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1. Introduction

This paper investigates the existence of the limit of the ratio of a convolution and a positive
valued weight function. The limit is given by an explicit formula in terms of the elements in
the convolution and of the weight function. Our results are formulated for the convolution of
a function with a measure and also for the convolution of two functions.

Our work was inspired by two different applications. One of them is the asymptotic
stability theory of differential and integral equations, where an important question is to
determine the exact convergence rate to the steady state. The second one is related to the
asymptotic representation of the distribution of the sum of independent random variables. In
the above and several similar problems, the weighted limits of convolutions play important
role with different types of weights.

Let μ be a given measure on the Borel sets of [0,∞) and let f : [0,∞)→R be a
measurable function. The convolution f∗dμ is defined by

(f∗dμ)(t) :=
∫ t

0
f(t − s)dμ(s) (1.1)

for all t ∈ [0,∞) for which the integral exists.
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The convolution of two locally Lebesgue integrable functions f, g : [0,∞)→R is
defined by

(f∗g)(t) :=
∫ t

0
f(t − s)g(s)ds (1.2)

for t ∈ [0,∞) for which the integral exists.
The motivation of our work came from the following three known results.
The first well-known result has been used frequently in the asymptotic theory of the

solutions of differential and integral equations (see, e.g., [1]).

Theorem 1.1. Let f, g : [0,∞)→R be locally integrable and assume that

f(∞) := lim
t→∞

f(t) ∈ R,

∫∞

0
|g(t)|dt < ∞. (1.3)

Then

lim
t→∞

(f∗g)(t) = f(∞)
∫∞

0
g(t)dt. (1.4)

The next well-known simple result plays a central role, for instance, in the asymptotic
theory of fractional differential and integral equations (see, e.g., [2–5]).

Theorem 1.2. Let α, β > 0 be given. Then

lim
t→∞

1
tα+β−1

∫ t

0
(t − s)α−1sβ−1 ds = B(α, β), (1.5)

where B(α, β) is the well-known Beta function.

The third known result is formulated for continuous subexponential weight functions.
A continuous function γ : [0,∞)→ (0,∞) is subexponential if

lim
t→∞

(γ∗γ)(t)
γ(t)

= 2
∫∞

0
γ(t)dt < ∞, (1.6)

lim
t→∞

γ(t − s)
γ(t)

= 1, for any fixed s > 0. (1.7)

The terminology is suggested by the fact that (1.7) implies that for every α >
0 limt→∞γ(t) exp(αt) = ∞.

The next result has been proved in [6] and it plays a central role to get exact rates of
subexponential decay of solutions of Volterra integral and integro-differential equations (see,
e.g., [6–8]).
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Theorem 1.3. Let the weight function γ be continuous and subexponential. If f, g : [0,∞)→R are
continuous functions such that

Lγ(f) := lim
t→∞

f(t)
γ(t)

, Lγ(g) := lim
t→∞

g(t)
γ(t)

(1.8)

are finite, then

Lγ(f∗g) := lim
t→∞

(f∗g)(t)
γ(t)

= Lγ(f)
∫∞

0
g + Lγ(g)

∫∞

0
f. (1.9)

Based on the above three known results, we conclude the next observations.

(i) All of the above theorems give different limit formulas for the ratio f∗g/γ at +∞. In
fact γ(t) = 1, t ≥ 0, in Theorem 1.1 and f(t) = tα−1, g(t) = tβ−1, γ(t) = tα+β−1, t ≥ 0,
in Theorem 1.2.

(ii) The weight functions in Theorems 1.1 and 1.2 satisfy condition (1.7), but they do
not satisfy condition (1.6).

(iii) The condition for g in (1.8) is not necessarily true in Theorem 1.1. Instead of that
limt→∞(1/γ(t))

∫ t
t−1g = 0 holds, where γ(t) = 1, t ≥ 0.

(iv) Lγ(f) = Lγ(g) = 0 in Theorem 1.2 and at the same time Lγ(f∗g) = B(α, β) is not
zero.

Our first goal is to prove results which unify the above-mentioned theorems. Second,
we want to extend the limit formulas for the convolution of a function with a measure. This
makes possible the applications of our theorems to not only density but also distribution
functions.

In fact we prove limit formulas which contain three terms, and the weight function
does not satisfy condition (1.6). The major idea in the proofs of the main results is borrowed
from the theory of subexponential functions. Namely, for large enough t, in fact t ≥ 2T > 0,
the convolution (f∗dμ)(t) can be split into three terms:

(f∗dμ)(t) =
∫
[0,T)

f(t − s)dμ(s) +
∫
[T,t−T)

f(t − s)dμ(s) +
∫ t

t−T
f(t − s)dμ(s). (1.10)

Under suitable assumptions and some time-tricky and technical treatments of the above three
terms, we get the limit formula

Lγ(f∗dμ) = Lγ(f)μ([0,∞)) + lγ(f, μ) + Lγ(μ, 1)
∫∞

0
f, (1.11)



4 Journal of Inequalities and Applications

where the following limits are finite:

Lγ(f) := lim
t→∞

f(t)
γ(t)

,

lγ(f, μ) := lim
T →∞

(
lim
t→∞

∫
[T,t−T)

f(t − s)dμ(s)
)
,

Lγ(μ, 1) := lim
t→∞

μ([t − 1, t))
γ(t)

.

(1.12)

In the limit formula (1.11), the terms Lγ(f)μ([0,∞)) and Lγ(μ, 1)
∫∞
0 f are interpreted as zero

whenever Lγ(f) = 0 and Lγ(μ, 1) = 0, respectively. So the values of μ([0,∞)) and
∫∞
0 f need

not be finite in the applications.
The limit formula (1.11) can be reformulated for the convolution of two functions f

and g. Formally, it can be done if the measure μ is such that μ(B) :=
∫
Bg for every Borel set

B ⊂ R.
In that case lγ(f, μ) = lγ(f, g) and Lγ(μ, 1) = Lγ(g, 1), where

lγ(f, g) := lim
T →∞

(
lim
t→∞

∫ t−T

T

f(t − s)g(s)ds
)
,

Lγ(g, 1) := lim
t→∞

1
γ(t)

∫ t

t−1
g(s)ds.

(1.13)

These indicate that our remarks (i)–(iv) are taking into account and the known Theorems 1.1,
1.2, and 1.3 are unified in our results.

The organization of the paper is as follows. Section 2 contains notations and
definitions. Section 3 lists and discusses the main results both for the convolution of a
function with a measure and for the convolution of two functions. In Section 4 we present the
corollaries of our main results for subexponential and long-tailed distributions. In Section 5
we show that our results can be easily reformulated to an extended set of weight functions.
Section 6 gives some corollaries of our main results for the case when the weight function
is of polynomial type. These results have possible applications in the asymptotic theory of
fractional differential and integral equations. The proofs of the main results are given in
Section 8 based on some preliminary statements stated and proved in Section 7.

2. The basic notations and definitions

First we introduce some notations . The set of real numbers is denoted by R, and R+ denotes
the set of nonnegative numbers.

In our investigations we will make use of different sets of measures and functions
given in the next definitions.

Definition 2.1. Let B be the σ-algebra of the Borel sets of R+. M denotes the set of measures μ
defined on B such that the μ-measure of any compact subset of R+ is a nonnegative number.

Note that the classical Lebesgue measure defined on B, denoted by λ, is an element
ofM.
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Let a, b ∈ R. In this paper we will write
∫b
afdμ (or

∫b
af(s)dμ(s)) for the μ-integral

of f on the closed interval [a, b]. The μ-integral of f on the interval [a, b) is written as∫
[a,b)fdμ (or

∫
[a,b)f(s)dμ(s)).When μ = λ, instead of

∫b
afdλ we also write

∫b
af (or

∫b
af(s)ds).

Definition 2.2. L denotes the set of functions f : R+ →R which are Lebesgue integrable on
any compact subset of R+. As usual,

L1 =
{
f ∈ L :

∫∞

0
|f | < ∞

}
. (2.1)

Definition 2.3. Fb is the set of the Borel measurable functions f : R+ →R which are bounded
on any compact subset of R+.

Definition 2.4. A measure μ from M belongs to the set Mc if it is absolutely continuous with
respect to λ. In this case μ = gλ means that g is a nonnegative function from L such that
μ(B) =

∫
Bgdλ for every B ∈ B (g is the Radon-Nikodym derivative of μwith respect to λ).

