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1. Introduction

Let (H; (-,-)) be a complex Hilbert space. The numerical range of an operator T is the subset of
the complex numbers C given by [1, page 1]:

W(T) = {(Tx,x), x € H, ||x]| = 1}. (1.1)
The numerical radius w(T) of an operator T on H is given by [1, page 8]:
w(T) = sup{[A], A € W(T)} = sup{|(Tx, x)|, [|x]| = 1}. (1.2)

It is well known that w(-) is a norm on the Banach algebra B(H) of all bounded linear
operators T : H — H. This norm is equivalent to the operator norm. In fact, the following
more precise result holds [1, page 9].

Theorem 1.1 (equivalent norm). For any T € B(H), one has

w(T) < |IT1| < 2w(T). (1.3)
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For other results on numerical radius (see [2, Chapter 11]).

We recall some classical results involving the numerical radius of two linear operators
A,B.

The following general result for the product of two operators holds [1, page 37].

Theorem 1.2. If A, B are two bounded linear operators on the Hilbert space (H, (-,-)), then

w(AB) < 4w(A)w(B). (1.4)
In the case that AB = BA, then

w(AB) < 2w(A)w(B). (1.5)

The following results are also well known [1, page 38].
Theorem 1.3. If A is a unitary operator that commutes with another operator B, then
w(AB) <w(B). (1.6)

If Ais an isometry and AB = BA, then (1.6) also holds true.

We say that A and B double commute, if AB = BA and AB* = B*A.
The following result holds [1, page 38].

Theorem 1.4 (double commute). If the operators A and B double commute, then
w(AB) <w(B)|IA]. (1.7)
As a consequence of the above, one has [1, page 39] the following.
Corollary 1.5. Let A be a normal operator commuting with B. Then
w(AB) <w(A)w(B). (1.8)

For other results and historical comments on the above (see [1, pages 39-41]). For
more results on the numerical radius, see [2].

In the recent survey paper [3], we provided other inequalities for the numerical radius
of the product of two operators. We list here some of the results.

Theorem 1.6. Let A,B : H — H be two bounded linear operators on the Hilbert space (H, (-,-)),
then

A*A + B*B 1
' AA+BB | <w(B'A)+ L|A- B,
2 2
A+B|®> 1| A*A+ B*B (19)
< Z STz *
H > —2” 2 l”"(B A)]’

respectively.

If more information regarding one of the operators is available, then the following
results may be stated as well.
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Theorem 1.7. Let A,B : H — H be two bounded linear operators on H, and B is invertible such
that, for a given r > 0,

|A-B| <7 (1.10)
Then
-1 * 1 2
A< IB™ [l |w(B"A) + 5771,
(1.11)
. 1 BB -1
O NAINBY - w(B'4) < 3 PP =1
2||B
respectively.

Motivated by the natural questions that arise, in order to compare the quantity
w(AB) with other expressions comprising the norm or the numerical radius of the involved
operators A and B (or certain expressions constructed with these operators), we establish in
this paper some natural inequalities of the form

w(BA) <w(A)w(B) + Ky, (additive Griiss'type inequality), (1.12)
or
w(BA) e , . .
_wba) y _
w(A)w(B) = K, (multiplicative Griiss’type inequality), (1.13)

where K; and K3 are specified and desirably simple constants (depending on the given
operators A and B).
Applications in providing upper bounds for the non-negative quantities

lAIP -w?(4),  w(A) - w(A?), (114)
and the superunitary quantities

[%\§ w?(A)
w2(A) w(A?)

(1.15)

are also given.

2. Numerical radius inequalities of Griiss type

For the complex numbers a, f and the bounded linear operator T, we define the following
transform:

Cap(T) = (T* —&T) (B - T), 2.1)

where by T* we denote the adjoint of T
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We list some properties of the transform C,4(-) that are useful in the following.
(i) Forany a,f € Cand T € B(H), we have
Cap(D=A-2)(p-1I,  Caa(T)=—(al-T)"(al -T),
Cap(yT) = [Y"Carypy(T), for each y € C\ {0],

[Ca,ﬂ(T)]* = Cﬁ,a(T)/
Cy7(T*) = Cap(T) = T*T ~ TT*.

(2.2)

(ii) The operator T € B(H) is normal, if and only if CB,E(T*) = Cup(T) for each a, p € C.

We recall that a bounded linear operator T on the complex Hilbert space (H, (-,-)) is
called accretive, if Re(Ty,y) >0, forany y € H.
Utilizing the following identity

Re(Cpp(T)x,x) = Re(Cpa(T)x, x)

:%|ﬂ—a|2—H<T—a;ﬂI>x

that holds for any scalars a, §, and any vector x € H with [|x|| = 1, we can give a simple
characterization result that is useful in the following.

