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1. Introduction

In the papers [1–3], the measure of noncompactness (essential norm) of maximal functions,
singular integrals, and identity operators acting in weighted Lebesgue spaces defined on
R

n with different weights was estimated from below. In this paper, we investigate the same
problem for maximal functions and potentials defined on homogeneous groups. Analogous
estimates for the partial sums of Fourier series are also derived. For truncated potentials, we
have two-sided estimates of the essential norm.

A result analogous to that of [2] has been obtained in [4, 5] for the Hardy-Littlewood
maximal operator with more general differentiation basis on symmetric spaces. The essential
norm for Hardy-type transforms and one-sided potentials in weighted Lebesgue spaces has
been estimated in [6–9] (see also [10]). For two-sided estimates of the essential norm for the
Cauchy integrals see [11–14]. The same problem in the one-weighted setting has been studied
in [15, 16].

The one-weight problem for the Hardy-Littlewood maximal functions was solved
by Muckenhoupt [17] (for maximal functions defined on the spaces of homogeneous type
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see, e.g., [18]) and for fractional maximal functions and Riesz potentials by Muckenhoupt
and Wheeden [19]. Two-weight criteria for the Hardy-Littlewood maximal functions have
been obtained in [20]. Necessary and sufficient conditions guaranteeing the boundedness of
the Riesz potentials from one weighted Lebesgue space into another one were derived by
Sawyer [21, 22] and Gabidzashvili and Kokilashvili [23] (see also [24]). However, conditions
derived in [23] aremore transparent than those of [21]. For the solution of the two-weight
problem for operators with positive kernels on spaces of homogeneous type see [25] (see
also [10, 26] for related topics).

Earlier, the trace inequality for the Riesz potentials (boundedness of Riesz potentials
from Lp to L

q
v) was established in [27, 28]. The two-weight criteria for fractional maximal

functions were obtained in [22, 29, 30] (see also [25] for more general case).
Necessary and sufficient conditions guaranteeing the compactness of the Riesz

potentials have been derived in [31] (see also [10, Section 5.2]). The one-weight problem
for the Hilbert transform and partial sums of the Fourier series was solved in [32].

The paper is organized as follows. In Section 2, we give basic concepts and prove some
lemmas. Section 3 is divided into 4 parts. Section 3.1 concerns maximal functions; potential
operators are discussed in Sections 3.2 and 3.3. Section 3.4 is devoted to the partial sums of
Fourier series.

Constants (often different constants in the same series of inequalities) will generally
be denoted by c or C.

2. Preliminaries

A homogeneous group is a simply connected nilpotent Lie group G on a Lie algebra g
with the one-parameter group of transformations δt = exp(A log t), t > 0, where A is a
diagonalized linear operator in G with positive eigenvalues. In the homogeneous group G,
the mappings exp o δt o exp−1, t > 0, are automorphisms in G, which will be again denoted by
δt. The numberQ = trA is the homogeneous dimension of G. The symbol ewill stand for the
neutral element in G.

It is possible to equipGwith a homogeneous norm r : G→ [ 0,∞)which is continuous
on G, smooth on G \ {e}, and satisfies the conditions

(i) r(x) = r(x−1) for every x ∈ G;

(ii) r(δtx) = tr(x) for every x ∈ G and t > 0;

(iii) r(x) = 0 if and only if x = e;

(iv) there exists co > 0 such that

r(xy) ≤ co
(
r(x) + r(y)

)
, x, y ∈ G. (2.1)

In the sequel, we denote by B(a, ρ) and B(a, ρ) open and closed balls, respectively,
with the center a and radius ρ, that is,

B(a, ρ) :=
{
y ∈ G; r

(
ay−1) < ρ

}
, B(a, ρ) :=

{
y ∈ G; r

(
ay−1) ≤ ρ

}
. (2.2)

It can be observed that δρB(e, 1) = B(e, ρ).
Let us fix a Haar measure |·| in G such that |B(e, 1)| = 1. Then, |δtE| = tQ|E|. In

particular, |B(x, t)| = tQ for x ∈ G, t > 0.
Examples of homogeneous groups are the Euclidean n-dimensional space R

n, the
Heisenberg group, upper triangular groups, and so forth. For the definition and basic
properties of the homogeneous group, we refer to [33, page 12] and [25].
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Proposition A. Let G be a homogeneous group and let S = {x ∈ G : r(x) = 1}. There is a (unique)
Radon measure σ on S such that for all u ∈ L1(G),

∫

G

u(x)dx =
∫∞

0

∫

S

u
(
δty

)
tQ−1dσ(y)dt. (2.3)

For the details see, for example, [33, page 14].
We call a weight a locally integrable almost everywhere positive function onG. Denote

by L
p
w(G) (1 < p < ∞) the weighted Lebesgue space, which is the space of all measurable

functions f : G→Cwith the norm

‖f‖Lp
w(G) =

(∫

G

∣
∣f(x)

∣
∣pw(x)dx

)1/p

< ∞. (2.4)

If w ≡ 1, then we denote Lp

1(G) by Lp(G).
Let X = L

p
w(G)(1 < p < ∞) and denote by X∗ the space of all bounded linear

functionals on X. We say that a real-valued functional F on X is sublinear if

(i) F(f + g) ≤ F(f) + F(g) for all nonnegative f, g ∈ X;

(ii) F(αf) = |α|F(f) for all f ∈ X and α ∈ C.

Let T be a sublinear operator T : X→Lq(G), then, the norm of the operator T is defined
as follows:

‖T‖ = sup
{‖Tf‖Lq(G) : ‖f‖X ≤ 1

}
. (2.5)

Moreover, T is order preserving if Tf(x) ≥ Tg(x) almost everywhere for all nonnegative f
and g with f(x) ≥ g(x) almost everywhere. Further, if T is sublinear and order preserving,
then obviously it is nonnegative, that is, Tf(x) ≥ 0 almost everywhere if f(x) ≥ 0.