It is not difficult to show that for any f ∈ Fb and μ ∈ M the convolution

(f∗dμ)(t) :=
∫ t

0
f(t − s)dμ(s) (2.2)

of f and μ is well defined on R+. It is known (see, e.g., [9]) that for any f, g ∈ L the
convolution

(f∗g)(t) :=
∫ t

0
f(t − s)g(s)ds (2.3)

of f and g is well defined for λ almost every (shortly a.e.) t ∈ R+. It follows that for any
μ ∈ Mc and f ∈ L the convolution f∗dμ is well defined for a.e. t ∈ R+, and

(f∗dμ)(t) = (f∗g)(t), a.e. t ∈ R+, (2.4)

where μ = gλ.
In this paper our major goal is to give conditions—possibly sharp—which guarantee

the existence of the finite limit of the ratio

1
γ(t)

(f∗dμ)(t) (2.5)

as t→ + ∞. The weight function γ : R+ → (0,∞) will belong to some special classes of the
functions given in the following definitions.
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Definition 2.5. Let Γ be the set of the functions γ : R+ → (0,∞) such that

lim
t→+∞

γ(t − s)
γ(t)

= 1 for any fixed s ≥ 0. (2.6)

The set of the functions γ ∈ Γ for which the above convergence is uniform on any compact
interval [0, T] is denoted by Γu.

It is clear that if γ ∈ Γ, then

lim
t→+∞

γ(t + s)
γ(t)

= lim
t→+∞

(
γ(t + s − s)
γ(t + s)

)−1
= 1 (2.7)

holds for s ≥ 0, and hence it holds for any s ∈ R. Therefore for all β > 0, we have

lim
t→+∞

γ(ln(βt))
γ(ln t)

= lim
t→+∞

γ(ln t + ln β)
γ(ln t)

= 1, (2.8)

that is the function 1 ≤ t→ γ(ln t) is so called regularly varying at infinity. Thus applying the
Karamata uniform convergence theorem (see, e.g., [10]) it follows that the convergence in
(2.8) is uniform in β on any compact set of (0,∞), assuming that γ is Lebesgue measurable.
From this we get that the convergence in (2.6) is uniform on any compact set of R+ assuming
that γ is Lebesgue measurable. Thus Γu contains the Lebesgue measurable members of Γ. On
the other hand from [10]we know that there exists a nonmeasurable function γ ∈ Γ such that
γ/∈Γu and hence Γu is a proper subset of Γ.

To give an explicit formula for the weighted limit of the convolution f∗dμ at +∞, we
should assume some limit relations between γ and f and between γ and μ.

Definition 2.6. Let γ ∈ Γ.

(a) Fγ denotes the set of functions f : R+ →R such that the limit

Lγ(f) := lim
t→+∞

f(t)
γ(t)

(2.9)

is finite.

(b) Mγ denotes the set of measures μ ∈ M such that for any fixed T > 0 the limit

Lγ(μ, T) := lim
t→+∞

μ([t − T, t))
γ(t)

(2.10)

is finite.

(c) Let

Fμ :=

{
Fb, if μ ∈ M \Mc

L, if μ ∈ Mc.
(2.11)
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Definition 2.7. Let γ ∈ Γ and μ ∈ Mγ . Fγ,μ denotes the set of functions f ∈ Fμ for which

lim
t→+∞

1
γ(t)

∫ t

t−T
f(t − s)dμ(s) = Lγ(μ, 1)

∫T

0
f (2.12)

holds for any fixed T > 0.

Remark 2.8. A measure μ ∈ Mc belongs toMγ if and only if for any fixed T > 0 the limit

Lγ(g, T) := lim
t→+∞

1
γ(t)

∫ t

t−T
g (2.13)

is finite, where μ = gλ. Moreover Lγ(μ, T) = Lγ(g, T) for any T > 0. It can be shown (see
Proposition 7.3) that if g ∈ Fγ and γ ∈ Γu then Lγ(μ, T) = Lγ(g, T) = Lγ(g)T, T > 0.

We close this section with the following definition.

Definition 2.9. A function f : R+ →R is said to be oscillatory onR+ if there exist two sequences
tn, t

′
n ≥ 0, n ≥ 1, such that tn →+∞ and t′n →+∞ as n→+∞,moreover f(tn) < 0 < f(t′n), n ≥ 1.

3. Main results

In this section we state our main results. Their proofs are relegated to Section 8.
We use the following hypothesis.

(H) γ ∈ Γu, μ ∈ Mγ , f ∈ Fγ ∩ Fγ,μ, and the improper integral

lim
T →∞

Lγ(μ, 1)
∫T

0
f (3.1)

is finite whenever f is oscillatory.
Note that if Lγ(μ, 1) = 0, then (H) is satisfied for any f ∈ Fγ ∩ Fγ,μ.
In the next result we give an explicit limit formula for the weighted limit of the

convolution of f and μ at +∞.

Theorem 3.1. Assume (H). Then the following results hold.
(a) The following three statements are equivalent.

(a1) The limit

Lγ(f∗dμ) := lim
t→+∞

1
γ(t)

∫T

0
f(t − s)dμ(s) (3.2)

is finite.
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(a2) For some T > 0, the limit

lim
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s) (3.3)

is finite.

(a3) The values

lim inf
t→+∞

1
γ(t)

∫
[T1,t−T1)

f(t − s)dμ(s) for a fixed T1 > 0,

lim sup
t→+∞

1
γ(t)

∫
[T2,t−T2)

f(t − s)dμ(s) for a fixed T2 > 0

(3.4)

are finite, moreover

lim
T →∞

(
lim inf
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)

= lim
T →∞

(
lim sup
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)
.

(3.5)

(b) Assume that one of the statements (a1)–(a3) is true. Then the limit (3.3) is finite for any
T > 0 and

Lγ(f∗dμ) = Lγ(f)μ([0,∞)) + lγ(f, μ) + Lγ(μ, 1)
∫∞

0
f, (3.6)

where

Lγ(f)μ([0,∞)) := lim
T →+∞

Lγ(f)μ([0, T]), (3.7)

lγ(f, μ) := lim
T →+∞

(
lim

t→+∞
1

γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)
, (3.8)

Lγ(μ, 1)
∫∞

0
f := lim

T →+∞
Lγ(μ, 1)

∫T

0
f (3.9)

are finite.

Remark 3.2. Our theorem is applicable for the case when μ([0,∞)) = +∞ and also when
f/∈L1. Namely, if Lγ(f) = 0, then (3.7) yields that Lγ(f)μ([0,∞)) is zero independently on
the value of μ([0,∞)). Similarly if Lγ(μ, 1) = 0, then from (3.9) it follows that Lγ(μ, 1)

∫∞
0 f

is independently zero on f . We will see that this character of our theorem is important for
getting limit formulas for polynomial-type convolutions (see Corollary 6.2 in Section 6).
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Now consider the case μ ∈ Mc, that is, μ = gλ. In this case we can apply Theorem 3.1
by using the hypothesis.

(Hc) γ ∈ Γu, f ∈ Fγ ∩ L, the function g ∈ L is nonnegative such that

Lγ(g, T) := lim
t→+∞

1
γ(t)

∫ t

t−T
g (3.10)

is finite for every T > 0, and the improper integral limT →∞Lγ(g, 1)
∫T
0f is finite whenever f is

oscillatory .

Theorem 3.3. Assume (Hc). Then the following results hold.
(a) The following three statements are equivalent.

(a1) The limit

Lγ(f∗g) := lim
t→+∞

1
γ(t)

∫ t

0
f(t − s)g(s)ds (3.11)

is finite.

(a2) For some T > 0, the limit

lim
t→+∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds (3.12)

is finite.

(a3) The values

lim inf
t→+∞

1
γ(t)

∫ t−T1

T1

f(t − s)g(s)ds, for a fixed T1 > 0,

lim sup
t→+∞

1
γ(t)

∫ t−T2

T2

f(t − s)g(s)ds, for a fixed T2 > 0,

(3.13)

are finite, moreover

lim
T →+∞

(
lim inf
t→+∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds
)

= lim
T →+∞

(
lim sup
t→+∞

∫ t−T

T

f(t − s)g(s)ds
)
. (3.14)

(b) Assume that one of the statements (a1)–(a3) is true. Then the limit (3.12) is finite for any
T > 0, and

Lγ(f∗g) = Lγ(f)
∫∞

0
g + lγ(f, g) + Lγ(g, 1)

∫∞

0
f, (3.15)
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where

lγ(f, g) := lim
T →+∞

(
lim

t→+∞
1

γ(t)

∫ t−T

T

f(t − s)g(s)ds
)
, (3.16)

Lγ(f)
∫∞

0
g := lim

T →+∞

(
Lγ(f)

∫T

0
g

)
, Lγ(g, 1)

∫∞

0
f := lim

T →+∞
Lγ(g, 1)

∫T

0
f (3.17)

are finite.

