulli polynomi-
als. Kim [13] defined Carlitz’s q-Bernoulli number of higher order using an integral by the
q-analogue μq of the ordinary p-adic invariant measure. He gave a different proof of complete
sums of products of higher order q-Bernoulli polynomials. In [21], Jang et al. gave complete
sums of products of Bernoulli polynomials and Frobenious Euler polynomials. In [14], Simsek
et al. gave complete sums of products of (h, q)-Bernoulli polynomials and numbers.

Theorem 3.6. Let n ∈ Z
+. Then

E
(h,v)
n,w (z + y, q) =

n∑

l=0

(
n
l

)
E
(h,v)
l,w

(y, q)zn−l. (3.9)

Proof. Assume

E
(h,v)
n,w (z + y, q) =

(
E
(h,v)
w (q) + z + y

)n

=
n∑

l=0

(
n
l

)
E
(h,v)
l,w

(q)(y + z)n−l
(3.10)

with usual convention of symbolically replacingEl(h,v)
w byE(h,v)

l,w
(q). By using (2.10) in the above,

we have

E
(h,v)
n,w (z + y, q) =

n∑

m=0

(
n
m

)
E
(h,v)
m,w (y, q)zn−m. (3.11)

Thus the proof is completed.

From Theorems 3.4 and 3.6, after some elementary calculations, we arrive at the follow-
ing interesting result.

Corollary 3.7. Let n ∈ Z
+. Then

n∑

m=0

(
n
m

)
E
(h,v)
m,w

(
y1, q

)
yn−m
2 =

∑

l1,l2≥0
l1+l2=n

(
n

l1, l2

)
E
(h)
l1,w

(
y1, q

)
B
(h)
l2,w

(
y2, q

)
. (3.12)
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