The measure of noncompactness for an operator T which is bounded, order
preserving, and sublinear from X into a Banach space Y will be denoted by ‖T‖κ(X,Y ) (or
simply ‖T‖κ) and is defined as

‖T‖κ(X,Y ) = dist
{
T,K(X,Y )

} ≡ inf
{‖T −K‖ : K ∈ K(X,Y )

}
, (2.6)

where K(X,Y ) is the class of all compact sublinear operators from X to Y . If X = Y , then we
use the symbol K(X) forK(X,Y ).

Let X and Y be Banach spaces and let T be a continuous linear operator from X to Y .
The entropy numbers of the operator T are defined as follows:

ek(T) = inf

{

ε > 0 : T
(
UX

) ⊂
2k−1⋃

j=1

(
bi + εUY

)
for some b1, . . . , b2k−1 ∈ Y

}

, (2.7)

where UX and UY are the closed unit balls in X and Y, respectively. It is well known (see,
e.g., [34, page 8]) that the measure of noncompactness of T is greater than or equal to
limn→∞ en(T).

In the sequel, we assume thatX is a Banach space which is a certain subset of all Haar-
measurable functions on G. We denote by S(X) the class of all bounded sublinear functionals
defined on X, that is,

S(X) =
{
F : X→R, F-sublinear and ‖F‖ = sup

‖x‖≤1

∣∣F(x)
∣∣ < ∞

}
. (2.8)
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Let M be the set of all bounded functionals F defined on X with the following
property:

0 ≤ Ff ≤ Fg, (2.9)

for any f, g ∈ X with 0 ≤ f(x) ≤ g(x) almost every. We also need the following classes of
operators acting from X to Lp(G):

FL

(
X,Lp(G)

)
:=

{

T : Tf(x) =
m∑

j=1

αj(f)uj, m ∈ N, uj ≥ 0, uj ∈ Lp(G),

uj are linearly independent and αj ∈ X∗ ⋂M

}

,

FS

(
X,Lp(G)

)
:=

{

T : Tf(x) =
m∑

j=1

βj(f)uj, m ∈ N, uj ≥ 0, uj ∈ Lp(G),

uj are linearly independent and βj ∈ S(X)
⋂

M

}

.

(2.10)

IfX = Lp(G), we will denote these classes by FL(Lp(G)) and FS(Lp(G)), respectively. It is clear
that if P ∈ FL(X,Lp(G)) (resp., P ∈ FS(X,Lp(G))), then P is compact linear (resp., compact
sublinear) from X to Lp(G).

We will use the symbol α(T) for the distance between the operator T : X→Lp(G) and
the class FS(X,Lp(G)), that is,

α(T) := dist
{
T, FS

(
X,Lp(G)

)}
. (2.11)

For any bounded subset A of Lp(G) (1 < p < ∞), let

Φ(A) := inf
{
δ > 0 : A can be covered by finitely many open balls in Lp(G) of radius δ

}
,

Ψ(A) := inf
P∈FL(Lp(G))

sup
{‖f − Pf‖Lp(G) : f ∈ A

}
.

(2.12)

We will need a statement similar to Theorem V.5.1 of Chapter V of [35] (for Euclidean
spaces see [2]).

Theorem A. For any bounded subset K ⊂ Lp(G) (1 ≤ p < ∞), the inequality

2Φ(K) ≥ Ψ(K) (2.13)

holds.

Proof. Let ε > Φ(K). Then, there are g1, g2, . . . , gN ∈ Lp(G) such that for all f ∈ K and some
i ∈ {1, 2, . . . ,N},

∥∥f − gi
∥∥
Lp(G) < ε. (2.14)
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Further, given δ > 0, let B be the closed ball in G with center e such that for all i ∈
{1, 2, . . . ,N},

(∫

G\B

∣
∣gi(x)

∣
∣pdx

)1/p

<
1
2
δ. (2.15)

It is known (see [33, page 8]) that every closed ball in G is a compact set. Let us
cover B by open balls with radius h. Since B is compact, we can choose a finite subcover
{B1, B2, . . . , Bn}. Further, let us assume that {E1, E2, . . . , En} is a family of pairwise disjoint
sets of positive measure such that B =

⋃n
i=1Ei and Ei ⊂ Bi (we can assume that E1 = B1 ∩ B,

E2 = (B2 \ B1) ∩ B, . . . , Ek = (Bk \
⋃k−1

i=1 Bi) ∩ B, . . .). We define

Pf(x) =
n∑

i=1

fEiχEi(x), fEi =
∣
∣Ei

∣
∣−1

∫

Ei

f(x)dx. (2.16)

Then,

∥∥gi − Pgi
∥∥p

Lp(B)
=

n∑

j=1

∫

Ej

∣∣∣∣
1

∣∣Ej

∣∣

∫

Ej

[
gi(x) − gi(y)

]
dy

∣∣∣∣

p

dx

≤
m∑

j=1

∫

Ej

1
∣∣Ej

∣∣

∫

Ej

∣∣gi(x) − gi(y)
∣∣pdy dx

≤ sup
r(z)≤2coh

∫

B

∣∣gi(x) − gi(zx)
∣∣pdx −→ 0

(2.17)

as h→ 0. The latter fact follows from the continuity of the norm Lp(G) (see, e.g., [33, page
19]).