When g ∈ L ∩ Fγ , then Lγ(g, T) = Lγ(g)T, T > 0 (see Proposition 7.3), and we get the
following.

Theorem 3.4. Let γ ∈ Γu, f, g ∈ L ∩ Fγ , and assume that

(i) the improper integral

Lγ(g)
∫∞

0
f := lim

T →+∞
Lγ(g)

∫T

0
f (3.18)

is finite, whenever f is oscillatory and g is not oscillatory;

(ii) the improper integral

Lγ(f)
∫∞

0
g := lim

T →+∞
Lγ(f)

∫T

0
g (3.19)

is finite, whenever f is not oscillatory and g is oscillatory.

Then the statements of Theorem 3.3 are valid and (3.15) can be written in the form

Lγ(f∗g) = Lγ(f)
∫∞

0
g + lγ(f, g) + Lγ(g)

∫∞

0
f. (3.20)

Remark 3.5. (a) If γ ∈ Γu, f ∈ L1 ∩ Fγ , and g ∈ L is nonnegative such that Lγ(g, T) defined in
(3.10) is finite for every T > 0, then the conditions of Theorem 3.3 hold.

(b) If γ ∈ Γu, and f, g ∈ L1 ∩ Fγ , then Theorem 3.4 is applicable.

Remark 3.6. The well-known result Theorem 1.1 (see, e.g., [1]) is a straightforward conse-
quence of Theorem 3.3.

4. Applications of the main results to subexponential functions

In this section we concentrate on the so-called subexponential functions which are strongly
related to the subexponential distributions. Such distributions play an important role, for
instance, in modeling heavy-tailed data. Such appears in the situations where some extremely
large values occur in a sample compared to the mean size of data (see, e.g., [11] and the
references therein).

First we consider the “density-type” subexponential functions.
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Definition 4.1. Assume that a function γ is called subexponential if γ ∈ Γ ∩ L1 and

Lγ(γ∗γ) := lim
t→+∞

1
γ(t)

∫ t

0
γ(t − s)γ(s)ds = 2

∫∞

0
γ. (4.1)

Remark 4.2. Let γ ∈ Γ ∩ L such that Lγ(γ∗γ) is finite. Then γ is measurable and hence γ ∈ Γu.
Thus

lim
t→+∞

1
γ(t)

∫ t

0
γ(t − s)γ(s)ds ≥ lim

t→+∞

∫T

0

γ(t − s)
γ(t)

γ(s)ds =
∫T

0
γ(s)ds, T > 0, (4.2)

which shows that

∫∞

0
γ ≤ Lγ(γ∗γ) < ∞. (4.3)

Therefore γ ∈ L1 and the normalized function 0 ≤ t→ γ(t)(
∫∞
0 γ)

−1 is a subexponential density
function. This gives the meaning of the “density-type” subexponentiality.

From Theorems 3.4 and 6.1, we get the following.

Theorem 4.3. If γ is a subexponential function and f, g ∈ L1 ∩ Fγ , then

Lγ(f∗g) = Lγ(f)
∫∞

0
g + Lγ(g)

∫∞

0
f. (4.4)

It is worth to note that formula (4.4) has been obtained by Appleby et al. [7] in the
case when the functions γ, f, and g are continuous on R+. These types of limit formulas were
used effectively for studying the subexponential rate of decay of solutions of integral and
integro-differential equations (see, e.g., [6, 12]).

Now we apply our main results to subexponential and long-tailed-type distribution
functions.

Definition 4.4. Let H : R+ →R+ be a distribution function on R+ such that H(0) = 0 and
H(t) < 1 for all t > 0. Then

(a) H is called subexponential if

lim
t→+∞

1

H(t)

(
1 −

∫ t

0
H(t − s)dH(s)

)
= 2 (4.5)

or equivalently

LH(H∗dH) := lim
t→+∞

1

H(t)

∫ t

0
H(t − s)dH(s) = 1, (4.6)
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where H denotes the tail ofH, that is,

H(t) = 1 −H(t)(> 0), t ≥ 0. (4.7)

(b) H is called long-tailed if

lim
t→+∞

H(t − s)

H(t)
= 1 for any s ≥ 0. (4.8)

The definition of the subexponential distribution was introduced by Chistyakov [13]
in 1964 and there are a large number of papers in the literature dealing with them. For the
major properties and also for applications, we refer to the nice introduction and review paper
by Goldie and Klüppelberg [11] and the references in it.

Now we show the consequences of our main results for the above-defined class of
distribution functions. The proofs will be explained in Section 8.

It is noted in [14, 15] (see also [11]) that the set of the subexponential distributions is
a proper subset of the set of the long-tailed distributions.

In the first theorem, we give equivalent statements for subexponential distributions;
and in the second one, we give a limit formula for the more general long-tailed distributions.

Theorem 4.5. Let H : R+ →R+ be a distribution function such that H(0) = 0 and H(t) < 1, t > 0.
Then the following statements are equivalent.

(a) H is subexponential.

(b) H is long-tailed and there is a T > 0 such that the limit

lim
t→+∞

1

H(t)

∫
[T,t−T)

H(t − s)dH(s) (4.9)

is finite and

lim
T →+∞

(
lim

t→+∞
1

H(t)

∫
[T,t−T)

H(t − s)dH(s)
)

= 0. (4.10)

(c) H is long-tailed and there is a T > 0 such that

lim sup
t→+∞

1

H(t)

∫
[T,t−T)

H(t − s)dH(s) (4.11)

is finite and

lim
T →+∞

(
lim sup
t→+∞

1

H(t)

∫
[T,t−T)

H(t − s)dH(s)
)

= 0. (4.12)
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Theorem 4.6. Let F,G,H : R+ →R+ be distribution functions, F(0) = G(0) = 0, and H is long-
tailed. If

LH(F) := lim
t→+∞

F(t)

H(t)
, LH(G) := lim

t→+∞
G(t)

H(t)
(4.13)

are finite, and

lim
T →+∞

(
lim sup
t→+∞

1

H(t)

∫
[T,t−T)

F(t − s)dG(s)
)

= 0, (4.14)

then

lim
t→+∞

1

H(t)

(
1 −

∫ t

0
F(t − s)dG(s)

)
= LH(F) + LH(G). (4.15)

The above theorem can be easily applied for tail-equivalent distributions defined as
follows (see [11]).

Definition 4.7 (tail-equivalence). Two distributionsH,F : R+ →R+ with the conditionsH(0) =
F(0) = 0 andH(t) < 1, F(t) < 1, t > 0, are called tail-equivalent if LH(F) is a positive number.

Corollary 4.8. Let F,G,H : R+ →R+ be distribution functions, F(0) = G(0) = 0, F(t) < 1, G(t) <
1, t > 0, andH is long-tailed. If the conditions of Theorem 4.6 are satisfied, thenH and F∗dG are tail
equivalent if and only if LH(F) + LH(G) > 0, that is, at least one of the distribution functions F and
G is tail equivalent toH.

5. Further corollaries for an extended set of weight functions

First we consider the extension of the set Γ.

Definition 5.1. Let α ∈ R. By Γ(α) one denotes the set of the functions γ : R+ → (0,∞) such that

lim
t→+∞

γ(t − s)
γ(t)

= e−αs (5.1)

for all s ≥ 0. By Γu(α) one denotes the set of the functions γ ∈ Γ(α) for which the convergence
in (5.1) is uniform on 0 ≤ s ≤ T , for any T > 0.

Remark 5.2. It is clear that Γ = Γ(0), Γu = Γu(0), and γ ∈ Γ(α) (γ ∈ Γu(α)) if and only if
γ1 ∈ Γ (γ1 ∈ Γu), where γ1 is defined by γ1(t) := e−αtγ(t), t ≥ 0.
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Let γ ∈ Γu(α), μ ∈ M, and f ∈ Fμ. Then

1
γ(t)

(f∗dμ)(t) = 1
γ(t)

∫ t

0
f(t − s)dμ(s)

=
1

γ(t)e−αt

∫ t

0
e−α(t−s)f(t − s)e−αsdμ(s)

=
1

γ1(t)

∫ t

0
f1(t − s)dμ1(s) =

1
γ1(t)

(f1∗dμ1)(t), t ∈ Df∗dμ,

(5.2)

where γ1(t) := γ(t)e−αt, f1(t) := f(t)e−αt, t ≥ 0, and μ1(B) :=
∫
Be

−αsdμ(s) for B ∈ B.