2 (2.3)

7

Lemma 2.1. For a, p € Cand T € B(H), the following statements are equivalent.
(i) The transform Cap(T) (or, equivalently Cpq(T)) is accretive.
(ii) The transform Caﬁ(T*) (or, equivalently CE,E(T*)) is accretive.

(iii) One has the norm inequality

a+p 1
- Il < ZIB- 24
|7 - %551] < 318 24
ot, equivalently,
a+p 1
* - I < 5B - al. 25
- R0l < Sip-al 25)

Remark 2.2. In order to give examples of operators T € B(H) and numbers a,f € C such
that the transform C,4(T) is accretive, it suffices to select a bounded linear operator S and
the complex numbers z, w with the property that ||S — zI|| < |w|, and by choosing T = S, a =
(1/2)(z+w),and f = (1/2)(z—w), we observe that T satisfies (2.4), thatis, C, 4(T) is accretive.

The following results compare the quantities w(AB) and w(A)w(B) provided that
some information about the transforms C, s(A) and C, 5(B) are available, where a, 3,7, 6 € K.

Theorem 2.3. Let A,B € B(H) and a, ,y,6 € K be such that the transforms C,3(A) and C,5(B)
are accretive, then

w(BA) < w(AYw(B) + 16 - al |y - 5. (2.6)
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Proof. Since C,4(A) and Cy5(B) are accretive, then, on making use of Lemma 2.1, we have
that

+p 1
_ P ll<Zip=
- 5554] < gt
_ 2.7)
. Yy+o 1,._
-~ ll<cZ
‘Bx 5 X _2|y 5,

forany x € H, ||x|| = 1.

Now, we make use of the following Griiss type inequality for vectors in inner product
spaces obtained by the author in [4] (see also [5] or [6, page 43]).

Let (H,(:,-)) be an inner product space over the real or complex number field K,
u,v,e € H, |le|| =1,and a, §,y, 6 € K such that

Re(fe —u,u—ae) >0, Re(be—v,v—-ye) >0, (2.8)
or equivalently,
6
””‘a+ﬂeHS1m—aL o- L0 <5y, (2.9)
2 2
then
1
|(u,v>—(u,e><€,v>|§ Z|ﬂ_a| |6_Y| (210)

Applying (2.10) for u = Ax, v = B*x, and e = x we deduce

1
[{BAx, x) = (Ax,x)(Bx,x)| < 7|p - al |6 - 71, (211)
for any x € H, ||x|| = 1, which is an inequality of interest in itself.
Observing that
(BAx, x)| - [(Ax, x)(Bx, x)| < |(BAx, x) - (Ax, x)(Bx, x)|, (212)

then by (2.10), we deduce the inequality

1
[(BAx,x)| < |{Ax,x){Bx,x)| + Z"ﬁ -all6 -yl (2.13)
for any x € H, |x|| = 1. On taking the supremum over ||x|| = 1 in (2.13), we deduce the
desired result (2.6). O

The following particular case provides an upper bound for the nonnegative quantity
|A|I> = w(A)* when some information about the operator A is available.

Corollary 2.4. Let A € B(H) and a, p € K be such that the transform C,(A) is accretive, then

0 )NAI? - w*(A) < }llﬁ —af’. (2.14)
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Proof. Follows on applying Theorem 2.3 above for the choice B = A*, taking into account that
Cap(A) is accretive implies that CE,B(A*) is the same and w(A*A) = ||A||% O

Remark 2.5. Let A € B(H) and M > m > (Obe such that the transform C,, p(A) = (A* -
ml)(MI — A) is accretive. Then

O AIR - w?(A) < 7(M ~m)? (215)
A sufficient simple condition for C,, p(A) to be accretive is that A is a self-adjoint operator
on H and such that MI > A > mI in the partial operator order of B(H).

The following result may be stated as well.

Theorem 2.6. Let A,B € B(H) and a,,y,6 € K be such that Re(fa) > 0, Re(6y) > 0 and the
transforms Cn5(A), Cy,5(B) are accretive, then

wBA) 1 |p-alls-yl
w(A)w(B) =" 4 [Re(pm)Re(67)]"?’
w(BA) < w(A)w(B) + [(Ja+p|-2[Re(Ba)]"*) x (16 +y| - 2[Re(67)]"/?)]

"2 1w(A)yw(B)]',

(2.16)

respectively.