From this and (2.14), we find that
∥∥gi − Pgi

∥∥
Lp(G) < δ, i = 1, 2, 3, . . . ,N, (2.18)

when h is sufficiently small. Further,

‖Pf‖p
Lp(G) =

n∑

j=1

∫

Ej

∣∣∣∣
∣∣Ej

∣∣−1
∫

Ej

f(y)dy
∣∣∣∣

p

dx

≤
n∑

j=1

∫

Ej

∣∣Ej

∣∣−1
∫

Ej

∣∣f(y)
∣∣pdy dx

≤ ‖f‖p
Lp(B)

≤ ‖f‖p
Lp(G).

(2.19)

It is also clear that the functionals f → fEi belong to (Lp(G))∗ ∩ M. Hence, P ∈
FL(Lp(G)). Finally, (2.14)–(2.15) and (2.18) yield

‖f − Pf‖Lp(G) ≤
∥∥f − gi

∥∥
Lp(G) +

∥∥gi − Pgi
∥∥
Lp(G) +

∥∥P
(
gi − f

)∥∥
Lp(G)

< ε + δ +
∥∥gi − f

∥∥
Lp(G) ≤ 2ε + δ.

(2.20)

Since δ is arbitrarily small, we have the desired result.
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Lemma A. Let 1 ≤ p < ∞ and assume that a set K ⊂ Lp(G) is compact. Then for any given ε > 0,
there exist an operator Pε ∈ FL(Lp(G)) such that for all f ∈ K,

∥
∥f − Pεf

∥
∥
Lp(G) ≤ ε . (2.21)

Proof. Let K be a compact set in Lp(G). Using Theorem A, we see that Ψ(K) = 0. Hence for
ε > 0, there exists Pε ∈ FL(Lp(G)) such that

sup
{∥∥f − Pεf

∥
∥
Lp(G) : f ∈ K

} ≤ ε. (2.22)

Lemma B. Let T : X→Lp(G) be compact, order-preserving, and sublinear operator, where 1 ≤ p <
∞. Then, α(T) = 0.

Proof. LetUX = {f : ‖f‖X ≤ 1}. From the compactness of T , it follows that T(UX) is relatively
compact in Lp(G). Using Lemma A, we have that for any given ε > 0 there exists an operator
Pε ∈ FL(Lp(G)) such that for all f ∈ UX ,

∥∥Tf − PεTf
∥∥
Lp(G) ≤ ε. (2.23)

Let P̃ε = Pε ◦ T. Then, P̃ε ∈ FS(X,Lp(G)). Indeed, there exist functionals αj ∈ X∗ ∩ M, j ∈
{1, 2, . . . , m}, and linearly independent functions uj ∈ Lp(G), j ∈ {1, 2, . . . , m}, such that

P̃εf(x) = Pε(Tf)(x) =
m∑

j=1

αj(Tf)uj(x) =
m∑

j=1

βj(f)uj(x), (2.24)

where βj = αj ◦ T belongs to S(X) ∩M. Since by (2.23),

∥∥Tf − P̃εf
∥∥
Lp(G) ≤ ε (2.25)

for all f ∈ UX, it follows immediately that α(T) = 0.

We will also need the following lemma.

Lemma C. Let T be a bounded, order-preserving, and sublinear operator from X to Lq(G), where
1 ≤ q < ∞. Then,

‖T‖κ = α(T). (2.26)

Proof. Let δ > 0. Then, there exists an operatorK ∈ K(X,Lq(G)), such that ‖T −K‖ ≤ ‖T‖κ+δ.
By Lemma B there is P ∈ FS(X,Lq(G)) for which the inequality ‖K − P‖ < δ holds. This gives

‖T − P‖ ≤ ‖T −K‖ + ‖K − P‖ ≤ ‖T‖κ + 2δ. (2.27)

Hence, α(T) ≤ ‖T‖κ.Moreover, it is obvious that

‖T‖κ ≤ α(T). (2.28)
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Lemma D. Let 1 ≤ q < ∞ and let P ∈ FS(X,Lq(G)). Then for every a ∈ G and ε > 0, there exist an
operator R ∈ FS(X,Lq(G)) and positive numbers α, α such that for all f ∈ X, the inequality

∥
∥(P − R)f

∥
∥
Lq(G) ≤ ε‖f‖X (2.29)

holds and suppRf ⊂ B(a, α) \ B(a, α).

Proof. There exist linearly independent nonnegative functions uj ∈ Lq(G), j ∈ {1, 2, . . . ,N},
such that

Pf(x) =
N∑

j=1

βj(f)uj(x), f ∈ X, (2.30)

where βj are bounded, order-preserving, sublinear functionals βj : X→R. On the other hand,
there is a positive constant c for which

N∑

j=1

∣∣βj(f)
∣∣ ≤ c‖f‖X. (2.31)

Let us choose linearly independent Φj ∈ Lq(G) and positive real numbers αj , αj such
that

∥∥uj −Φj

∥∥
Lq(G) < ε, j ∈ {1, 2, . . . ,N} (2.32)

and supp Φj ⊂ B(a, αj) \ B(a, αj). If

Rf(x) =
N∑

j=1

βj(f)Φj(x), (2.33)

then it is obvious that R ∈ FS(X,Lq(G)) and moreover,

‖Pf − Rf‖Lq(G) ≤
N∑

j=1

∣∣βj(f)
∣∣∥∥uj −Φj

∥∥
Lq(G) ≤ cε‖f‖X (2.34)

for all f ∈ X. Besides this, suppRf ⊂ B(a, α) \ B(a, α), where α = min{αj} and α = max{αj}.

Lemmas C and D for Lebesgue spaces defined on Euclidean spaces have been proved
in [35] for the linear case and in [2] for sublinear operators.