Thus our earlier results are applicable if γ1 ∈ Γu and μ1 ∈ Mγ1 . But from Remark 5.2 we
have that γ1 ∈ Γu if and only if γ ∈ Γu(α).Moreover, μ1 ∈ Mγ1 if and only if the limit

Lγ(μ, α, T) := lim
t→+∞

1
γ(t)

∫
[t−T,t)

eα(t−s)dμ(s) (= Lγ1(μ1, T)) (5.3)

is finite for any T > 0.

Remark 5.3. μ1 ∈ Mc if and only if μ ∈ Mc. Namely, let μ ∈ Mc, μ = gλ. Thus μ1(B) =∫
Be

−αsdμ(s) =
∫
Bg(s)e

−αsdλ(s), B ∈ B, and hence μ1 ∈ Mc. Now let μ1 ∈ Mc. Then μ1(B) =∫
Be

−αsdμ(s) = 0 for any B ∈ B such that λ(B) = 0. Therefore e−αs = 0 μ-almost every s ∈ B,
and hence μ(B) = 0. From this it follows that μ is absolute continuous with respect to λ, that
is, μ ∈ Mc.

It can be seen that f1 ∈ Fμ1 if and only if f ∈ Fμ.

Remark 5.4. f1 ∈ Fγ1,μ1 if and only if f ∈ Fγ,α,μ. Here Fγ,α,μ denotes the set of functions f ∈ Fμ

for which

lim
t→+∞

1
γ(t)

∫ t

t−T
f(t − s)dμ(s) = Lγ(μ, α, 1)

∫T

0
f (5.4)

for any T > 0.

The above remarks show that our main results, Theorems 3.1–3.4, can be easily
reformulated for the class Γu(α), assuming that we replace the hypotheses (H) and (Hc) by
(H(α)) and (Hc(α)), respectively. In fact we use the following modified hypotheses.

(H(α)) α ∈ R, γ ∈ Γu(α), μ ∈ M are such that Lγ(μ, α, T) defined in (5.3) is finite for any
T > 0, f ∈ Fγ ∩ Fγ,α,μ and the improper integral

lim
T →∞

Lγ(μ, α, 1)
∫T

0
fdλ (5.5)

is finite, whenever f is oscillatory.
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(Hc(α)) α ∈ R, γ ∈ Γu(α), f ∈ Fγ ∩ L, g ∈ L is nonnegative such that

Lγ(g, α, T) := lim
t→+∞

1
γ(t)

∫ t

t−T
eα(t−s)g(s)ds (5.6)

is finite for every T > 0, and the improper integral limT →∞Lγ(g, α, 1)
∫T
0fdλ is finite,

whenever f is oscillatory.

The extended form of Theorem 3.1 is as follows.

Theorem 5.5. Assume (Hα). Then the following results hold.
(a) The following three statements are equivalent.

(a1) The limit

Lγ(f∗dμ) := lim
t→+∞

1
γ(t)

∫ t

0
f(t − s)dμ(s) (5.7)

is finite.

(a2) For some T > 0 the limit

lim
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s) (5.8)

is finite.

(a3) The values

lim inf
t→+∞

1
γ(t)

∫
[T1,t−T1)

f(t − s)dμ(s), for a fixed T1 > 0,

lim sup
t→+∞

1
γ(t)

∫
[T2,t−T2)

f(t − s)dμ(s), for a fixed T2 > 0,
(5.9)

are finite, moreover

lim
T →+∞

(
lim inf
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)

= lim
T →+∞

(
lim sup
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)
.

(5.10)

(b) Assume that one of the statements (a1)–(a3) is true. Then the limit (5.8) is finite for any
T > 0 and

Lγ(f∗dμ) = Lγ(f)
∫∞

0
e−αsdμ(s) + lγ(f, μ) + Lγ(μ, α, 1)

∫∞

0
f, (5.11)
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where

Lγ(f)
∫∞

0
e−αsdμ(s) := lim

T →+∞
Lγ(f)

∫T

0
e−αs dμ(s),

Lγ(μ, α, 1)
∫∞

0
f := lim

T →+∞
Lγ(μ, α, 1)

∫T

0
f,

(5.12)

and lγ(f, μ), defined in (3.8), are finite.

The extensions of Theorems 3.3 and 3.4 are similar and are left to the reader.

6. Power-type weight function and the role of the middle term

The introduction of our middle term was motivated by two independent papers [2, 4].
In both papers power-type estimations have been proved for the solutions of functional
differential equations and of the wave equations with boundary condition, respectively. The
joint idea was to transform the original problems into a convolution-type form. By treating
the convolution form, power-type estimations were given without investigating any limit
formula.

As a consequence of Theorem 3.4, we prove the next result, and as a corollary of it we
give a power-type limit formula.

Theorem 6.1. Let γ ∈ Γu, and let p, q ∈ L ∩ Fγ be positive such that the limit Lγ(p∗q) is finite. If
f ∈ L ∩ Fp and g ∈ L ∩ Fq, then the limit Lγ(f∗g) is finite and

Lγ(f∗g) = Lγ(p)Lp(f)
∫∞

0
g + Lp(f)Lq(g)lγ(p, q) + Lγ(q)Lq(g)

∫∞

0
f, (6.1)

where

Lγ(p)Lp(f)
∫∞

0
g := lim

T →+∞
Lγ(p)Lp(f)

∫T

0
g,

Lγ(q)Lq(g)
∫∞

0
f := lim

T →+∞
Lγ(q)Lq(g)

∫T

0
f,

(6.2)

and lγ(p, q), defined in (3.16), are finite.

The following corollary is a generalization of Theorem 1.2 and shows the importance
of our middle term when γ is a power-type function.

Corollary 6.2. Let f, g ∈ L and assume that the limits

a := lim
t→+∞

f(t)
tα−1

, b := lim
t→+∞

g(t)
tβ−1

(6.3)
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are finite, where α, β > 0 are given constants. Then

lim
t→+∞

1
tα+β−1

∫ t

0
f(t − s)g(s)ds = abB(α, β), (6.4)

where B : (0,∞) × (0,∞)→R is the Beta function, that is, B(α, β) = Γ(α)Γ(β)(Γ(α + β))−1 (Γ is the
well-known Gamma function).

In the above limit formula, γ(t) = tα+β−1, t > 0, Lγ(f) = Lγ(g) = 0 and the middle term
lγ(f, g) = abB(α, β)/= 0, whenever ab /= 0.

7. Preliminary results

In this section we state and prove preliminary and auxiliary results. They will be used in the
proofs of our main results in the next section. N+ denotes the set of the positive integers.

Proposition 7.1. Let γ ∈ Γ and μ ∈ M such that Lγ(μ, T) is finite for any T ∈ [0, T0] with a fixed
T0 > 0. Then μ ∈ Mγ .

Proof. Let T > T0 and T1 ∈ (0, T0] such that n := T/T1 ∈ N
+. Then

μ([t − T, t))
γ(t)

=
1

γ(t)

n∑
k=1

μ([t − kT1, t − (k − 1)T1))

=
n∑

k=1

μ([t − kT1, t − (k − 1)T1))
γ(t − (k − 1)T1)

·γ(t − (k − 1)T1)
γ(t)

,

(7.1)

and this yields Lγ(μ, T) = nLγ(μ, T1).

Proposition 7.2. Let γ ∈ Γ and μ ∈ Mγ . Then the following hold.

(a) Lγ(μ, T) = TLγ(μ, 1) for any T ≥ 0.

(b) limt→+∞(μ({t})/γ(t)) = 0, where t is the only element of the set {t}.

Proof. (a) First we show that Lγ(μ, ·) is additive. In fact for T1, T2 ≥ 0 we have

μ([t − (T1 + T2), t))
γ(t)

=
μ([t − T1, t))

γ(t)
+
μ([(t − T1) − T2, t − T1))

γ(t − T1)
·γ(t − T1)

γ(t)
(7.2)

for t > T1 + T2. This yields Lγ(μ, T1 + T2) = Lγ(μ, T1) + Lγ(μ, T2). Therefore Lγ(μ, ·) can be
extended in a unique way to R such that it is additive. Now (a) follows since Lγ(μ, ·) is
nonnegative on R+.