Proof. With the assumptions (2.8) (or, equivalently, (2.9) in the proof of Theorem 2.3) and if
Re(fa) >0, Re(6y) >0 then

1 |p-all6—yl
4 [Re(Bm)Re(67)]
[(Ja+ Bl - 2[Re(BT)]2) (16 + y1 - 2[Re(5T)] )]

x[[(u,e) (e, v)[]"/>.

sl e)(e,v)),

[(u,v) —(u,e){e,v)| < /2 (2.17)

The first inequality has been established in [7] (see [6, page 62]) while the second one can be
obtained in a canonical manner from the reverse of the Schwarz inequality given in [8]. The
details are omitted.

Applying (2.10) for u = Ax, v = B*x, and e = x we deduce
1 |p-all6-yl
4 [Re(pa)Re(67)]"
[(la + Bl - 2[Re(Bm)]"/) (16 + y| - 2[Re(6 )] "?)]

x[I(A, x)(Bx, x)|]"/?,

(A, x)(Bx, x)|,

[(BAx,x) — (Ax,x)(Bx,x)| < 1/2

(2.18)

for any x € H, ||x|| = 1, which are of interest in themselves.
A similar argument to that in the proof of Theorem 2.3 yields the desired inequalities
(2.16). The details are omitted. O
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Corollary 2.7. Let A € B(H) and a, p € K be such that Re(fa) > 0 and the transform Cyp(A) is
accretive, then

JAE . 1 1p-aP
(A = TR (2.19)

0 )NAIP - w?(A) < (Ja+ fl - 2[Re(Ba)]")w(A),

(1<)

respectively.
The proof is obvious from Theorem 2.6 on choosing B = A* and the details are omitted.

Remark 2.8. Let A € B(H) and M > m > Obe such that the transform C,, p(A) = (A* -
ml)(MI — A) is accretive. Then, on making use of Corollary 2.7, we may state the following
simpler results:

JAl _1 M+m
w(A) = 2 /Mm' (2.20)
(0 QAP = w?(A) < (VM - vm) w(A),

respectively. These two inequalities were obtained earlier by the author using a different
approach (see [9]).

(1<)

Problem 1. Find general examples of bounded linear operators realizing the equality case in
each of inequalities (2.6), (2.16), respectively.

3. Some particular cases of interest

The following result is well known in the literature (see, e.g., [10]):
w(A") <w"(A), (3.1)

for each positive integer n and any operator A € B(H).
The following reverse inequalities for n = 2 can be stated.

Proposition 3.1. Let A € B(H) and a, p € K be such that the transform C, g(A) is accretive, then
1
(ogw%AywmA%sZm—aﬁ (3.2)

Proof. On applying inequality (2.11) from Theorem 2.3 for the choice B = A, we get the
following inequality of interest in itself:

(A x)? ~ (A%, ) < 11~ af, (33)
for any x € H, ||x|| = 1. Since obviously,
|(Ax, x) [ - [(A%x, x)| < [(Ax, x)? - (A’x, x)), (3.4)
then by (3.3), we get
(A )P < (A%, )| + 71~ af, 5)

for any x € H, |x|| = 1. Taking the supremum over ||x|| = 1 in (3.5), we deduce the desired
result (3.2). O
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Remark 3.2. Let A € B(H) and M > m > 0 be such that the transform C,, m(A) = (A* -
ml)(MI — A) is accretive. Then

(0 <)0?(A) ~w(A?) < (M —m)”. (3.6)

If MI > A > ml in the partial operator order of B(H), then (3.6) is valid.
Finally, we also have the following proposition.

Proposition 3.3. Let A € B(H) and a, p € K be such that Re(pa) > 0 and the transform C,p5(A)
is accretive, then

w?(A) 1 |p-al
w(A?) = IR (37)

(0 )w*(A) - w(A?) < (| + | - 2[Re(Bm)]/*)w(A),

(1<)

respectively.

Proof. On applying inequality (2.18) from Theorem 2.6 for the choice B = A, we get the
following inequality of interest in itself:

1 p-al 2
|(Ax, x)? = (A%x,x)| < { 4 Re(ﬂa)KA’x)l ’ (3.8)

(la + Bl - 2[Re(Ba)]*) (A, x)|,

forany x € H, ||x|| = 1.
Now, on making use of a similar argument to the one in the proof of Proposition 3.1,
we deduce the desired results (3.7). The details are omitted. O

Remark 3.4. Let A € B(H) and M > m > 0 be such that the transform C,, m(A) = (A* -
ml)(MI - A) is accretive. Then, on making use of Proposition 3.3, we may state the following
simpler results:
2 2
Q9@ 1 Mrm)y

(0 Qw?(A) - w(A%) < (VM - vm) w(A),

respectively.
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