Lemma E. Let 1 < p, q < ∞, and let T be a bounded, order-preserving, and sublinear operator from
L
p
w(G) to Lq

v(G). Suppose that λ > ‖T‖κ(Lp
w(G),Lq

v(G)), and a is a point of G. Then, there exist constants
β1, β2, 0 < β1 < β2 < ∞, such that for all τ and r with r > β2, τ < β1, the following inequalities hold:

‖Tf‖Lq
v(B(a,τ)) ≤ λ‖f‖Lp

w(G),

‖Tf‖Lq
v(B(a,r)

c) ≤ λ‖f‖Lp
w(G),

(2.35)

where f ∈ L
p
w(G).
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Proof. Let T be bounded from L
p
w(G) to L

q
v(G). Let T (v) be the operator given by

T (v)f = v1/qTf. (2.36)

Then, it is easy to see that
∥
∥T (v)∥∥

κ(Lp
w(G)→Lq(G)) = ‖T‖κ(Lp

w(G)→L
q
v(G)). (2.37)

By Lemma C, we have that

λ > α
(
T (v)). (2.38)

Consequently, there exists P ∈ FS(L
p
w(G), Lq(G)) such that

∥
∥T (v) − P

∥
∥ < λ. (2.39)

Fix a ∈ G. According to Lemma D, there are positive constants β1 and β2, β1 < β2, and R ∈
FS(L

p
w(G), Lq

v(G)) for which

‖P − R‖ ≤ λ − ∥∥T (v) − P
∥∥

2
(2.40)

and suppRf ⊂ B(a, β2) \ B(a, β1) for all f ∈ L
p
w(G). Hence,

∥∥T (v) − R
∥∥ < λ. (2.41)

From the last inequality, it follows that if 0 < τ < β1 and r > β2, then (2.35) holds for f ,
f ∈ L

p
w(G).

The following lemmas are taken from [2] (for the linear case see [35]).

Lemma F. LetΩ be a domain in R
n, and let T be a bounded, order-preserving, and sublinear operator

from Lr
w(Ω) to Lp(Ω), where 1 < r, p < ∞, and w is a weight function on Ω. Then,

‖T‖κ(Lr
w(Ω),Lp(Ω)) = α(T). (2.42)

LemmaG. LetΩ be a domain inR
n and let P ∈ FS(X,Lp(Ω)), whereX = Lr

w(Ω) and 1 < r, p < ∞.
Then for every a ∈ Ω and ε > 0, there exist an operator R ∈ FS(X,Lp(Ω)) and positive numbers β1
and β2, β1 < β2 such that for all f ∈ X, the inequality

∥∥(P − R)f
∥∥
Lp(Ω) ≤ ε‖f‖X (2.43)

holds and suppRf ⊂ D(a, β2) \D(a, β1), where D(a, s) := Ω
⋂
B(a, s).

Lemmas F andG yield the next statement which follows in the samemanner as Lemma
E was proved; therefore we give it without proof.

Lemma H. Let Ω be a domain in R
n. Suppose that 1 < p, q < ∞, and that T is bounded, order-

preserving, and sublinear operator from L
p
w(Ω) to L

q
v(Ω). Assume that λ > ‖T‖κ(Lp

w(Ω),Lq
v(Ω)) and

a ∈ Ω. Then, there exist constants β1, β2, 0 < β1 < β2 < ∞ such that for all τ and r with r > β2,
τ < β1, the following inequalities hold:

‖Tf‖Lq
v(B(a,τ)) ≤ λ‖f‖Lp

w(Ω); ‖Tf‖Lq
v(Ω\B(a,r)) ≤ λ‖f‖Lp

w(Ω), (2.44)

wheref ∈ L
p
w(Ω).



M. Asif and A. Meskhi 9

Lemma I (see [36, Chapter IX]). Let 1 < p, q < ∞, and let (X, μ) and (Y, ν) be σ-finite measure
spaces. If

∥
∥
∥
∥
∥k(x, y)

∥
∥
L
p′
ν (Y )

∥
∥
∥
L
q
μ(X)

< ∞, p′ =
p

p − 1
, (2.45)

then the operator

Kf(x) =
∫

Y

k(x, y)f(y)dν(y), x ∈ X, (2.46)

is compact from L
p
ν(Y ) into L

q
μ(X).

3. Main results

3.1. Maximal functions

Let G be a homogeneous group and let

Mαf(x) = sup
B�x

1
|B|1−α/Q

∫

B

∣∣f(y)
∣∣dy, x ∈ G, 0 ≤ α < Q, (3.1)

where the supremum is taken over all balls B containing x. If α = 0, then Mα becomes the
Hardy-Littlewood maximal function which will be denoted by M.

It is known (see, e.g., [17, 18] for α = 0, and [19], [33, Chapter 6], for α > 0) that if
1 < p < ∞ and 0 ≤ α < Q/p, then the operator Mα is bounded from L

p
ρp(G) to L

q
ρq(G), where

q = Qp/(Q − αp), if and only if ρ ∈ Ap,q(G), that is,

sup
B

(
1
|B|

∫

B

ρq
)1/q ( 1

|B|
∫

B

ρ−p
′
)1/p′

< ∞. (3.2)

Now, we formulate the main results of this subsection.

Theorem 3.1. Let 1 < p < ∞. Suppose that the maximal operator M is bounded from L
p
w(G) to

L
p
v(G). Then, there is no weight pair (v,w) such thatM is compact from L

p
w(G) to Lp

v(G).Moreover,
the inequality

‖M‖κ(Lp
w(G),Lp

v(G)) ≥ sup
a∈G

lim
τ → 0

1
∣∣B(a, τ)

∣∣

(∫

B(a,τ)
v(x)dx

)1/p(∫

B(a,τ)
w1−p′(x)dx

)1/p′

(3.3)

holds.