(b) For any T > 0, we have

0 ≤ μ({t})
γ(t)

≤ μ([t, t + T))
γ(t + T)

γ(t + T)
γ(t)

, t ≥ 0, (7.3)
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therefore

0 ≤ lim sup
t→+∞

μ({t})
γ(t)

≤ Lγ(μ, T) = TLγ(μ, 1). (7.4)

Since T > 0 is arbitrarily chosen, statement (b) is proved.

Proposition 7.3. Let γ ∈ Γu and assume that μ ∈ Mc, that is, μ = pλ. If p ∈ Fγ, then Lγ(μ, T) =
Lγ(p)T, T ≥ 0.

Proof. γ is a positive function, therefore Lγ(p) ≥ 0. Thus for any ε ∈ (0, 1) there exists a tε > 0
such that

(1 − ε)Lγ(p) ≤
p(t)
γ(t)

≤ ε + Lγ(p), for t > tε. (7.5)

From this it follows that

(1 − ε)Lγ(p) ≤
p(t − s)
γ(t − s)

≤ ε + Lγ(p), s ∈ [0, T], t > tε + T. (7.6)

On the other hand there is a t′ε > tε + T such that

1 − ε <
γ(t − s)
γ(t)

< 1 + ε, s ∈ [0, T], t > t′ε, (7.7)

where we used that γ ∈ Γu.
Thus

(1 − ε)2Lγ(p) ≤
p(t − s)
γ(t)

=
p(t − s)
γ(t − s)

γ(t − s)
γ(t)

≤ (1 + ε)(ε + Lγ(p)), s ∈ [0, T], t > t′ε,

(7.8)

therefore

(1 − ε)2Lγ(p)T ≤ 1
γ(t)

∫T

0
p(t − s)ds

=
1

γ(t)

∫ t

t−T
pdλ

=
μ([t − T, t))

γ(t)
≤ (1 + ε)(ε + Lγ(p))T, t > t′ε.

(7.9)
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From this it follows

(1 − ε)2Lγ(p)T ≤ lim inf
t→+∞

μ([t − T, t))
γ(t)

≤ lim sup
t→+∞

μ([t − T, t))
γ(t)

≤ (1 + ε)(ε + Lγ(p))T

(7.10)

for any fixed ε ∈ (0, 1). This completes the proof as ε→ 0+.

Definition 7.4. For any x ≥ 0 and B ∈ B, let εx(B) be defined by

εx(B) :=

{
1, if x ∈ B,

0, if x/∈B.
(7.11)

It is clear that for any fixed x ≥ 0, εx is a measure on B (the unit mass at x), and εx ∈ M.

Proposition 7.5. Let (tn)
∞
n=1 be a given sequence in R+ such that

δ := inf
n∈N+

(tn+1 − tn) > 0, (7.12)

and let (αn)
∞
n=1 be a sequence of nonnegative numbers. Suppose γ ∈ Γ.

(a) If the measure μ :=
∑∞

n=1αnεtn belongs to Mγ , then limn→+∞(αn/γ(tn)) = 0 and
Lγ(μ, T) = 0, T ≥ 0.

(b) If γ ∈ Γu and limn→+∞(αn/γ(tn)) = 0, then μ ∈ Mγ .

Proof. It is clear that μ ∈ M.
(a) Let T0 ∈ (0, δ) be fixed. Since μ([tn − T0, tn)) = 0 for every n = 2, 3, . . . , we have

lim
n→+∞

μ([tn − T0, tn))
γ(tn)

= 0, (7.13)

and hence Lγ(μ, T0) = 0. This and statement (a) of Proposition 7.2 imply that Lγ(μ, T) = 0, T ≥
0. Therefore

0 = Lγ(μ, T0) = lim
n→+∞

μ([tn, tn + T0))
γ(tn + T0)

= lim
n→+∞

αn

γ(tn + T0)
= lim

n→+∞
αn

γ(tn)
γ(tn)

γ(tn + T0)
.

(7.14)

But limn→+∞(γ(tn)/γ(tn + T0)) = 1, and hence statement (a) is proved.
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(b) Let ε > 0 and 0 < T < δ be fixed. Then

μ([t − T, t))
γ(t)

=

⎧⎨
⎩

αn

γ(t)
, if t ∈ (tn, tn + T],

0, if t ∈ (tn + T, tn+1]
(7.15)

for n ≥ 2. Thus

0 ≤ μ([t − T, t))
γ(t)

≤

⎧⎪⎨
⎪⎩

αn

γ(t)
=

αn

γ(tn)
γ(tn)
γ(t)

=
αn

γ(tn)
γ(t − δn(t))

γ(t)
, t ∈ (tn, tn + T], δn(t) ∈ (0, δ)

0, t ∈ (tn + T, tn+1]

(7.16)

for n ≥ 2. But γ ∈ Γu, limn→+∞(αn/γ(tn)) = 0 and tn → +∞, therefore

Lγ(μ, T) = lim
t→+∞

μ([t − T, t))
γ(t)

= 0. (7.17)

The proof is complete.

Definition 7.6. Let T > 0 be fixed.
(a) BT denotes the σ-algebra of the Borel sets of [0, T].
(b)MT,e denotes the set of the finite measures on BT .
(c) A topology defined on MT,e is said to be the weak topology on MT,e if it is the

weakest one which makes the mapping

ν −→
∫T

0
fdν, ν ∈ MT,e (7.18)

continuous for all continuous f : [0, T]→R.

Definition 7.7. For a fixed T > 0 and t ≥ T , define the shift operator

ST,t : [t − T, t] −→ [0, T], ST,t(s) := t − s. (7.19)

Let μ ∈ M. For B ∈ BT

ST,t(μ)(B) := μ
(
S−1
T,t(B)

)
. (7.20)

Proposition 7.8. Let γ ∈ Γ, μ ∈ Mγ , and T > 0 be fixed. Then

lim
t→+∞

1
γ(t)

ST,t(μ) = λγ,μ, (7.21)

where the convergence is in the weak topology of MT,e.
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Proof. We should prove that for any fixed continuous function f : [0, T]→R, we have

lim
t→+∞

1
γ(t)

∫T

0
f dST,t(μ) =

∫T

0
f dλγ,μ. (7.22)

For any A ⊂ [0, T], the function χA : [0, T]→R denotes the characteristic function of A.
Let

p : [0, T] −→ R, p = c1χ[0,t1] +
k∑
i=2

ciχ(ti−1,ti], (7.23)

where k ∈ N
+, 0 = t0 < · · · < tk = T, and ci ∈ R (i = 1, . . . , k).

Then from the statement (b) of Proposition 7.2, it follows

lim
t→+∞

1
γ(t)

∫T

0
pdST,t(μ) = lim

t→+∞
1

γ(t)

(
c1·ST,t(μ)([0, t1]) +

k∑
i=2

ciST,t(μ)((ti−1, ti])

)

= lim
t→+∞

1
γ(t)

(
c1μ([t − t1, t]) +

k∑
i=2

ciμ([t − ti, t − ti−1))

)

= lim
t→+∞

(
c1
μ({t})
γ(t)

+
k∑
i=1

ci

(
μ([t − ti, t))

γ(t)
− μ([t − ti−1, t))

γ(t)

))

=
k∑
i=1

ciλγ,μ((ti−1, ti]) =
∫T

0
pdλγ,μ.

(7.24)

It is known that for a fixed continuous function f : [0, T]→R, there exists a sequence of step
functions (pn) such that it converges to f uniformly on [0, T]. Thus for arbitrarily fixed ε > 0,
there is an index n0 ∈ N

+ such that

|pn0(t) − f(t)| < ε, t ∈ [0, T]. (7.25)

In that case

∣∣∣∣ 1
γ(t)

∫T

0
fdST,t(μ) −

∫T

0
fdλγ,μ

∣∣∣∣

≤ 1
γ(t)

∫T

0
|f − pn0 |dST,t(μ) +

∣∣∣∣ 1
γ(t)

∫T

0
pn0dST,t(μ) −

∫T

0
pn0dλγ,μ

∣∣∣∣ +
∫T

0
|pn0 − f |dλγ,μ

≤ εST,t(μ)([0, T])
γ(t)

+
∣∣∣∣ 1
γ(t)

∫T

0
pn0dST,t(μ) −

∫T

0
pn0dλγ,μ

∣∣∣∣ + ελγ,μ([0, T])

≤ ε(λγ,μ([0, T]) + ε) + ε + ελγ,μ([0, T])

(7.26)
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for all t large enough. Here we used the conclusion of the first part of our proof and statement
(b) of Proposition 7.2. Since ε > 0 is fixed but arbitrary, the proof is complete.