Proof. Suppose that λ > ‖M‖κ(Lp
w →L

p
v) and a ∈ G. By Lemma E, we have that

∫

B(a,τ)
v(x)

(
sup
B�x

1
∣∣B(a, τ)

∣∣

∫

B(a,τ)

∣∣f(y)
∣∣dy

)p

dx ≤ λp
∫

B(a,τ)

∣∣f(x)
∣∣pw(x)dx (3.4)

for all τ (τ ≤ β) and all f supported in B(a, τ). Substituting f(y) = χB(a,r)(y)w1−p′(y) in the
latter inequality and taking into account that

∫
B(a,τ)w

1−p′(x)dx < ∞ (see, e.g., [17, 18], [25,
Chapter 4]) for all τ > 0 we find that

1
∣∣B(a, τ)

∣∣p

(∫

B(a,τ)
v(x)dx

)(∫

B(a,τ)
w1−p′(x)dx

)p−1
≤ λp. (3.5)

This inequality and Lebesgue differentiation theorem (see [33, page 67]) yield the
desired result.



10 Journal of Inequalities and Applications

For the fractional maximal functions, we have the following theorem.

Theorem 3.2. Let 1 < p < ∞, 0 < α < Q/p and let q = Qp/(Q − αp). Suppose thatMα is bounded
from L

p
w(G) to Lq

v(G). Then, there is no weight pair (v,w) such that Mα is compact from L
p
w(G) to

L
q
v(G). Moreover, the inequality

∥
∥Mα

∥
∥
κ ≥ sup

a∈G
lim
τ → 0

1
∣
∣B(a, τ)

∣
∣α/Q−1

(∫

B(a,τ)
v(x)dx

)1/q(∫

B(a,τ)
w1−p′(x)dx

)1/p′

(3.6)

holds.

The proof of this statement is similar to that of Theorem 3.1; therefore the proof is
omitted.

Example 3.3. Let 1 < p < ∞, v(x) = w(x) = r(x)γ , where −Q < γ < (p − 1)Q. Then,

‖M‖κ(Lp
w(G)) ≥ Q

[(
γ +Q

)1/p(
γ
(
1 − p′

)
+Q

)1/p′]−1
. (3.7)

Indeed, first observe that the fact |B(e, 1)| = 1 and Proposition A implies σ(S) = Q,
where S is the unit sphere in G and σ(S) is its measure. By Theorem 3.1 and Proposition A,
we have

‖M‖κ(Lp
w(G)) ≥ lim

τ → 0

1
∣∣B(e, τ)

∣∣

(∫

B(e,τ)
w(x)dx

)1/p(∫

B(e,τ)
w1−p′(x)dx

)1/p′

= σ(S)lim
τ → 0

τ−Q
(∫ τ

0
tγ+Q−1dt

)1/p(∫ τ

0
tγ(1−p

′)+Q−1dt
)1/p′

= Q
[
(γ +Q)1/p

(
γ
(
1 − p

′)
+Q

)1/p′]−1
.

(3.8)

3.2. Riesz potentials

Let G be a homogeneous group and let

Iαf(x) =
∫

G

f(y)

r
(
xy−1)Q−α dy, 0 < α < Q, (3.9)

be the Riesz potential operator. It is well known (see [33, Chapter 6]) that Iα is bounded from
Lp(G) to Lq(G), 1 < p, q < ∞, if and only if q = Qp/(Q − αp).

Theorem 3.4. Let 1 < p ≤ q < ∞, 0 < α < Q. Let Iα be bounded from L
p
w(G) to Lq

v(G). Then, the
following inequality holds

∥∥Iα
∥∥
κ ≥ Cα,Q max

{
A1, A2, A3

}
, (3.10)
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where

Cα,Q =
1

(
2co

)Q−α ,

A1 = sup
α∈G

lim
r→ 0

rα−Q
(∫

B(a,r)
v(x)dx

)1/q(∫

B(a,r)
w1−p′(x)dx

)1/p′
,

A2 = sup
a∈G

lim
r→ 0

(∫

B(a,r)
v(x)dx

)1/q(∫

(B(a,r))c
r
(
ay−1)(α−Q)p′

w1−p′(y)dy
)1/p′

,

A3 = sup
a∈G

lim
r→ 0

(∫

B(a,r)
w1−p′(x)dx

)1/p′(∫

(B(a,r))c
r
(
ay−1)(α−Q)q

v(y)dy
)1/q

.

(3.11)

(co is the constant from the triangle inequality for the homogeneous norms.)

The next statement is formulated for the Riesz potentials defined on domains in R
n:

JΩ,αf(x) =
∫

Ω
f(y)|x − y|α−ndy, x ∈ Ω. (3.12)

Theorem 3.5. Let Ω ⊆ R
n be a domain in R

n. Let 1 < p ≤ q < ∞. If JΩ,α is bounded from
L
p
w(Ω) to L

q
v(Ω), then one has

‖JΩ,α‖κ ≥ 2α−nB1, (3.13)

where

B1 = sup
a∈Ω

lim
r→ 0

rα−n
(∫

B(a,r)
v

)1/q(∫

B(a,r)
w1−p′

)1/p′

. (3.14)

In particular, if Ω ≡ R
n, then

‖JΩ,α‖κ ≥ 2α−n max
{
B2, B3

}
, (3.15)

where

B2 = sup
a∈Rn

lim
r→ 0

(∫

B(a,r)
v(x)dx

)1/q(∫

R
n\B(a,r)

|a − y|(α−n)p′w1−p′(y)dy
)1/p′

,

B3 = sup
a∈Rn

lim
r→ 0

(∫

B(a,r)
w1−p′(x)dx

)1/p′(∫

R
n\B(a,r)

|a − y|(α−n)qv(y)dy
)1/q

.

(3.16)

Corollary 3.6. Let 1 < p < ∞, 1 < p < Q/α, q = pQ/(Q − αp), then there is no weight pair (v,w)
for which Iα is compact from L

p
w(G) to Lq

v(G). Moreover, if Iα is bounded from L
p
w(G) to Lq

v(G), then

‖Iα‖κ ≥ Cα,QA1, (3.17)

where Cα,Q and A1 are defined in Theorem 3.4.
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Proof of Theorem 3.4. By Lemma E, we have that for λ > ‖Iα‖κ(Lp
w(G),Lq

v(G)) and a ∈ G, there are
positive constants β1 and β2 (β1 < β2) such that for all τ, s (τ < β1, s > β2),

∫

B(a,τ)
v(x)

∣
∣Iαf(x)

∣
∣qdx ≤ λq

(∫

G

∣
∣f(x)

∣
∣pw(x)dx

)q/p

(3.18)

for f ∈ L
p
w(G), and

∫

B(a,s)c
v(x)

∣
∣Iαf(x)

∣
∣qdx ≤ λq

(∫

B(a,s)
|f(x)|pw(x)dx

)q/p

(3.19)

for supp f ⊂ B(a, s).
Now taking f(x) = χB(a,r)(x)w1−p′ (x) in (3.18) and observing that

∫
B(a,r)w

1−p′ (x)dx <
∞ for all r > 0 (see also [25, Chapter 3]), we find that

∫

B(a,r)
v(x)

(∫

B(a,r)

w1−p′(y)

r
(
xy−1)Q−α dy

)q

dx ≤ λq
(∫

B(a,r)
w1−p′ (x)dx

)q/p

< ∞. (3.20)

Further if x, y ∈ B(a, τ), then

r
(
xy−1) ≤ co

(
r
(
xa−1) + r

(
ay−1)) ≤ 2coτ. (3.21)

Hence,

∥∥Iα
∥∥
κ ≥ Cα,QA1. (3.22)

If f(x) = χB(a,τ)c(x)(w1−p′(x)/r(ay−1)(Q−α)(p′−1)), then

∫

B(a,τ)
v(x)

(∫

B(a,τ)c

w1−p′(y)dy

r
(
xy−1)Q−α

r
(
ay−1)(Q−α)(p′−1)

)q

dx ≤ λq
(∫

B(a,τ)c

w1−p′(x)dx

r
(
ay−1)(Q−α)p′

)q/p

< ∞.

(3.23)

Let r(xa−1) < τ and r(ya−1) > τ. Then,

r
(
xy−1) ≤ co

(
r
(
xa−1) + r

(
ay−1)) ≤ co

(
τ + r

(
ay−1)) ≤ 2cor

(
ay−1). (3.24)

Hence, by (3.18)we have

1
(
2co

)q(Q−α)

(∫

B(a,τ)
v(x)dx

)(∫

B(a,τ)c

w1−p′(y)dy

r
(
ay−1)(Q−α)p′

)q

≤ λq
(∫

B(a,τ)c

w1−p′(x)dx

r
(
ay−1)(Q−α)p′

)q/p

.

(3.25)

The latter inequality implies

∥∥Iα
∥∥
κ ≥ 1

(
2co

)Q−αA2. (3.26)
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Further, observe that (3.19) means that the norm of the operator

Iαf(x) =
∫

B(a,s)

f(y)dy

r(y−1a)Q−α (3.27)

can be estimated as follows:

∥
∥Iα

∥
∥
L
p
w(B(a,s))→L

q
v(B(a,s)

c) ≤ λ. (3.28)

Now by duality, we find that

∥
∥Iα

∥
∥
L
p
w(B(a,s))→L

q
v(B(a,s)

c) =
∥
∥Ĩα

∥
∥
L
q′

v1−q′
(B(a,s)c)→L

p′

w1−p′ (B(a,s))
, (3.29)

where

Ĩαg(y) =
∫

B(a,s)c

g(x)dx

r
(
xy−1)Q−α . (3.30)

Indeed, by Fubini’s theorem and Hölder’s inequality, we have

∥∥Iαf
∥∥
L
q
v(B(a,s)

c) ≤ sup
‖g‖

L
q
′

v (B(a,s)c)
≤1

∫

B(a,s)c

∣∣g(x)
(
Iαf(x)

)∣∣dx

≤ sup
‖g‖

L
q
′

v1−q
′ (B(a,s)c)

≤1

∫

B(a,s)

∣∣f(y)
∣∣ Ĩα

(|g|)(y)dy

≤ sup
‖g‖

L
q
′

v1−q
′ (B(a,s)c)

≤1

(∫

B(a,s)
|f |pw

)1/p(∫

B(a,s)

(
Ĩα
(|g|))p

′
w1−p′

)1/p′

≤ ∥∥Ĩα
∥∥
(∫

B(a,s)
|f |pw

)1/p

.

(3.31)

Hence, ‖Iα‖ ≤ ‖Ĩα‖. Analogously, ‖Ĩα‖ ≤ ‖Iα‖.
Further, (3.19) implies

∫

B(a,s)
w1−p′(x)

∣∣∣∣

∫

(B(a,s))c

g(y)dy

r
(
xy−1)Q−α dx

∣∣∣∣

p′

≤ λp
′
(∫

(B(a,s))c

∣∣g(x)
∣∣q′v1−q′(x)dx

)p′/q′

. (3.32)

Now, taking g(x) = χB(a,s)c(x)r(xa−1)(Q−α)(1−q)
v(x) in the last inequality we conclude

that ‖Iα‖κ ≥ (1/(2co)
Q−α)A3.