Corollary 7.9. Let γ ∈ Γ and μ ∈ Mγ .

(a) If f : R+ →R is Borel measurable and Riemann integrable on any interval [0, T], T > 0,
then f ∈ Fγ,μ.

(b) If λγ,μ = 0 and f ∈ Fb, then f ∈ Fγ,μ.

(c) Let μ ∈ Mc, μ = pλ. If γ ∈ Γu, p ∈ Fγ and f ∈ L, then f ∈ Fγ,μ.

Proof. From Proposition 7.8, it follows (see, e.g., [12]) that if f ∈ Fb is λγ,μ-a.e. continuous,
then f ∈ Fγ,μ. From this we get statements (a) and (b).

(c) Let T > 0 and ε > 0 be fixed. Since p ∈ Fγ , there is a t0 > 0 such that

∣∣∣∣p(t)γ(t)
− Lγ(p)

∣∣∣∣ < ε, t > t0, (7.27)

and hence

∣∣∣∣p(t − s)
γ(t − s)

− Lγ(p)
∣∣∣∣ < ε, s ∈ [0, T], t > T + t0. (7.28)

Since γ ∈ Γu, there is a t1 > t0 + T such that

∣∣∣∣γ(t − s)
γ(t)

− 1
∣∣∣∣ < ε, s ∈ [0, T], t > t1. (7.29)

Thus

∣∣∣∣f(s)
(
p(t − s)
γ(t)

− Lγ(p)
)∣∣∣∣ ≤ |f(s)|

∣∣∣∣p(t − s)
γ(t − s)

− Lγ(p)
∣∣∣∣γ(t − s)

γ(t)
+ |f(s)|Lγ(p)

∣∣∣∣γ(t − s)
γ(t)

− 1
∣∣∣∣

≤ |f(s)|(ε(1 + ε) + εLγ(p)), s ∈ [0, T], t > t1.

(7.30)

From the general transformation theorem for integrals (see, e.g., [12]) and from the
translation invariance of the Lebesgue measure λ, we get: for any B ∈ BT and t ≥ T,

ST,t(μ)(B) = μ
(
S−1
T,t(B)

)
=
∫
S−1
T,t(B)

pdλ =
∫
B

p ◦ S−1
T,tdST,t(λ) =

∫
B

p(t − s)ds. (7.31)
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But Proposition 7.3 shows that μ ∈ Mγ and λγ,μ = Lγ(p)λ. So

∣∣∣∣ 1
γ(t)

∫T

0
fdST,t(μ) −

∫T

0
fdλγ,μ

∣∣∣∣ ≤
∫T

0
|f(s)|

∣∣∣∣p(t − s)
γ(t)

− Lγ(p)
∣∣∣∣ds

≤ (
ε(1 + ε) + εLγ(p)

)∫T

0
|f |dλ.

(7.32)

Since ε > 0 is arbitrary, this completes the proof.

Proposition 7.10. Let γ : R+ → (0,∞), μ ∈ M, and assume that f ∈ Fμ is not oscillatory on R+.
Then the following mappings have limits in Re := R ∪ {−∞,∞} as T → +∞:

0 ≤ T −→ lim sup
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s) ∈ Re,

0 ≤ T −→ lim inf
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s) ∈ Re.

(7.33)

Proof. Let f be nonnegative on [t0,∞), where t0 is large enough. Then for t0 ≤ T1 < T2 and
t ∈ (2T2,∞) ∩Df∗μ, we get

1
γ(t)

∫
[T1,t−T1)

f(t − s)dμ(s) =
1

γ(t)

∫
[T1,T2)

f(t − s)dμ(s)

+
1

γ(t)

∫
[T2,t−T2)

f(t − s)dμ(s) +
1

γ(t)

∫
[T2,t−T2)

f(t − s)dμ(s)

+
1

γ(t)

∫
[t−T2,t−T1)

f(t − s)dμ(s) ≥ 1
γ(t)

∫
[T2,t−T2)

f(t − s)dμ(s).

(7.34)

Thus the above-defined mappings are decreasing, and hence their limits exist in Re as T →
+∞. When f is eventually nonpositive, then the above procedure can be applied for −f. The
proof is complete.

In the next two results, we give explicit formulas for the limit inferior and limit
superior of the weighted convolution of f and μ at +∞.

Theorem 7.11. Assume (H). Then the following results hold.
(a) The following two statements are equivalent.

(a1) The limit inferior

Lγ(f∗dμ) := lim inf
t→+∞

1
γ(t)

∫ t

0
f(t − s)dμ(s) (7.35)

is finite.
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(a2) For some T > 0, the limit inferior

lim inf
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s) (7.36)

is finite.

(b) If the limit inferior (7.36) is finite for a fixed T > 0, then it is finite for any T > 0 and

Lγ(f∗dμ) = Lγ(f)μ([0,∞)) + lγ(f, μ) + Lγ(μ, 1)
∫∞

0
f, (7.37)

where

lγ(f, μ) := lim
T →+∞

(
lim inf
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)
, (7.38)

Lγ(f)μ([0,∞)) and Lγ(μ, 1)
∫∞
0 f (they are defined in (3.7) and (3.9), resp.) are finite.

Proof. Let T > 0 be fixed. Then for any t > 2T, and t ∈ Df∗μ, we get

1
γ(t)

∫ t

0
f(t − s)dμ(s)

=
1

γ(t)

∫
[0,T)

f(t − s)dμ(s) +
1

γ(t)

∫
[T,t−T)

f(t − s)dμ(s) +
1

γ(t)

∫ t

t−T
f(t − s)dμ(s).

(7.39)

First we show that

lim
t→+∞

1
γ(t)

∫
[0,T)

f(t − s)dμ(s) = Lγ(f)μ([0, T)). (7.40)

In fact for t ≥ T and s ∈ [0, T),we have

∣∣∣∣f(t − s)
γ(t)

− Lγ(f)
∣∣∣∣ ≤

∣∣∣∣f(t − s)
γ(t − s)

− Lγ(f)
∣∣∣∣γ(t − s)

γ(t)
+
∣∣∣∣γ(t − s)

γ(t)
− 1

∣∣∣∣|Lγ(f)|. (7.41)

But γ ∈ Γu, f ∈ Fγ , therefore for ε > 0 there exists t0 > 0 such that

∣∣∣∣γ(t − s)
γ(t)

− 1
∣∣∣∣ < ε, s ∈ [0, T], t > t0,

∣∣∣∣f(t)γ(t)
− Lγ(f)

∣∣∣∣ < ε, t > t0.

(7.42)
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Thus (7.41) yields

∣∣∣∣f(t − s)
γ(t)

− Lγ(f)
∣∣∣∣ < ε(1 + ε) + ε|Lγ(f)|, s ∈ [0, T], t > t0 + T, (7.43)

and hence

∣∣∣∣ 1
γ(t)

∫
[0,T)

f(t − s)dμ(s) − Lγ(f)
∫
[0,T)

1dμ
∣∣∣∣

≤
∫
[0,T)

∣∣∣∣f(t − s)
γ(t)

− Lγ(f)
∣∣∣∣dμ(s) ≤ ε(1 + ε + |Lγ(f)|)μ([0, T)), t > t0 + T, t ∈ Df∗μ,

(7.44)

which implies (7.40).
Since f ∈ Fγ,μ, we have

lim
t→+∞

1
γ(t)

∫ t

t−T
f(t − s)dμ(s) =

∫T

0
fdλγ,μ. (7.45)

Assume that (a2) holds. Then (7.39), (7.40), and (7.45) imply (a1). On the other hand, from
(7.39), (7.40), and (7.45) we get that (a1) yields (a2), and hence statement (a) is proved. This
also verifies the first part of statement (b).

Now we prove the second part of statement (b). Assume that (7.36) is finite for any
T > 0. Then (7.39) yields

lim inf
t→∞

1
γ(t)

∫ t

0
f(t − s)dμ(s)

= Lγ(f)μ([0, T)) + lim inf
t→∞

∫
[T,t−T)

f(t − s)dμ(s) +
∫T

0
fdλγ,μ, T > 0.