Theorem 3.5 follows in the same manner as Theorem 3.4 was obtained. We only need
to use Lemma H.
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3.3. Truncated potentials

This subsection is devoted to the two-sided estimates of the essential norm for the operator:

Tαf(x) =
∫

B(e,2r(x))

f(y)

r(xy−1)Q−α , x ∈ G. (3.33)

A necessary and sufficient condition guaranteeing the trace inequality for Tα in Euclidean
spaces was established in [37]. This result was generalized in [38], [10, Chapter 6], for the
spaces of homogeneous type. From the latter result as a corollary, we have the following
proposition.

Proposition B. Let 1 < p ≤ q < ∞ and let α > Q/p. Then,

(i) Tα is bounded from Lp(G) to Lq
v(G) if and only if

B := sup
t>0

B(t) := sup
t>0

(∫

r(x)>t
v(x)r(x)(α−Q)qdx

)1/q

tQ/p′ < ∞; (3.34)

(ii) Tα is compact from Lp(G) to Lq
v(G) if and only if

lim
t→ 0

B(t) = lim
t→∞

B(t) = 0. (3.35)

Theorem 3.7. Let 1 < p ≤ q < ∞ and let 0 < α < Q. Suppose that Tα is bounded from L
p
w(G) to

L
q
v(G). Then, the inequality

∥∥Tα
∥∥
κ(Lp

w(G)→L
q
v(G)) ≥ CQ,α

(
lim
a→ 0

A(a) + lim
b→∞

A(b)

)
(3.36)

holds, where

CQ,α =
(
2co

)α−Q
,

A(a) = sup
0<t<a

(∫

B(e,a)\B(e,t)
v(x)r(x)(α−Q)qdx

)1/q(∫

B(e,t)
w1−p′(x)dx

)1/p′

,

A(b) = sup
t>b

(∫

B(e,t)c
v(x)r(x)(α−Q)qdx

)1/q(∫

B(e,t)\B(e,b)
w1−p′(x)dx

)1/p′

.

(3.37)

To prove Theorem 3.7 we need the following lemma.

Lemma 3.8. Let p, q, and α satisfy the conditions of Theorem 3.7 Then from the boundedness of Tα
from L

p
w(G) to Lq

v(G), it follows that w1−p′ is locally integrable on G.

Proof. Let

I(t) =
∫

B(e,t)
w1−p′(x)dx = ∞ (3.38)
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for some t > 0. Then, there exists g ∈ Lp(B(e, t)) such that
∫
B(e,t)gw

−1/p = ∞. Let us assume
that ft(y) = g(y)w−1/p(y)χB(e,t)(y). Then, we have

∥
∥Tαft

∥
∥
L
q
v(G) ≥

∥
∥χB(e,t)cTαft

∥
∥
L
q
v(G)

≥ c

(∫

B(e,t)c
v(x)r(x)(α−Q)qdx

)1/q∫

B(e,t)
g(y)w−1/p′(y)dy = ∞.

(3.39)

On the other hand,

∥
∥ft

∥
∥
L
p
w(G) =

∫

B(e,t)
gp(x)dx < ∞. (3.40)

Finally, we conclude that I(t) < ∞ for all t, t > 0.

Proof of Theorem 3.7. Let λ > ‖Tα‖κ(Lp
w(G),Lq

v(G)). Then by Lemma E, there exists a positive
constant β such that for all τ1, τ2, 0 < τ1 < τ2 < β and f, supp f ⊂ B(e, τ1), the inequality

∥∥Tαf
∥∥
L
q
v(B(e,τ2)\B(e,τ1)) ≤ λ‖f‖Lp

w(B(e,τ1)) (3.41)

holds. Observe that if r(x) > τ1 and r(y) < τ1, then r(xy−1) ≤ 2cor(x). Consequently, taking
f = w1−p′χB(e,τ1) and using Lemma 3.8, we find that

1

(2co)
Q−α

(∫

B(e,τ2)\B(e.τ1)
v(x)

(
r(x)

)(α−Q)q
dx

)1/q(∫

B(e,τ1)
w1−p′(x)dx

)1/p′

≤ λ, (3.42)

from which it follows that

1
(
2co

)(Q−α)q lim
a→ 0

A(a) ≤ λ. (3.43)

Further, by virtue of Lemma E there exists β2 such that for all s1, s2 with β2 < s1 < s2 the
inequality

∥∥Tαf
∥∥
L
q
v(B(e,s2)

c) ≤ λ‖f‖Lp
w(B(e,s2)\B(e,s1)) (3.44)

holds, where supp f ⊂ B(e, s2) \ B(e, s1).Hence by Lemma 3.8, we find that

1
(
2co

)Q−α

(∫

B(e,s2)
c
v(x)

(
r(x)

)(α−Q)q
dx

)1/q(∫

B(e,s2)\B(e,s1)
w1−p′(x)dx

)1/p′

≤ λ, (3.45)

which leads us to

1
(
2co

)Q−α limb→ 0
A(b) ≤ λ. (3.46)

Thus, we have the desired result.
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Theorem 3.9. Let 1 < p ≤ q < ∞ and let Q/p < α < Q. Suppose that (3.34) holds. Then, there is a
positive constant C such that

∥
∥Tα

∥
∥
κ(Lp(G)→L

q
v(G)) ≤ C

(
lim
a→ 0

B(a) + lim
b→ 0

B(b)

)
, (3.47)

where

B(a) = sup
t≤a

(∫

B(e,a)\B(e,r)
v(x)r(x)(α−Q)qdx

)1/q

rQ/p′ ,

B(b) = sup
t≥b

(∫

B(e,t)c
v(x)r(x)(α−Q)qdx

)1/q(
rQ − bQ

)1/p′
.

(3.48)

Proof. Let 0 < a < b < ∞ and represent Tαf as follows:

Tαf = χB(e,a)Tα
(
fχB(e,a)

)
+ χB(e,b)\B(e,a)Tα

(
fχB(e,b)

)

+ χG\B(e,b)Tα
(
fχB(e,b/2c0)

)
+ χG\B(e,b)Tα

(
fχG\B(e,b/2c0)

)

≡ P1f + P2f + P3f + P4f.

(3.49)

For P2, we have

P2f(x) =
∫

G

k(x, y)dy, (3.50)

where k(x, y) = χB(e,b)\B(e,a)(x)χB(e,2r(x))(y)r(xy
−1)α−Q.

Further observe that
∫

G

(∫

G

(
k(x, y)

)p′
dy

)q/p′

v(x)dx =
∫

B(e,b)\B(e,a)

(∫

B(e,2r(x))

(
r
(
xy−1))(α−Q)p′

dy

)q/p′

v(x)dx

≤ c

∫

B(e,b)\B(e,a)

(∫

B(e,r(x)/2c0)

(
r
(
xy−1))(α−Q)p′

dy

)q/p′

v(x)dx

≤ c

∫

B(e,b)\B(e,a)
r(x)(α−Q)q+q/p′v(x)dx < ∞.

(3.51)

Hence by Lemma I, we conclude that P2 is compact for every a and b. Nowwe observe
that if r(x) > b and r(y) < b/2co, then r(x) ≤ 2cor(xy−1). Due to Proposition A we have that
P3 is compact.

Further, we know that (see [38], [10, Chapter 6])
∥∥P1

∥∥ ≤ C1B
(a),

∥∥P4
∥∥ ≤ C2B(b/2co), (3.52)

where the constants C1 and C2 depend only on p, q, Q, and α.
Therefore,

∥∥Tα − P2 − P3
∥∥ ≤ ∥∥P1

∥∥ +
∥∥P4

∥∥ ≤ c
(
B(a) + B(b)

)
. (3.53)

The last inequality completes the proof.
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Theorem 3.10. Let p and q satisfy the conditions of Theorem 3.9. Suppose that (3.18) holds. Then,
one has the following two-sided estimate:

c2
(
lim
a→ 0

B(a) + lim
b→∞

B(b)

)
≤ ∥
∥Tα

∥
∥
κ(Lp(G),Lq

v(G)) ≤ c1
(
lim
a→ 0

B(a) + lim
b→∞

B(b)

)
(3.54)

for some positive constants c1 and c2 depending only on Q, α, p, and q.

Theorem 3.10 follows immediately from Theorems 3.7 and 3.9.

3.4. Partial sums of Fourier series

Here, we investigate the lower estimate of the essential norm for the partial sums of the
Fourier series:

Snf(x) =
1
π

∫π

−π
f(t)Dn(t)dt, (3.55)

where Dn = 1/2 +
∑n

k=1cos kt.
One-weighted inequalities for Sn were obtained in [32] (see also [25, Chapter 6]). For

basic properties of Sn in unweighted case; see, for example, [39].

Theorem 3.11. Let 1 < p < ∞. Then, there is no n ∈ N and weight pair (w,v) on T := (−π,π) such
that Sn is compact from L

p
w(T) to L

p
v(T). Moreover, if Sn is bounded from L

p
w(T) to L

p
v(T), then

∥∥Sn

∥∥ ≥
(
2 + 21/2

)1/2

2π
sup
a∈T

lim
r→ 0

(
1
2r

∫a+r

a−r
v

)1/p( 1
2r

∫a+r

a−r
w1−p′

)1/p′

, (3.56)

where I = (a − r, a + r).

Proof. Taking λ > ‖Sn‖κ(Lp
w(T),L

p
v(T)), by Lemma H we find that

∫

I

v(x)
∣∣Snf(x)

∣∣pdx ≤ λp
∫

I

∣∣f(x)
∣∣pw(x)dx (3.57)

for all intervals I = (a − r, a + r), where r is a small positive number.
Let

J1 =
∫

I

v(x)
∣∣Snf(x)

∣∣pdx, J2 =
∫

I

∣∣f(x)
∣∣pw(x)d(x). (3.58)

Suppose that |I| ≤ π/4, and let n be the greatest integer less than or equal to π/4|I|. Then for
x ∈ I (see [32]),

∣∣Snf(x)
∣∣ ≥ 1

π

∫

I

∣∣f(θ)
∣∣ sin(3π/8)
π/4n

dθ. (3.59)

Using this estimate and taking f := w1−p′(x)χI(x), we find that

J1 ≥
(
1
π

sin
3π
8

)p

|I|−p
(∫

I

v

)(∫

I

w1−p′
)p

. (3.60)
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On the other hand, it is easy to see that J2 =
∫
Iw

1−p′ < ∞.
Hence, by (3.57)we conclude that

λ ≥ 1
π

sin
3π
8

(
1
|I|

∫

I

v

)1/p( 1
|I|

∫

I

w1−p′
)1/p′

. (3.61)

Now passing r to 0, taking supremum over a ∈ T, and using the fact sin(3π/8) =
(2 + 21/2)1/2/2, we find that (3.56) holds.

Corollary 3.12. Let 1 < p < ∞ and let n ∈ N. Then

∥
∥Sn

∥
∥
κ(Lp(T)) ≥

(
2 + 21/2

)1/2

2π
. (3.62)

Corollary 3.13. Let 1 < p < ∞ and let n ∈ N. Suppose that w(x) = v(x) = |x|α. Then, one has

∥∥Sn

∥∥
κ(Lp

w(T))
≥

(
2 + 21/2

)1/2

2π

(
1

α + 1

)1/p( 1
α
(
1 − p′

)
+ 1

)1/p′

. (3.63)
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