(7.46)

Now assume that f is not oscillatory. Then there exists t0 > 0 such that either f(t) ≥ 0 for
every t ≥ t0 or f(t) ≤ 0 for every t ≥ t0. We consider the case when f(t) ≥ 0 for t ≥ t0, the other
case can be handled similarly.

All the three terms on the right-hand side of (7.46) have limit as T →∞ in Re := R ∪
{−∞,∞}. In fact

lim
T →+∞

Lγ(f)μ([0, T)) = Lγ(f)μ([0,∞)) ∈ [0,∞], (7.47)

and by Proposition 7.10, we get

lim
T →+∞

(
lim inf
t→∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)

∈ [0,∞], (7.48)
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moreover

lim
T →+∞

∫T

0
fdλγ,μ =

∫ t0

0
fdλγ,μ + lim

T →+∞

∫T

t0

fdλγ,μ ∈ (−∞,∞]. (7.49)

Now the second part of (b) is proved, since the left-hand side of (7.46) is finite and
independent on T .

Now assume that f is oscillatory on R+ and as we assumed limT →+∞
∫T
0fdλγ,μ is finite.

In that case Lγ(f) = 0, and hence

lim
T →+∞

Lγ(f)μ([0, T)) = 0. (7.50)

Thus by using similar arguments to those we used above, statement (b) is proved again.

Theorem 7.12. Assume (H). Then the following results hold.
(a) The following two statements are equivalent.

(a1) The limit superior

Lγ(f∗dμ) := lim sup
t→+∞

1
γ(t)

∫ t

0
f(t − s)dμ(s) (7.51)

is finite.

(a2) For some T > 0 the limit superior

lim sup
t→+∞

1
γ(t)

∫ t

[T,t−T)
f(t − s)dμ(s) (7.52)

is finite .

(b) If the limit superior (7.52) is finite for a fixed T > 0, then it is finite for any T > 0 and

Lγ(f∗dμ) = Lγ(f)μ([0,∞)) + lγ(f, μ) + Lγ(μ, 1)
∫∞

0
f, (7.53)

where

lγ(f, μ) := lim
T →+∞

(
lim sup
t→+∞

1
γ(t)

∫
[T,t−T)

f(t − s)dμ(s)
)
, (7.54)

Lγ(f)μ([0,∞)) and Lγ(μ, 1)
∫∞
0 f (they are defined in (3.7) and (3.9), resp.) are finite.

Proof. Its proof is similar to the proof of Theorem 7.11, therefore it is omitted.
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Theorem 7.13. Let γ ∈ Γu, f, g ∈ L ∩ Fγ , and assume that

(i) the improper integral

Lγ(g)
∫∞

0
f := lim

T →+∞
Lγ(g)

∫T

0
f (7.55)

is finite, whenever f is oscillatory and g is not oscillatory,

(ii) the improper integral

Lγ(f)
∫∞

0
g := lim

T →+∞
Lγ(f)

∫T

0
g (7.56)

is finite, whenever f is not oscillatory and g is oscillatory.

Then the following results hold.
(a) The following two statements are equivalent.

(a1) The limit inferior

Lγ(f∗g) := lim inf
t→∞

1
γ(t)

∫T

0
f(t − s)g(s)ds (7.57)

is finite.

(a2) For some T > 0 the limit inferior

lim inf
t→∞

1
γ(t)

∫ t−T

0
f(t − s)g(s)ds (7.58)

is finite.

(b) If the limit inferior (7.58) is finite for a fixed T > 0, then it is finite for any T > 0 and

Lγ(f∗g) = Lγ(f)
∫∞

0
g + lγ(f, g) + Lγ(g)

∫∞

0
f, (7.59)

where

lγ(f, g) := lim
T →+∞

(
lim inf
t→+∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)d(s)
)
, (7.60)

Lγ(f)
∫∞
0 g and Lγ(g)

∫∞
0 f (they are defined in Theorem 3.3) are finite.



28 Journal of Inequalities and Applications

Proof. Let T > 0 be fixed. Then for each t > 2T and t ∈ Df∗g , we have

1
γ(t)

∫ t

0
f(t − s)g(s)ds

=
1

γ(t)

∫T

0
f(t − s)g(s)ds +

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds +
1

γ(t)

∫ t

t−T
f(t − s)g(s)ds.

(7.61)

The proof of (7.40) can easily be modified to show that

lim
t→∞

1
γ(t)

∫T

0
f(t − s)g(s)ds = Lγ(f)

∫T

0
g. (7.62)

Since

∫ t

t−T
f(t − s)g(s)ds =

∫T

0
f(s)g(t − s)ds, t > 2T, t ∈ Df∗g, (7.63)

it follows from (7.62) that

lim
t→∞

1
γ(t)

∫ t

t−T
f(t − s)g(s)ds = Lγ(g)

∫T

0
f. (7.64)

By using (7.61), (7.62), and (7.64) instead of (7.39), (7.40), and (7.45), the argument employed
in the proof of Theorem 7.11(a) and the first part of (b) extends to give (a) and the first part
of (b).

Consider now the proof of (7.59). Suppose that (7.58) is finite for every T > 0. By (7.61),

Lγ(f∗g) = Lγ(f)
∫T

0
g + lim inf

t→∞
1

γ(t)

∫ t−T

T

f(t − s)g(s)ds + Lγ(g)
∫T

0
f (7.65)

for each T > 0. We separate the proof into four steps.
(h) Suppose first that f and g are oscillatory. Then Lγ(f) = Lγ(g) = 0, hence (7.65)

implies that

Lγ(f∗g) = lim inf
t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds, T > 0. (7.66)

It now follows that lγ(f, g) is finite and

Lγ(f∗g) = lγ(f, g). (7.67)
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(j) Suppose next that exactly one of the functions f and g is oscillatory. Without loss of
generality, we can assume that f is oscillatory and g is not oscillatory. Then Lγ(f) = 0, hence
(7.65) shows that

Lγ(f∗g) = lim inf
t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds + Lγ(g)
∫T

0
f, T > 0. (7.68)

By (i), lγ(f, g) is finite and

Lγ(f∗g) = lγ(f, g) + Lγ(g)
∫∞

0
f. (7.69)

(k) Suppose that there is T0 > 0 such that f(t) ≥ 0 and g(t) ≥ 0 for every t ≥ T0. Then it
follows from Lγ(f) ≥ 0 and

Lγ(f)
∫T

0
g = Lγ(f)

∫T0

0
g + Lγ(f)

∫T

T0

g, T > T0, (7.70)

that

lim
T →∞

Lγ(f)
∫T

0
g ∈ (−∞,∞]. (7.71)

A similar argument gives that

lim
T →∞

Lγ(g)
∫T

0
f ∈ (−∞,∞]. (7.72)

Since

lim inf
t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds ≥ 0, T > T0, (7.73)

we have

lim inf
T →∞

(
lim inf
t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds
)

≥ 0. (7.74)

Using (7.65), we deduce from (7.71), (7.72), and (7.74) that the limits in (7.71) and (7.72) are
finite, and therefore lγ(f, g) exists and is finite. This gives (7.59). If f(t) ≤ 0 and g(t) ≤ 0 for
every t ≥ T0, then a similar proof can be applied.

(l) Suppose finally that there is T0 > 0 such that f(t) ≥ 0 and g(t) ≤ 0 for every t ≥ T0, or
f(t) ≤ 0 and g(t) ≥ 0 for every t ≥ T0. This case follows by an argument entirely similar to that
for the case (k). Here the limits (7.71) and (7.72) are in [−∞,∞), and (7.74) is nonpositive.
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Theorem 7.14. Under the hypotheses of Theorem 7.13 the following results hold.
(a) The following two statements are equivalent.

(a1) The limit superior

Lγ(f∗g) := lim sup
t→∞

1
γ(t)

∫ t

0
f(t − s)g(s)ds (7.75)

is finite.

(a2) For some T > 0, the limit superior

lim sup
t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds (7.76)

is finite.

(b) If the limit superior (7.76) is finite for a fixed T > 0, then it is finite for any T > 0 and

Lγ(f∗g) = Lγ(f)
∫∞

0
g + lγ(f, g) + Lγ(g)

∫∞

0
f, (7.77)

where

lγ(f, g) := lim
T →+∞

(
lim sup
t→+∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)d(s)
)
, (7.78)

Lγ(f)
∫∞
0 g and Lγ(g)

∫∞
0 f (they are defined in Theorem 3.3) are finite.

Proof. The proof is similar to the proof of the previous theorem, therefore it is omitted.

8. The proofs of the main results

In this section, we give the proofs of the results stated in Sections 3–6.

Proof of Theorem 3.1. A similar argument employed in the proof of Theorem 7.11 gives the
equivalence of (a1) and (a2), and part (b). It is clear from (a2) and (b) that (a2) implies (a3).
If (a3) holds, then by Theorems 7.11 and 7.12, the values of Lγ(f∗dμ) and Lγ(f∗dμ) are finite.
Since lγ(f, μ) = lγ(f, μ), it follows from (7.37) and (7.53) that Lγ(f∗dμ) = Lγ(f∗dμ). This
shows that (a3) yields (a1).

Proof of Theorem 3.3. This is an immediate consequence of Theorem 3.1.

Proof of Theorem 3.4. The argument of Theorem 7.13 can easily be generalized to prove the
equivalence of (a1) and (a2), and part (b). (a1) and (b) imply (a3). If (a3) holds, then we can
apply Theorems 7.13 and 7.14. It now follows from (7.59) and (7.77) that Lγ(f∗g) = Lγ(f∗g),
and therefore (a2) is satisfied.
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Proof of Theorem 1.1. First we suppose that g is nonnegative. It follows from g ∈ L1 that

lim
t→∞

∫ t

t−T
g = 0 (8.1)

for every T ≥ 0. We can see that the hypothesis (Hc) is satisfied with γ : R+ → (0,∞), γ(t) = 1,
and Lγ(g, 1) = 0. This shows that Theorem 3.3 can be applied. Consider now the proof that
(a3) holds, and lγ(f, g) = 0. There exists t0 > 0 such that

|f(t)| < |f(∞)| + 1, t > t0. (8.2)

This implies that

∫ t−T

T

|f(t − s)|g(s)ds ≤ (|f(∞)| + 1)
∫ t−T

T

g, T > t0, t > 2T, t ∈ Df∗g, (8.3)

hence

lim sup
t→∞

∫ t−T

T

|f(t − s)|g(s)ds ≤ (|f(∞)| + 1)
∫∞

T

g, T > t0, (8.4)

and therefore, by g ∈ L1,

lim
T →∞

(
lim sup

t→∞

∫ t−T

T

|f(t − s)|g(s)ds
)

= 0. (8.5)

Since

−lim sup
t→∞

∫ t−T

T

|f(t − s)|g(s)ds ≤ lim inf
t→∞

∫ t−T

T

f(t − s)g(s)ds

≤ lim sup
t→∞

∫ t−T

T

f(t − s)g(s)ds

≤ lim sup
t→∞

∫ t−T

T

|f(t − s)|g(s)ds,

(8.6)

it follows from (8.5) that (a3) is true, and lγ(f, g) = 0. Now (3.15) gives the result.
In the general case, the preceding can be applied to both g+ and g−.

Proof of Theorem 4.3. γ is a subexponential function, and therefore γ ∈ Γu and

Lγ(γ∗γ) = 2
∫∞

0
γ. (8.7)

Theorem 3.4 may now be applied with f = g := γ , and lγ(γ, γ) = 0 is obtained. Thus the result
follows from Theorem 6.1 with p = q := γ .
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Proof of Theorem 4.5. Suppose that H is subexponential. Then H is long-tailed as is well
known (details can be found in [11]), and thusH ∈ Γu. The distribution functionH generates
a distribution μH ∈ M. Since

μH([t − T, t))

H(t)
=

H(t) −H(t − T)

H(t)
= −1 + H(t − T)

H(t)
, T > 0, t ≥ T, (8.8)

we can see that LH(μH, T) = 0 for every T ≥ 0, and therefore μ ∈ MH . It follows that the
hypothesis (H) is satisfied with γ = f := H and μ := μH . This shows that Theorem 3.1 can
be applied. Since H is subexponential, the equivalence of (a1) and (a2) implies (4.9), and
(3.6) gives (4.10). We have proved that (b) comes from (a). On the other hand, (c) obviously
follows from (b).

By the equivalence of (a3) and (a1) in Theorem 3.1, (c) implies (a).

Proof of Theorem 4.6. H is long-tailed, henceH ∈ Γu. The distribution functionG characterizes
a distribution μG ∈ M. Then

μG([t − T, t))

H(t)
=

G(t) −G(t − T)

H(t)

= − G(t)

H(t)
+

G(t − T)

H(t − T)

H(t − T)

H(t)
, T > 0, t ≥ T,

(8.9)

giving

lim
t→∞

μG([t − T, t))

H(t)
= −LH(G) + LH(G) = 0, T ≥ 0, (8.10)

and therefore μG ∈ MH and LH(μG, T) = 0, T ≥ 0.
It follows that the condition (H) is satisfied with γ := H, μ := μG and f := F.
According to Theorem 3.1(a3) and (3.6), we now have

lim
t→∞

1

H(t)

∫ t

0
F(t − s)dG(s) = LH(F). (8.11)

Applying this and taking into account Proposition 7.2(b), the result follows, since

1

H(t)

(
1 −

∫ t

0
F(t − s)dG(s)

)
=

1 −G(t+)

H(t)
+

1

H(t)

∫ t

0
F(t − s)dG(s)

=
G(t)

H(t)
− μG({t})

H(t)
+

1

H(t)

∫ t

0
F(t − s)dG(s), t > 0.

(8.12)

Proof of Theorem 5.5. By the correspondence between hypotheses (H) and (H(α)), Theo-
rem 3.1 implies the result.
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Proof of Theorem 6.1. By Theorem 3.4, we deduce that

Lγ(p∗q) = Lγ(p)
∫∞

0
q + lγ(p, q) + Lγ(q)

∫∞

0
p. (8.13)

Let ε > 0. Since f ∈ Fp and g ∈ Fq, we can find t0 > 0 such that

Lp(f)Lq(g) − ε <
f(t)
p(t)

g(t)
q(t)

< Lp(f)Lq(g) + ε, t > t0, (8.14)

and therefore also

Lp(f)Lq(g) − ε <
f(t − s)
p(t − s)

g(t)
q(t)

< Lp(f)Lq(g) + ε, s ∈ [T, t − T], T > t0, t > 2T. (8.15)

This implies that

(Lp(f)Lq(g) − ε)
1

γ(t)

∫ t−T

T

p(t − s)q(s)ds

≤ 1
γ(t)

∫ t−T

T

f(t − s)g(s)ds

=
1

γ(t)

∫ t−T

T

f(t − s)
p(t − s)

g(s)
q(s)

p(t − s)q(s)ds

≤ (Lp(f)Lq(g) + ε)
1

γ(t)

∫ t−T

T

p(t − s)q(s)ds, T > t0, t > 2T.

(8.16)

Equation (8.13) shows that lγ(p, q) is finite, hence the definition of lγ(p, q) and the previous
inequality give

(Lp(f)Lq(g) − ε)lγ(p, q) ≤ lim inf
T →∞

(
lim inf
t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds
)

≤ lim sup
T →∞

(
lim sup

t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds
)

≤ (Lp(f)Lq(g) + ε)lγ(p, q),

(8.17)

and therefore

Lp(f)Lq(g)lγ(p, q) = lim
T →∞

(
lim inf
t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds
)

= lim
T →∞

(
lim sup

t→∞

1
γ(t)

∫ t−T

T

f(t − s)g(s)ds
)
.

(8.18)
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The result now follows from Theorem 3.4 (see Theorem 3.3(a3)) by applying

Lγ(f) = lim
t→∞

f(t)
p(t)

p(t)
γ(t)

= Lp(f)Lγ(p) (8.19)

and Lγ(g) = Lq(g)Lγ(q).

Proof of Corollary 6.2. If

γ : R+ −→ (0,∞), γ(t) :=

{
tα+β−1, if t > 0,
1, if t = 0,

(8.20)

then γ ∈ Γu. Let p, q : R+ → (0,∞) be defined by

p(t) :=

{
tα−1, if t > 0,
1, if t = 0,

q(t) :=

{
tβ−1, if t > 0,
1, if t = 0.

(8.21)

Then Lγ(p) = Lγ(q) = 0, and therefore p, q ∈ L ∩ Fγ . By (6.3) and Theorem 6.1, it is enough to
prove

lim
t→∞

1
γ(t)

∫ t

0
p(t − s)q(s)ds = B(α, β), (8.22)

which comes from the definition of the Beta function.
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